
INFORMATICA, 2010, Vol. 21, No. 4, 487–504 487
© 2010 Vilnius University

QOS-Aware Composition of Enterprise System‘s
Components: Constraint Logic Programming
Approach

Jeremy BESSON, Albertas ČAPLINSKAS
Vilnius University Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania
e-mail: contact.jeremy.besson@gmail.com, albertas.caplinskas@mii.vu.lt

Received: May 2010; accepted: October 2010

Abstract. Enterprise systems should be assembled out of components and services according to an
orchestration schema and taking into account not only functional requirements but also the resulting
Quality of Service (QoS). In other words, QoS-aware composition of services and components must
be performed. The problem is to find which components or services have to be employed that the
resulting system would optimize some QoS attributes while satisfying some other QoS constraints.
The paper proposes to use the Constraint Logic Programming approach to solve this problem, that
is, we see this problem as a discrete optimization and satisfaction problem.

Keywords: enterprise systems, service-oriented engineering, quality of services, composition of
services, discrete optimization, constraint logic programming.

1. Introduction

At present, more and more often advanced enterprise systems are composed of distributed
commercial components and services delivered via Internet (Götze et al., 2009). In the
traditional branches of engineering such as manufacturing, assembling of complete sys-
tems out of prefabricated parts is of primary interest for creating easier-made and eco-
nomical products. This is possible because of the existence of standardized components
that meet predefined functional and non-functional requirements. However, at present
we cannot yet enjoy the same luxury in software development. This is mainly because
non-functional properties of components and services are often specified not exhaustive
enough and because of difficulties to predict the quality of software that is composed
even of parts that have a well-defined quality of delivered services. If the specification of
Quality of Service (QoS) is not exhaustive or can be interpreted differently, it becomes
impossible to compare the QoS, offered by a set of different components with equivalent
functionalities and to predict the quality of a software system obtained by composing
multiple components and services. However, the ability to predict automatically the QoS
of the whole system is critical, if we think of the potential of the component-based and
service-oriented software engineering paradigms, especially, in the environment of the
Internet of Services.

488 J. Besson, A. Čaplinskas

According to ISO 9126 (ISO/IEC, 2001), an international standard for the evaluation
of software, the QoS is “the totality of features and characteristics of a product or service
that bear on its ability to satisfy stated or implied needs”. The expected benefits of QoS
specifications are for both users and providers. On the one hand, users want to select the
best provider with regard to their needs. On the other hand, providers want to better ad-
vertise their services or components. QoS serves as a tool to differentiate providers that
are providing similar functionalities. However, it is not realistic to expect specifications
to be complete with respect to all such possible non-functional properties, due to the great
variety of services and, consequently their quality characteristics. The efforts have been
concentrated on identifying some common QoS attributes such as cost, availability, relia-
bility, response time, latency, performance, security, accessibility, robustness, flexibility,
and accuracy.

According to Plebani (2006), QoS is a combination of three types of qualities:
(1) quality in use related to the quality perceived by the user, (2) internal quality re-
gardless of the context in which it is used, and (3) external quality related to the context
in which it is used. Numerous languages, policies and models have been proposed to
specify, design and manage the QoS. Some examples are: credentials, a contract-based
approach for specification of QoS (Shaw, 1996), a general purpose QoS modelling lan-
guage QML (Froulund and Koistinen, 1998), an OWL ontology to describe the Web ser-
vice OWL-S (W3C, 2004), UniFrame, a generative domain-specific model, which is used
to generate the glue/wrapper interfaces between the required components (Raje, 2000),
UML profile for QoS and Fault Tolerance (OMG, 2000), service component architec-
ture SCA Policy (BEA Systems et al., 2007a, 2007b), a framework for providing QoS in
network-centric distributed applications, including the embedded ones QuO and the QDL
language for contract-based specifications with grammars (Pal et al., 2000; Ludwig et al.,
2003; Lamanna et al., 2003), XML-based languages to describe service level agreements.

Contracts lay the foundations for negotiating and ensuring QoS. They support the rela-
tionship between a provider and a consumer. Service Level Agreement (SLA) is a special
type of contract for QoS. TeleManagement Forum defines SLA as “a formal negotiated
agreement between two parties, sometimes called a service level guarantee. It is a con-
tract (or part of it) that exists between the service provider and the customer, designed
to create a common understanding about services, priorities, responsibilities” (TeleM-
anagement Forum, 2004). There are many different formats, but mainly SLA includes
parties involved in the process, the service description (usually in an informal way as
a text), functionality of service, SLA parameters (defining QoS attributes), service level
objectives and QoS guarantees. Although today SLAs are negotiated often by face to face
interaction, the main challenge is to prepare and sign SLAs automatically. A SLA should
be negotiated also in case a composite of services should be delivered.

Services and components are usually composed at run-time. Several mechanisms ex-
ist to compose services, such as orchestration (Kühne et al., 2005), choreography (W3C,
2005), and pipe and filter which can direct the output of one processing element into the
input of another processing element. BPEL4WS (OASIS, 2007; Business Process Exe-
cution Language for Web Services) and WSCI (W3C, 2002; Web Service Conversation

QOS-Aware Composition of Enterprise System‘s Components 489

Interface) are examples of Web service orchestration languages. WS-CDL (Web Service
Choreography Description Language; W3C, 2005) is an example of the choreography
language. According to Mennie and Pagurek (2000), composite services at run-time can
be produced using different techniques.

“In the first approach, two or more components collaborate while each component
remains distinct, and potentially distributed, within a network. To facilitate this, a
new common interface must be constructed at runtime which allows other services
to interact with this set of collaborating service components as if it was a single
service. The construction of this interface can be realized with the support of a
service composition architecture. In the second approach, a new composite service
is formed where all of the functionality of that service is contained in a single new
component. This new service must be a valid service, capable of the basic set of
operations that all other services can carry out.”
In the service oriented architecture world, services can be composed using late-

binding mechanisms and predefined orchestration techniques. Appropriate services can
be discovered using the standards as WSDL, UDDI and SOAP (W3C, 2004).

At a high level of abstraction, when considering only the flow of data between compo-
nents or services, composite software systems can be modelled as a workflow connecting
the processing elements. The workflow plays the role of the orchestration specifying the
dependency constraints between the processing elements. In the workflow, each abstract
processing element is defined by the functionality they must provide. When the soft-
ware system is composed, concrete processing elements with the same functionalities are
bound to the abstract elements. For each abstract element, several concrete elements may
be available but only one must be picked up. What differs from these concrete elements
is their QoS. The QoS of the whole workflow is obtained from its structure and from the
individual QoS of the different concrete processing elements. An important problem is to
be able to select the right concrete processing elements such that the resulting QoS of the
provided service, i.e., the composition of concrete elements, satisfies some constraints
and/or minimizes or maximizes the function of QoS attributes; see Cardoso (2002), Can-
fora (2005), Rosario et al. (2008), Zeng et al. (2004), Kelly et al. (2003), Fancsali (2003).
For example, we may need a service that costs less than a given price and that returns the
answer within a given amount of time. We may also want to get the cheapest service that
answers within a given amount of time. The problem to find the solutions of this task is
that the number of possible instantiations is exponential, i.e., a workflow with X abstract
elements (e.g., X = 10) each having Y possible concrete elements (e.g., Y = 10) has XY

(e.g., 1010) possible concrete workflows.
The paper advocates to tackle this problem by means of the Constraint Logic Program-

ming paradigm, using interesting properties of the search-space and (anti)-monotonic
properties of the QoS attributes. Especially, the order in which elements are enumerated
is crucial for efficiency reasons. To this end, we propose several enumeration strategies.

The rest of the paper is organized as follows. Section 2 defines the problem. Section 3
discusses the constraint logic programming paradigm and how it can be useful to solve
the problem. Section 4 presents the proposed solution. Section 5 describes the results of
the experimental research. Finally, Section 6 concludes the paper.

490 J. Besson, A. Čaplinskas

2. Problem Definition

2.1. Processing Element Workflow

The processing element workflow can be modelled by a set of connected abstract pro-
cessing elements with defined functionalities. It represents a network of processing ele-
ments such that data enters a processing element through its incoming edges and leaves
the element through its outgoing edges. Edges are connections between the output(s)
of one processing element and the input(s) of another element. For abstraction purpose,
the processing elements are black-boxes that compute outputs from inputs. Note that we
consider And-split and And-join processing elements. And-split means that all the out-
going transitions are available after completing the execution of the processing element.
And-join means that the processing element starts its execution when all its incoming
transitions are enabled. This representation is the highest and simplest level of abstrac-
tion for component orchestration. To be more precise, the processing element workflow
can be represented as a directed-acyclic graph (DAG) with loops which describes an or-
dering constraint between the processing elements. It contains only one start-node and
one end-node representing respectively the input and the output of the whole workflow.
Note that we allow loops, i.e., the processing element is performed a fixed number of
times.

Concrete processing elements must be bound to the corresponding abstract processing
elements that compose the workflow in order to instantiate the model and to provide the
service associated with the workflow. For each abstract processing element, a number of
concrete elements with the same functionality are available. Only the Quality of Service,
provided by different processing elements, differs. A set of QoS attributes is attached
to each concrete processing element. We consider, in the paper, three different types of
Quality of Service attributes: cost, time, and availability, denoted respectively by QoSc,
QoSt and QoSa. The cost to be paid by the service user, if this element is employed, the
time required to compute the output when the inputs are available, and the probability that
the processing element is available when desired, is associated to each concrete element.
Notice that, additional attributes can be employed provided that the value of the attribute
for a composition of processing elements can be computed.

Figure 1 presents an example of workflow with five abstract processing elements
{E1, E2, E3, E4, E5} where E1 and E5 are, respectively, the start-node and the end-node.
Table 1 presents examples of concrete processing elements with their associated quality
of service that can be bound to the abstract elements of the workflow in the Fig. 1.

2.2. Computing QoS Composition

Let us now consider how to compute the QoS of a workflow, starting from the QoS
attribute values of the processing elements. First, the QoS of the output of the start-node
is computed, and then it is propagated to the inputs of the nodes that are connected to
the start-node. If the QoS is available for all the inputs of a processing element then

QOS-Aware Composition of Enterprise System‘s Components 491

Fig. 1. Example of a processing element workflow.

Table 1

Example of concrete processing elements that can be bound to the abstract elements in Fig. 1

Concrete Can be bound to the QoSc QoSt QoSa

element abstract element

C11 A1 10 20 0.995

C12 A1 16 15 0.993

C21 A2 10 6 0.95

C22 A2 5 9 0.98

C31 A3 5 10 0.974

C32 A3 10 8 0.991

C41 A4 20 20 0.999

C42 A4 30 10 0.995

C51 A5 8 40 0.999

C52 A5 14 30 0.995

the QoS of the output of the processing element is computed. This process is performed
recursively until computing the QoS of the output of the end-node which is the QoS of
the whole workflow. How to compute the QoS of the output of a processing element from
the QoS of its inputs and from its own QoS will be described bellow.

Figure 2 presents an abstract processing element Ei with the QoS attribute values
QoSEi and the inputs {Ej, . . . , EI} denoted as Inputs (Ei). Rule 1 specifies how to compute
the QoS attribute values of the output of Ei denoted as QEi .

Rule 1. The QoS attribute values of the output are computed as follows:

QEi,cost =
∑

k∈Inputs(Ei)

Qk,cost + N × QoSEi,cost,

QEi,time = max
k∈Inputs(Ei)

Qk,time + N × QoSEi,time,

QEi,availability =
∏

k∈Inputs(Ei)

Qk,availabile × QoSN
Ei,availabile.

492 J. Besson, A. Čaplinskas

Fig. 2. Abstract processing element Ei.

2.3. Problem Statement

Given a processing element workflow and a list of concrete processing elements to be
bound to the abstract elements, the problem of QoS-aware composition can be formulated
with the following tasks:

Task 1. Identify what is the QoS of a given instantiation of the processing element work-
flow.

Task 2. Check, whether an instantiation of a processing element workflow does satisfy
given QoS constraints.

Task 3. Find an instantiation of the processing element workflow that satisfies the given
QoS constraints.

Task 4. Find all the instantiations of the processing element workflow that satisfy the
given QoS constraints.

Task 5. Find an instantiation of the processing element workflow that optimizes (maxi-
mizes or minimizes) the function of QoS attributes and that satisfies the given QoS
constraint.

Task 6. Find all the instantiations of the processing element workflow that optimize
(maximize or minimize) the function of QoS attributes and that satisfy the given
QoS constraint.

Referring to the example in Fig. 1 and Table 1, if we instantiate a workflow with the
concrete elements [C12, C21, C32, C41, C52], we obtain the Quality of Service: QoSc =
80, QoSt = 77 and QoSa = 0.838 (Task 1). If we instantiate a workflow with the concrete
elements [C12, C22, C32, C42, C51], the concrete workflow satisfies the QoS constraint
QoSc < 80, QoSt < 100 and QoSa > 0.8 but not the constraint QoSc < 70, QoSt < 80
and QoSa > 0.95, i.e., the Quality of Service of the concrete workflow is QoSc = 74,
QoSt = 83, QoSa = 0.920 (Task 2). Given the QoS constraint QoSc < 80, QoSt < 80
and QoSa > 0.9, [C12, C22, C31, C42, C52] is an instantiation that satisfies the QoS
constraint (Task 3) and {[C12, C22, C31, C42, C52], [C11, C22, C32, C42, C52], [C11, C22,
C31, C42, C52]} is the set of all the instantiations that satisfy the QoS constraint (Task 4).
If we want to minimize the function “2 × QoSc + QoSt” while keeping QoSa above 0.9
and QoSt below 90, we can compute an optimal instantiation [C11, C22, C31, C41, C52]
where the minimal value of “2 × QoSc+ QoSt” is 206 (Task 5). With the function “QoSc”

QOS-Aware Composition of Enterprise System‘s Components 493

to minimize and the QoS constraints QoSt < 98 and QoSa > 0.9, we can compute all
the optimal solutions {[C12, C22, C31, C41, C51], [C11, C22, C31, C41, C52]} where the
minimal value of “QoSc” is 59 (Task 6).

The problem we are facing is to find a computing paradigm for which all Tasks 1–6
can be easily formulated in a unified manner, so that they could be solved in an effi-
cient way. The major problem is that the size of the search-space, i.e., the set of possible
instantiations of the abstract workflow, can be huge. In a workflow with X abstract ele-
ments and Y concrete elements, which can be bound to each abstract element, the size of
the search-space is XY. This is particularly problematic when looking for one or a few
(optimal) solutions among a tremendous number of possible instantiations, which is like
searching a needle in a haystack. We also want to be sure that the solution(s) of the tasks
are correct and complete on the contrary to heuristics methods that seek to rapidly find
a solution that is expected to be close to the good solution.

We argue that the Constraint Logic Programming paradigm (Colmerauer, 1987;
Krzysztof, 2003) is a good candidate to solve Tasks 1–6 that are similar to discrete con-
straint satisfaction problems and optimization problems.

3. Constraint Logic Programming over Finite Domains

Constraint Logic Programming (Colmerauer, 1987; Krzysztof, 2003) is a paradigm that
combines constraint programming and logic programming. A program consists of logic
predicates that must be satisfied and that contain constraints in the body of predicates.
Programs are queried about the satisfaction (in term of true/false)) of a goal that is defined
by means of constraints and literals. The goal is proved if the bodies of the predicates are
satisfied, i.e., constraints are consistent and literals are true using other predicates. This
computing paradigm suits well for discrete optimization, constraint satisfaction and veri-
fication problems as scheduling, planning, packing and timetabling. The goal is to instan-
tiate variables with the values taken from pre-defined domains such that the constraints
are all satisfied.

A class of constraints used in Constraint Logic Programming is that of finite domains.
The values of integer variables are taken from a finite domain. For each variable X of
the problem, a domain is specified: X in [Min, Max] meaning that the value of X is an
integer between Min and Max. The domain of a variable is reduced during the evaluation
of queries. The program interpreter performs constraint propagations that enforce local
consistency, that may reduce the domain of variables, e.g., if we have A in [1, 4], B in
[2, 3] and A > B, then the domain of A can be reduced to [3, 4]. If the domain of a
variable becomes empty then the system is inconsistent, and the algorithm backtracks.
If the domain of a variable contains only one value, then the variable can be assigned to
this value. We use SWI-Prolog to define and interpret the queries and the “clpfd” library
(Triska, 2010) to handle the constraints over finite domains.

A query in Constraint Logic Programming is usually formulated in the following way:

query(X):- constraints(X), labeling(X).

494 J. Besson, A. Čaplinskas

The predicate “query(X)” is true if the predicates “constraints(X)” and “labeling(X)”
are true. The predicate “constraints(X)” adds the constraints of the CSP (constraint
satisfaction problem) to the constraint store, i.e., defines the tree terms, real and finite
domains variables of the system, fixes their domains and constrains the values of the
variables w.r.t. the domain of the other variables (local and global constraints). The pred-
icate “labeling(X)” performs a search over the domains of the variables of X to find an
instantiation that satisfies all the constraints. Depending on the problem to be solved,
only one or all of the correct instantiations of “X” can be computed. For example in
Prolog, the predicate “findall(X, query(X), L)” enables us to compute the list L of all
valid instantiations of X that satisfy the predicate “query(X)”. It is important to note
that in Constraint Logic Programming, input parameters of predicates can be consid-
ered as “inputs” and “outputs” at the same time. In the “query(X)” predicate, the vari-
able X can consist of several variables (tree term), e.g., X = [A, B, C], such that when
we ask for the satisfaction of the goal “query(X)”, some variables of X are already in-
stantiated (e.g., A and C as input variables) and some remain not-instantiated (e.g., B
as an output variable). The interpreter of the query seeks an instantiation(s) of the not-
instantiated variables that satisfy the constraints given the value of the instantiated vari-
ables.

Optimization problems can be solved using the goal “query(X)” taking into consid-
eration the structure of the search-space and the properties of the function to be opti-
mized.

This computing paradigm is convenient to solve Tasks 1–6. First of all, we need
to constrain the QoS w.r.t. the structure of the abstract processing element workflow
and the concrete processing elements to be bound. Thus, we can define the predi-
cate “constraintsQoS(APE, CPE, QoS)” to be true if APE is the list of abstract ele-
ments of the workflow, CPE is a list of concrete processing elements and QoS is the
QoS of the workflow whose possible values are constrained by the structure of the
workflow and by the possible values of CPE. Finally, we need to define a predicate
“labelingElement(APE, CPE, QoS, Option)” to be true if:

• Option = enum and each abstract element APE is instantiated with a concrete
element of CPE (with the same functionality) or

• Option = mia(Mia, Function), where Mia denotes “minimize” (Case 1) or “max-
imize” (Case 2), and each abstract element APE is instantiated with a concrete
element of CPE (with the same functionality) such that the value of “Function” is
minimized (Case 1) or maximized (Case 2).

We can now define the structure of our constraint logic program:

compositionQoS(APE, CPE, QoS, Option):-

constraintsQoS(APE, CPE, QoS),

labelingElement(APE, CPE, QoS, Option).

Referring to the example given in Fig. 1 and Table 1, Table 2 presents several exam-
ples of queries of the predicate “compositionQoS” for Tasks 1–6.

QOS-Aware Composition of Enterprise System‘s Components 495

Table 2

Examples of queries to solve the tasks Tasks 1–6

Tasks Query Answer

Task 1 compositionQoS([C12, C21,C32, C41, C52], True,

CPE, QoS, enum). QoS = [80, 77, 0.838]

Task 2 QoS = [QoSc, QoSt, QoSa], QoSc<80, True,

QoSt<100, QoSa > 0.8, QoSc = 74, QoSt = 83,

compositionQoS([C12, C22, C32, C42, C51], QoSa = 0.920

CPE, QoS, enum).

Task 2 QoS = [QoSc, QoSt, QoSa], QoSc<70, False

QoSt<80, QoSa > 0.95,

compositionQoS([C12, C22, C32, C42, C51],

CPE, QoS, enum).

Task 3 QoS = [QoSc, QoSt, QoSa], QoSc<80, True,

QoSt<80, QoSa > 0.9, APE = [C12, C22, C31, C42, C52],

compositionQoS(APE, CPE, QoS, enum). QoSc = 75, QoSt = 73, QoSa = 0.901

Task 4 QoS = [QoSc, QoSt, QoSa], QoSc<80, True,

QoSt<80, QoSa > 0.9, findall([APE, QoS], L = [[[C12, C22, C31, C42, C52], [75, 73, 0.901]],

compositionQoS(APE, CPE, QoS, enum), L). [[C11, C22, C32, C42, C52], [74, 78, 0.918]],

[[C11, C22, C31, C42, C52], [69, 78, 0.903]]]

Task 5 QoS = [QoSc, QoSt, QoSa], QoSc<80, True,

QoSt<80, QoSa > 0.9, findall([APE, QoS], L = [[[C12, C22, C31, C42, C52], [75, 73, 0.901]],

compositionQoS(APE, CPE, QoS, enum), L). [[C11, C22, C32, C42, C52], [74, 78, 0.918]],

[[C11, C22, C31, C42, C52], [69, 78, 0.903]]]

Task 6 QoS = [QoSc, QoSt, QoSa], QoSt < 98, True,

QoSa > 0.9, findall(APE, compositionQoS L = [[C12, C22, C31, C41, C51],

(APE, CPE, QoS, mia(minimize, QoSc)), L). [C11, C22, C31, C41, C52]], QoSc = 59

4. QoS-Aware Composition

4.1. Constraint Handling

Now let us consider how to solve the Tasks 1–6 using constraints and to define the pred-
icates “constraintsQoS” and “labelingConcreteElement”, i.e., how to constrain the QoS
variables w.r.t. the workflow structure and the concrete processing elements, and how to
efficiently enumerate the concrete processing elements. To be able to find a first good
solution efficiently that prunes, as soon as possible, irrelevant parts of the search-space,
we need to exploit the properties of the search-space and that of the functions used to
compute the QoS. To this end, we use Definition 1 and Property 1.

DEFINITION 1. A is monotonic (respectively anti-monotonic) with respect to B if and
only if both A and B increase or decrease together (resp. if B increases then A decreases,
and if B decreases then A increases).

496 J. Besson, A. Čaplinskas

Property 1. The QoS attribute “Cost” of the output of a processing element is monotonic
with respect to the QoS attribute “Cost” of the input and the QoS attribute “Cost” of the
same element. The QoS attribute “Time” of the output of a processing element is mono-
tonic with respect to the QoS attribute “Time” of the input, and the QoS attribute “Time”
of the same element. The QoS attribute “Availability” of the output of a processing ele-
ment is anti-monotonic with respect to the QoS attribute “Availability” of the input and
the QoS attribute “Availability” of the same element.

These properties are crucial to prune the search-space and then to render the tasks
from Task 1 to Task 6 solvable in real-life situations. Indeed, we need to minimize the cost
and time attributes, maximize the availability attribute and set constraints as QoSc < α,
QoSt < β and QoSa > δ. Once an abstract workflow is partially instantiated, we know
that any additional instantiation will make increase (respectively decrease) the QoS value
of the monotonic (resp. anti-monotonic) attributes of the whole workflow. It means that if
a current workflow does not satisfy the constraint as QoSc < α, QoSt < β or QoSa > δ,
then the search-space can be safely pruned without losing any solution that satisfies the
constraint.

To solve the optimization problem, we use the same properties. Once a valid solution
is enumerated, a new constraint is added in the constraint store. While enumerating, we
check if the partially-instantiated workflow can lead to a valid solution. In order to mini-
mize (resp., maximize) a problem, we store in memory the smallest (resp. largest) value
“M” of the variable “V” being minimized (resp., maximized) of the already enumerated
workflows, and add the constraint V > M (resp. V < M). In the case where we want to
extract all the optimal solutions, we add the constraint V >= M (resp. V =< M) instead.
Thus, any monotonic QoS attribute that is required by the user to be as small as possible
(e.g., cost and time) and any anti-monotonic QoS attribute that is required by the user
to be as high as possible (e.g., availability) can be considered for QoS-aware component
composition using our solution.

4.2. Constraints for QoS Composition

For the predicate “constraintsQoS”, we propose the following structure:

constraintsQoS(APE, CPE, QoS):-

initStartNode(APE),

bounds(APE, CPE),

dependencyconstraint(APE),

endNode(QoS).

This predicate is true if the following predicates are true: “initStartNode”, “bounds”,
“dependencyconstraint” and “endNode”.

The predicate “initStartNode” simply sets that the QoS of the input of the start node
is

QoSc = 0, QoSt = 0 and QoSa = 1.

QOS-Aware Composition of Enterprise System‘s Components 497

The predicate “bounds” defines and instantiates the variables of the workflow. For
each abstract processing element E and for each QoS attribute Qj, two finite domains
variables QE,Qi and QoSE,Qi are defined. OE, Qi represents the value of the QoS at-
tribute Qj for the output of the processing element Ei. QoSi, QE is the QoS value of
E for the QoS attribute Qi. The value of the variable OE, Qj is constrained by the
type of QoS attribute considered (cost, time and availability) and the QoS values of
the inputs of E. QoSE, Qi is constrained by the possible QoS values that can take con-
crete processing elements that can be bound by E. First of all, we compute the min-
imum and maximum values, denoted as MinE, Qi and MaxE, Qi respectively, of the
QoS attribute Qj that can take concrete processing elements. Each variable QoSEEQi is
bounded by [MinE, Qi, MaxE, Qi]. Doing that, we limit the possible values of QoSEQi

and, by propagation; it also bounds the QoS of the whole workflow. Then, we com-
pute the minimal and maximal differences between each pair of QoS attributes QoSEk

and QoSEI of E denoted, respectively, as MinDiffk,j and MaxDiffk,j. The constraints
QoSEQk

− QoSEQl
>= MinDiffk,j and QoSEQk

− QoSEQl
<= MaxDiffk,j are

added. This constraint itself does not reduce the bounds of the variables, but during
the enumeration process additional propagations will be performed. In addition, we con-
strain the possible values of the n-tuples [QoSEQ1

, . . . , QoSEQn
], i.e., [QoSEc , QoSEt ,

QoSEa], to be an element of the n-tuples TCE where TCE refers to the list of QoS
attribute values that can take the concrete processing elements. In our example (see
Fig. 1 and Table 1), we have TCEA1 = {[10, 20, 0.995], [16, 15, 0.993]}. This con-
straint increases the propagation mechanisms, given that the QoSE, Qi variables are
not only individually constrained to be bound in some domains by the structure of
the workflow, but their possible values are also bounded by the values that take, or
can take, the other QoS attribute variables. In our example, if we have the constrain
QoSA1c

> 12, then thanks to this new constraint, the concrete processing element C12

will be automatically assigned to A1 by propagation mechanisms without the need for
enumeration. Using the “clpfd” library, this constraint can be set with the predicate
tuples_in”.

The predicate “dependencyconstraint” constrains the value of the QoS of the out-
put of the processing elements QE,Qi using Definition 1. This process is performed for
each abstract processing element of the workflow. The predicate “endNode” simply spec-
ifies that the QoS of the whole workflow is equal to the QoS of the output of the end-
node.

After doing that, all the constraints are set up with the following effects:

• The QoS of the whole workflow is constrained to be bound in an interval. In
our running example, after setting the constraint, we obtain the following bounds
for the QoS of the workflow: QoSc in [53, 90], QoSt in [67, 98] and QoSa in
[0.82, 0.926].

• Any instantiation of an abstract processing element by a concrete one may lead
to the reduction of the domain of the QoS and, in some situations, inconsistent
constraint store and backtracking.

498 J. Besson, A. Čaplinskas

4.3. Enumeration Strategy

For the predicate “labelingElement”, we propose the following structure:

labelingElement([], CPE, QoS, Option).

labelingElement(APE, CPE, QoS, Option) : −
selectAbstractElement(APE, AE),

selectConcreteElement(CPE, AE, CE),

labeling(AE, CE),

checkValidity(QoS, Option),

labelingElement(APE\AE, CPE, QoS, Option).

This predicate is true if, either (1) no more abstract elements have to be instantiated,
or (2) if the following three predicates are true: “selectAbstractElement”, “labeling” and
“checkValidity” and if the remaining abstract elements can be enumerated in a valid way.

The predicate “selectAbstractElement(APE, AE)” selects the next abstract element
to be enumerated. The order in which elements are enumerated is crucial for efficiency
reasons. To this end, we have developed several enumeration strategies. To select the right
variable to be enumerated, we need to rank the different abstract processing elements
according to the concrete processing elements that can be bound by it. In order to do
that, for each processing element we first select the QoS attribute that will be used to
perform the comparison. We propose the following eight different strategies to select the
QoS attribute:

• MinInf: select a QoS attribute with the smallest lower-bound.
• MinSup: select a QoS attribute with the smallest upper-bound.
• MinInterval: select a QoS attribute having a tighter interval.
• MaxInf: select a QoS attribute with the highest lower-bound.
• MaxSup: select a QoS attribute with the highest upper-bound.
• MaxInterval: select a QoS attribute having a wider interval.
• Sum: create a new variable that is the sum of all the variables.
• Random: randomly select a QoS attribute.

Then, for each selected variable, i.e., the QoS attribute, we need to retrieve not only
the interval of values but also the value. Therefore we propose four strategies:

• Inf: select the lower bound of the variable.
• Sup: select the upper-bound of the variable.
• Interval: select the size of the interval (upper-bound minus lower-bound).
• Mean: select the mean of the lower-bound and that of the upper-bound.

Finally, the abstract processing elements are ranked according to this value in an in-
creasing (Inc1) or decreasing (Dec1) order. The predicate “selectAbstractElement(APE,

AE)” is true if AE is the first abstract element in this ranking. Thus, 64 different enumer-
ation strategies can be used to rank the abstract elements.

QOS-Aware Composition of Enterprise System‘s Components 499

The predicate “selectConcreteElement(CPE, AE, CE)” is true if CE is a concrete
element of CPE that has the same functionality as AE. Once again, to select the right
CE to instantiate, we propose several strategies. We select the CE that has the smallest
(SMa) or largest (LRg) QoS attribute value. Finally, the concrete elements are ranked
in an increasing (Inc2) or decreasing (Dec2) order. We can select among 4 strategies to
select the concrete elements. In total, we propose 256 enumeration strategies that will be
evaluated in the experiments (see Section 5).

The predicate “labeling(AE, CE)” is true if AE can be unified with CE, i.e., the ab-
stract element AE is instantiated with the concrete element CE.

The predicate “checkValidity(QOS, Option)” is true, if (1) Option=enum, or (2)
mia(Mia, Function) and the upper-bound of Function is higher (if Option=maximize)
or the lower-bound of Function is smaller (Option=minimize) than any valid correspond-
ing QoS attribute of already completely instantiated workflow. After each instantiation,
this predicate simply checks if the bounds of the QoS of the whole workflow can lead to
a better solution or have to be pruned.

5. Experiments

5.1. The Methodology of the Experimental Research

Let us consider now the results of experiments performed on synthetic data-sets using the
2.4 GHz Intel Core Duo, 64-bit operating system, 4 GB of RAM, and Microsoft Windows
Seven. We generated two abstract workflows with concrete processes with random QoS.
We compare the various enumeration strategies for solving Task 5 and Task 6. First, we
show (see Section 5.2) the number of enumerations necessary to solve the minimization
Task without any QoS constraint with all the enumeration strategies with respect to the
number of concrete processing elements (Task 5). We want to show the influence of
the number of concrete processing elements and of the enumeration strategies on the
number of instantiations (enumeration) required to solve the task. Second, we present
experiments (see Section 5.3) on the minimization task with QoS constraints with respect
to the parameter values in the QoS constraints (Task 6). We want to show how QoS
constraints influence the difficulty to solve the problem.

The first dataset, denoted by D1, is comprised of 13 abstract processes with sequences,
loops, and parallel structures. The second data-set, denoted by D2, is comprised of 10
abstract processes with sequences and parallel structures. For each point in the figures, we
compute the average of the number of enumerations to solve a task for a set of 20 concrete
processing elements generated with random QoS attribute values (QoSc in [1, 100], QoSt

in [1,100] and QoSa in [0, 1]).

5.2. Minimization Task Without the QoS Constraint

For the first set of experiments, we consider Task 5, i.e., findall([APE, QoS], composi-
tion QoS(APE, CPE, QoS, enum), L) on the datasets D1 and D2. In Fig. 3, we present

500 J. Besson, A. Čaplinskas

Fig. 3. Number of enumerations required to solve Task 5 w.r.t. the number of concrete elements for D1.

Fig. 4. Number of enumerations required to solve Task 5 w.r.t. the number of concrete elements for D2.

the number of enumerations (Y axis) necessary to solve Task 5 for D1 with the 256 enu-
meration strategies with respect to the number of concrete processing elements that can
be bound on the abstract elements (X axis). The first curve “Best” shows the enumera-
tion strategy that requires the least number of enumerations. The second curve “Worst”
shows the worst enumeration strategy. The last curve “Mean” shows the average number
of enumerations required by 256 enumeration strategies. Figure 4 shows the same results
for the data-set D2. For each figure, we performed 35,840 evaluations (256 × 20 × 7) of
Task 5.

We can see in Figs. 3 and 4 that the enumeration strategy is crucial to efficiently
prune the search-space and to quickly find a good solution. We have found out that the
strategy (MinInf, Inf, Inc1, Min, SMa, Inc2) is the best enumeration strategy overall. In
the remaining of the paper, this enumeration strategy will be employed. Figure 5 shows
the number of enumerations required to solve Task 5 with the “best” enumeration strategy
with respect to the number of concrete processing elements.

Figure 5 shows that, with the “best” enumeration strategy, Task 5 can be solved even
if a lot of concrete processing elements are considered.

QOS-Aware Composition of Enterprise System‘s Components 501

Fig. 5. Number of enumerations for the “best” strategy.

Fig. 6. Number of enumerations required to solve Task 6 w.r.t. the parameter value α for D1 and D2.

5.3. Minimization Task Without QoS Constraint

In the second set of experiments, we consider Task 6 on the data-sets D1 and D2, i.e.,
QoS = [QoSc, QoSt, QoSa, QoSt < α, findall(APE, compositionQoS(APE, CPE,

QoS, mia(minimize, QoSc)), L). We want to estimate the influence of the QoS constraint
parameter values. Figure 6 presents the number of enumerations (Y axis) required to
solve Task 6 w.r.t. the QoS parameter value α (X axis).

Figure 6 shows that the number of enumerations required to solve Task 6 really de-
pends on the QoS constraint parameters, i.e., the instantiation(s) with the lowest QoSc

value(s) must be selected among those that satisfy the QoS constraint.

6. Conclusion

The paper proposes to use Constraint Logic Programming to find the optimal QoS-aware
composition of components or services that satisfies the given QoS constraints. This prob-
lem can be formulated as a discrete optimization problem. (Anti-)Monotonic properties
of the search-space and of the QoS attributes are used to prune the search-space effi-

502 J. Besson, A. Čaplinskas

ciently and to quickly find a first good solution. The experiments show that the proposed
approach performs well with artificial data and that it can be used to solved the QoS-
aware composition problem. Comparing with the methods proposed by other authors to
solve the problems discussed in this paper, the most important advantage of our approach
is that, if the solution is tractable, the solution(s) of the tasks are correct and complete
contrary to the heuristics methods that seek to rapidly find a solution that is expected to
be close to the good solution. In addition, the method allows extracting only one optimal
solution or the complete list of optimal ones. The last but not least, additional tasks such
as finding the K-best solutions or those that are almost optimal, given a maximal error
tolerance could be performed.

Acknowledgements. This work is partially funded by the Research Council of Lithuania
under the grant No. MOS-4/2010.

References

BEA Systems, Inc., Cape Clear Software, International Business Machines Corp, Interface21, IONA Tech-
nologies, Oracle, Primeton Technologies, Progress Software, Red Hat, Rogue Wave Software, SAP AG.,
Siemens AG., Software AG., Sun Microsystems, Inc., Sybase Inc., TIBCO Software Inc. (2007a). SCA As-
sembly Model Specification, v1.0. March 2007. Available at:
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf.

BEA Systems, Inc., Cape Clear Software, International Business Machines Corp, Interface21, IONA Technolo-
gies, Oracle, Primeton Technologies, Progress Software, Red Hat, Rogue Wave Software, SAP AG., Siemens
AG., Software AG., Sun Microsystems, Inc., Sybase Inc., TIBCO Software Inc. (2007b). SCA Policy Frame-
work. Available at: http://www.osoa.org/download/attachments/35/SCA_Policy_
Framework_V100.pdf.

Canfora, G., Di Penta, M., Esposito, R., L.Villani, M. (2005). An approach for QoS-aware service composi-
tion based on genetic algorithms. In: Beyer, H. (Ed.). Proceedings of the 2005 Conference on Genetic and
Evolutionary Computation. GECCO ’05. ACM, pp. 1069–1075.

Cardoso, J. (2002). Quality of service and semantic composition of work flows. PhD thesis, Univ. of Georgia.
Colmerauer, A. (1987). Opening the Prolog III universe. BYTE 12(9), 177–182. Available at:

http://portal.acm.org/citation.cfm?id=26023.26032.
Fancsali, A. (2003). An extension of the Bellman–Ford algorithm for QoS routing with inaccurate information.

Informatica, 27(4), 469–481.
Froulund, S., Koistinen, J. (1998). Quality of service specification in distributed object systems. Distrib. Syst.

Eng. J., 5(4), 179–202. Available at:
http://www.hpl.hp.com/techreports/98/HPL-98-159.pdf.

Götze, J., Christiansen, P.E., Mortensen, R.K., Paszkowski, S. (2009). Cross-national interoperability and en-
terprise architecture. Informatica, 20(3), 369–396.

ISO/IEC 9126-1 (2001). Software engineering – Product quality. Part 1. Quality model. International Standard.
ISO/IEC 9126-1:2001(E).

Kelly, B., Guy, M., James, H. (2003). Developing a quality culture for digital library programmes. Informatica,
27(3), 335–344.

Krzysztof, R. (2003). Principles of Constraint Programming. Cambridge University Press, Cambridge.
Kühne, S., Thränert, M., Speck, A. (2005). Towards a methodology for orchestration and validation of coop-

erative e-business components. In: Rutheford, J.M. (Ed.). Proceedings of the 7th GPCE YRW. Institute of
Cybernetics, Tallinn Technical University, pp. 29–34. Available at:
http://www.ids-scheer.com/set/6591/KueTS05.pdf.

Lamanna, D.D., Skene, J., Emmerich, W. (2003). SLAng: a language for service level agreements. In: Proceed-
ings of the 9th IEEE Workshop on Future Trends in Distributed Computing Systems. IEEE Computer Society
Press, Los Alamitos, pp. 100–106.

QOS-Aware Composition of Enterprise System‘s Components 503

Ludwig, H., Keller, A., Dan, A., King, R., Franck, R. (2003). Web Service Level Agreement (WSLA) Language
Specification. IBM Corporation. Available at:
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf.

Mennie, D., Pagurek, B. (2000). An architecture to support dynamic composition of service components. In:
Bosch, J., Szyperski, C., Weck, W. (Eds.). Proceedings of the 5th International Workshop on Component-
Oriented Programming (WCOP 2000). Sophia Antipolis, France. Bleckinge Institute of Technology, Online
publication. Available at: https://www.bth.se/fou/forskinfo.nsf/Sok/a6323cab891
c823ec12569ba0048140c/$file/Research%20report%2015-00.pdf.

OASIS Consortium (2007). Web Services Business Process Execution Language, Version 2.0. OASIS Standard.
Available at:
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel.

OMG Consortium (2005). UMLTM Profile for Modeling Quality of Service and Fault Tolerance Character-
istics and Mechanisms. OMG Standard. Available at: http://www.omg.org/docs/ptc/05-05-
02.pdf.

Pal, P., Loyall, J., Schantz, R., Zinky, J., Shapiro, R., Megquier, J. (2000). Using QDL to specify QoS aware
distributed (QuO) application configuration. In: Proceedings of the Third IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’2000). IEEE, pp. 310–319. Available at:
http://csdl.computer.org/comp/proceedings/isorc/2000/0607/00/
06070310abs.htm.

Plebani, P. (2006). Quality of Web services. In: International Summer School on Service-Oriented Architectures.
Collegno (Chambery–Torino). Presentation slides. Available at:
http://www.di.unito.it/∼baroglio/SummerSchool06/Slides/QoWS.pdf.

Raje, R.R. (2000). UMM: unified meta-object model for open distributed systems. In: Proceedings of 4th IEEE
International Conference on Algorithms and Architecture for Parallel Processing, ICA3PP’2000, Hongkong,
pp. 454–465. Avalaible at:
http://www.cs.iupui.edu/uniFrame/pubs-openaccess/umm.pdf.

Rosario, S., Benveniste, A., Haar, S., Jard, C. (2008). Probabilistic QoS and soft contracts for transaction-based
web services orchestrations. IEEE Trans. Serv. Comput., 1(14), 187–200. Accessible at:
http://www.labri.fr/perso/anca/docflow/publications_files/
QoSmonitoring.pdf.

Shaw, M. (1996). Truth vs. knowledge: the difference between what a component does and what we know it
does. In: Proceedings of the 8th International Workshop on Software Specification and Design. pp. 181–185.

TeleManagement Forum (2004). SLA Management Handbook. Vol. 4. Enterprise Perspective. The Open
Group. Available at: http://www.afutt.org/Qostic/qostic1/SLA-DI-USG-TMF-060091-
SLA_TMForum.pdf.

Triska, M. (2010). SWI-Prolog library: constraint logic programming over finite domains. In online SWI-Prolog
Reference Manual. Available at:
http://www.swi-prolog.org/man/clpfd.html.

W3C (2002). Web Service Choreography Interface (WSCI) 1.0. W3C Note 8 August 2002. Available at:
http://www.w3.org/TR/wsci/.

W3C Consortium (2004). OWL-S: Semantic Markup for Web Services. W3C submission. Available at:
http://www.w3.org/Submission/OWL-S/.

W3C (2004). Web Services Architecture. W3C Working Group Note 11 February 2. Available at:
http://www.w3.org/TR/ws-arch/.

W3C (2005). Web Services Choreography Description Language, Version 1.0. W3C Candidate Recommenda-
tion 9 November 2005. Available at: http://www.w3.org/TR/ws-cdl-10/.

Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang, H. (2004). QoS-aware middleware
for web services composition. IEEE Trans. Softw. Eng., 30(5), 311–327.

504 J. Besson, A. Čaplinskas

J. Besson is a researcher in computer science working at the Vilnius University Institute
of Informatics and Mathematics, Vilnius, Lithuania. His main research interests include
data mining, bio-informatics, web service, and component composition.

A. Čaplinskas is a professor, principal researcher and the head of the Software Engi-
neering Department at the Vilnius University Institute of Informatics and Mathematics,
Vilnius, Lithuania. His main research interests include software engineering, information
system engineering, legislative engineering, and knowledge-based systems.

Organizacij ↪u informacini ↪u sistem ↪u komponent ↪u kompozicij ↪u,
atsižvelgianči ↪u ↪i teikiam ↪u paslaug ↪u kokyb ↪e formavimas, panaudojant
ribojim ↪u logikos metodus

Jeremy BESSON, Albertas ČAPLINSKAS

Šiuolaikinės organizacij ↪u integruotos informacinės sistemos žymia dalimi yra komponuojamos
iš gatav ↪u programini ↪u komponent ↪u bei iš per internet ↪a pateikiam ↪u kompiuterini ↪u paslaug ↪u. Tai
daroma panaudojant vadinam ↪asias orkestravimo schemas, kuriose reikia atsižvelgti ne tik ↪i tai,
kad šitaip sukurta sistema turėt ↪u vis ↪a reikiam ↪a funkcionalum ↪a, bet ir ↪i tai, kad ji teikt ↪u reiki-
amos kokybės paslaugas. Kitaip tariant, čia iškyla uždavinys kaip ↪ivertinti paslaug ↪u kompozi-
cij ↪u kokyb ↪e. Paprastai yra reikalaujama, kad kuriamoji sistema būt ↪u optimali kai kuri ↪u paslaug ↪u
kokybės atribut ↪u požiūriu ir tuo pat metu kiti jos teikiam ↪u paslaug ↪u kokybės reikalavimai tenk-
int ↪u bent jau tam tikrus minimalius reikalavimus. Straipsnyje pasiūlyta š↪i uždavin↪i traktuoti kaip
diskrečiojo optimizavimo ir ribojim ↪u tenkinimo uždavin↪i ir j↪i spr ↪esti, panaudojant ribojim ↪u logikos
metodus.

