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Abstract. The problem of automatic classification of scientific texts is considered. Methods based
on statistical analysis of probabilistic distributions of scientific terms in texts are discussed. The
procedures for selecting the most informative terms and the method of making use of auxiliary
information related to the terms positions are presented. The results of experimental evaluation of
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1. Introduction

The automatic classification of a chunk of scientific text is a topical task due to the rapid
growth of volumes of published material as well as the ongoing shift from a paper based
publishing to e-publishing. Scientific information needs to be properly processed and
enhanced so that it could be conveniently found, retrieved, and reused whenever needed.
Automatic classification is one of processing activities that supplements a raw text with
an additional higher-level information which ensues an efficient navigation within the
vast space of scientific material.

There is a long list of plain text classification algorithms that proved to be highly ef-
ficient and popular; see, e.g., Sebastiani (2002) for an overview from a machine learning
point of view. Such algorithms are instrumental in solving natural language texts pro-
cessing problems. These problems of applied nature are high on the research agenda; see
Marinčič et al. (2009) and Maučec et al. (2009) for a couple of interesting recent studies.
Nevertheless, scientific texts differ from the natural language texts to a certain extent, and
there is a need for studies addressing the specificity of scientific contents.

In paper Rudzkis (2006) we presented a novel approach to the classification of scien-
tific texts based on the statistical analysis of scientific term distributions over texts. The
proposed methods mathematically formalise and extend the heuristic idea of contextual
evidence called “identification cloud”; see, e.g., Hazewinkel (2004). The early results of
experimental evaluation of the proposed methods were presented in Rudzkis and Balys
(2008).

In this paper, we propose a number of refinements and improvements to the methods.
These include a procedure for selecting the most informative scientific terms as well as
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a method to make use of auxiliary information related to the location of terms in the
text. The experiments on a real publications database were conducted and the results
confirming the positive influence of these improvements are reported.

The paper is organised as follows. In Section 2, the outlines of the proposed approach
to the classification of scientific texts is presented with Section 2.4 devoted to the re-
fined procedure for selecting the most informative terms. In Section 3, a new method
of including the auxiliary information into the models and algorithms is proposed. Sec-
tion 4 is devoted to the results of experimental evaluation. And the last section is for the
conclusions.

2. The Model

Scientific papers usually have certain pieces of meta-data (usually assigned by authors)
describing the topics and the main ideas of the contents. MSC classifiers and keywords
are the most common examples within the mathematical society. MSC classifiers are
used for the classification by definition while keywords can serve a number of different
purposes. However, having a controlled vocabulary of keywords fixed one can treat the
assignment of keywords as the classification of a paper. Keywords and certain groups
of them describe classes of related documents. In this case, assignment of keywords is
effectively the same activity as assignment of MSC classifiers and both of them may
be completed by using statistical classification algorithms. In this paper, the problem of
automatic classification of scientific publications is considered keeping in mind that the
real applied problem of interest is the assignment of either MSC classifiers or keywords
from controlled vocabulary.

Further in this section, a brief introduction to the proposed approach to the classifi-
cation based on the statistical analysis of term distributions over texts is presented. For a
comprehensive review refer to Rudzkis et al. (2006).

2.1. Definitions and Notation

Let us introduce some definitions and notation that allow us to reduce the applied problem
of classification of scientific papers to the common problem of statistical classification of
multidimensional data.

Let K denote some classification system of scientific texts which is identified with a
set of all possible labels of the classes in that system. Let V be a vocabulary (set) of scien-
tific terms of a certain field that are relevant to the classification of texts. The chronolog-
ically enumerated vector of the article a elements (a1, . . . , ad), d = d(a), where ai ∈ V

and not necessarily ai �= aj , is called the projection of the article a. For the convenience,
we identify the projection of an article a with an infinite sequence (a1, a2, . . .), where
ai = 0 for all i > d(a). Here 0 ∈ V denotes an additional zero term which does not exist
in reality. Let A be a set of projections of all the articles from a certain scientific field. In
what follows the word “projection” is omitted and (a1, a2, . . .) is called just an article.
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Let N be a set of natural numbers. Let an article a ∈ A and a set of indices I ⊂ N

be chosen randomly. The article is attributed to the class η = wν(a) in the system K.
A problem of classification is to determine the unknown class η using the observed vector
aI = (ai, i ∈ I).

2.2. Probability Distributions

Since (a, I, η) is the result of a random experiment, the probability distribution in the set
K is defined by

Q(w) = P{η = w}, w ∈ K. (1)

Let Y be a set of all possible values of aI . In the set Y the following conditional
probability distributions are defined:

P (y) = P{aI = y | |I| = d(y)},

P (y|w) = P{aI = y | |I| = d(y), η = w}, w ∈ K, (2)

where d(y) = dim(y) is the dimension of vector y and |I| = card(I) is the cardinality of
set I .

If η and |I| are independent, after observing aI , the posterior probability of the ran-
dom event {η = w} is determined by Q(w|aI) = Q(w) · ψw(aI), where

ψw(y) = P (y|w)/P (y), y ∈ Y. (3)

The functional ψw reflects how the probability to observe a text changes if this text
appears to be classified under certain class.

Using the distributions, introduced in (1) and (2), the Bayes classifier can be defined.
In case when the loss function is trivial, it is determined by the following equation:

η̂ = arg max
w∈K

P (aI |w)Q(w),

in which ψ(·)(aI) can be substituted for P (aI | ·):

η̂ = arg max
w∈K

ψw(aI)Q(w). (4)

2.3. Inference

In order to use classification method (4), the distribution Q and the functional ψ must be
estimated.

Let us have the learning sample of the observed parts of n texts and their classification
results X = (y(1), η(1)), . . . , (y(n), η(n)), where η(i) ∈ K, y(i) ∈ Y , Y = {y =
(y1, . . . , yd): yi ∈ V, d ∈ N }.
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Q̂(w) =
∑n

j=1 1{η(j)=w}/n is the empirical analogue of Q(w). For the estimation of
functional ψ additional definitions are needed. Let the index τ ∈ I be a random variable.
The distribution on set V is defined by P (v) = P{aτ = v} and the corresponding
conditional distribution is given by P (v|w) = P{aτ = v|η = w}, w ∈ K. The following
assumption substantially simplifies the procedures of estimation.

ASSUMPTION (Conditional stationarity and independence). Let for all y ∈ Y and w ∈
K hold

P (y|w) =
d∏

i=1

P (yi|w),

where d = d(y) as before is the dimension of the vector y.

Now the definition (3) can be changed to

ψw(v) = P (v|w)/P (v), v ∈ V, w ∈ K, (5)

and the Bayes classification rule for classifying the article is determined by

η̂ = arg max
w∈K

[
Q(w)

∏
i∈I

ψw(ai)
]
. (6)

The assumption and the definition (5) ignore information that can be derived from the
order of the terms in the text. Therefore, in Rudzkis et al. (2006) we introduce a weaker
assumption that substitutes independence with Markov property. However, experiments
did not show any advantages of this approach. The model becomes more complicated
which yields higher error rate of statistical identification. Nevertheless, this more ade-
quate model could be used if much bigger learning samples are available. In this paper,
we limit ourselves to the simpler case of the independence assumption.

In order to use (6), the functional ψw(v) still has to be estimated which is easier
than estimating ψw(y) used in (4). In Rudzkis et al. (2006) we proposed a procedure
for that which consists of three steps (and possibly the fourth – parametrisation). Firstly,
the empirical estimates of the probabilities P (·) and P (·, ·) are calculated by counting
the appropriate frequencies and these estimates are used in (5) yielding empirical ψ̃w(v).
Secondly, the smoothing is performed: the unreliable estimates, i.e., the ones based on
too few observations, are modified. The next step is selecting the most informative terms.
This step is covered in detail in the following section.

2.4. The Informative Terms

When deciding if article should be (or should not be) attributed to a certain class w only a
part of the terms (denoted L(w)) that are the most informative towards that class is actu-
ally used. The basic approach to the selection of this subset together with a constructive
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procedure were presented in Rudzkis et al. (2006). Here, we present some new methods
and procedures. These procedures were experimentally compared and the results of the
comparison are reported in the section 4.

Let h = |V |. The functional ψw(·) determines the arrangements of set V for each
w ∈ K:

ψw(v1) � ψw(v2) � · · · � ψw(vh), v(·) ∈ V. (7)

Firstly, we arrange the set V as (7) by using estimate ψ̃w(·) instead of unknown ψw(·).
The set L = L(w) ⊂ {1, . . . , h} consists of indices of the terms that have ψ̃w(vk)
significantly differing from 1.

The straightforward method for selecting L is to pick a fixed number of terms (this
number may come from prior knowledge or may be derived by conducting experiments
and choosing the optimal value) that corresponds to the biggest and analogously another
number that corresponds to the smallest values of ψ̃w(·). In this case,

L = {1, . . . , s}, L = {h − l, . . . , h}, (8)

where s and l – some constants (the same for all the w ∈ K). Obviously, L = L ∪ L.
Let us now consider more adequate adaptive methods that choose the number of the

most informative terms for each class separately. Let us consider the hypothesis

H0: ψw(v) = 1

with an alternative

H1: ψw(v) > 1,

and let α(v) denote a p-value. Analogously, let us consider the same hypothesis, but with
another alternative

H1: ψw(v) < 1,

and let α(v) denote the corresponding p-value.
Choosing the level of significance α, the set of the most informative terms may be

defined by equations

L = {k: ψ̃w(vk) > 1, α(vk) < α}, L = {k: ψ̃w(vk) < 1, α(vk) < α}. (9)

There are a couple of alternative methods for choosing the most informative terms.
We present them in the experimental part of this paper. In paper Rudzkis et al. (2006),
relations between α(v) and α as well as α(v) and α are presented that render the proposed
procedures practical.
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3. Auxiliary Information

By selecting only a part of scientific terms from the text and using stationary distributions
P (·) and P (· | ·) we ignore the context between the terms as well as the location of these
terms in the text. When encountering long and non-homogeneous texts which is the case
with scientific publications, it is natural to consider at least a part of this information as it
is obvious that a term has different discriminative weight depending on which part of an
article text it is observed in.

For example, assume that we observe some term twice in the abstract and the intro-
duction of the document classified under some class w1. On the other hand, we observe
the same term three times in the fifteenth page and the proofs sections of the document
classified under another class w2. Basing only on these observations, one would naturally
conclude that this term provides stronger evidence (and should get the higher discrimina-
tive weight) towards the class w1 as opposed to the class w2 even though the frequencies
of observations support the opposite proposition. This reasoning is based on the intuitive
understanding of what parts of the text are more informative towards the topics of the
paper.

Let us now assume another situation. We obtain a new paper to be classified and
in the introduction we observe some term which is highly informative towards some
class w1. We also observe another term in the fifteenth page that is equally informative
towards another class w2. One would safely conclude that paper should be attributed to
the class w1 despite the quantitative equality of discriminative evidence towards both
classes. Here, we follow the same reasoning: highly informative terms in some distant
parts of the paper may be not that strong evidence as some moderately informative terms
in the most important parts of the paper.

Further in this section, we propose a way to mathematically define such heuristic
reasoning about the influence of the location of terms in the text and then to use it in the
proposed algorithms.

Let us redefine the projection of an article by a = ((a1, λ1), . . . , (ad, λd)), d = d(a),
where λi is a scalar (in a more general setting it could also be a vector) representing
auxiliary information for a term ai related to the location of this term in the text. There
is an open question how this auxiliary information should be defined. Some measure of
a distance from the beginning of the article is an obvious choice. A sequential number of
term, word, sentence and paragraph are used for measuring such distance in this paper.

The logical or structural part of the article (abstract, main results, proof) is another
strong option. One could also provide some vocabulary of words or phrases (not scien-
tific terms) that mark the locations in the text where the most important things are usually
presented (e.g., “this paper considers”, “the main idea is”, etc.) and then the distance
from the closest of these terms may be measured. Neither of these options were used in
the research because structural elements of the articles were unidentifiable in the data
we possessed for the experiments. Similarly, we did not have a dictionary of the afore-
mentioned phrases. Note, that these shortcomings may be overcome by developing and
implementing automatic algorithms for identification of the structural parts of the paper
as well as for collecting these important language phrases.
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Let us have functional σ = σ(λ(·)) taking values in [0, 1] which defines the weight
of term depending on its location. Having learning sample Xn = (y(1), λ(1), η(1)), . . . ,
(y(n), λ(n), η(n)), η(i) ∈ K, y(i) ∈ Y , enriched with auxiliary information λ(j) =
(λ1(j), . . . , λd(j)(j)), d(j) = d(y(j)), we can derive the weighted estimates for P (·)
and P (· | ·) as follows:

S(j) =
d(j)∑
k=1

σ(λk(j)), (10)

P̃ ∗(v) =
n∑

j=1

d(j)∑
k=1

σ(λk(j)) · 1{yk(j)=v}

/ n∑
j=1

S(j), (11)

P̃ ∗(v|w) =
n∑

j=1

d(j)∑
k=1

σ(λk(j))1{yk(j)=v,η(j)=w}

/ n∑
j=1

1{η(j)=w} · S(j). (12)

These estimates are substituted in (5) for the unknown true values and then the same
procedures for smoothing and selecting the most informative terms are conducted with
this new estimate of ψw(·).

Analogously, the classification procedure (6) can be redefined as follows to take into
account the positions of terms in the text to be classified:

η̂ = arg max
w∈K

[
Q(w)

∏
i∈I

ψσ(λi(a))
w (ai)

]
. (13)

In order to use the enhanced estimation procedures and classification method one has
to provide the functional σ(λ) = σθ(λ) that describes the weight of the scientific term
depending on its position in the text of the article. It is natural to assume that this weight
should decrease with increasing distance from the beginning of the text. It could possibly
become equal to zero at some distance thus limiting the length of texts to be analysed as
well as to prevent problems of irrelevant terms in such distant parts of articles as proofs
section.

We propose to use a piecewise linear function that can be defined by using recursive
formula

σ∗
θ(i) =

⎧⎨
⎩

1, i = 0,

0, i > lk,

max{0, σ∗
θ(i − 1) + αj }, i ∈ (lj−1, lj ],

with parameter vector

θ = (α1, l1, α2, l2, . . . , αk, lk).

Here, 0 = l0 � l1 < l2 < · · · < lk, α(·) � 0 and αi �= αi+1.
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Then for a chosen parameter θ we define

σ(λ) = σ∗
θ(λ).

4. Experimental Evaluation

4.1. The Data

The experiments were conducted on basis of nearly 15,000 articles from the field of prob-
ability theory and mathematical statistics kindly provided by the Institute of Mathemat-
ical Statistics, USA. 44 MSC classifiers (24 from 60XXX branch and 20 from 62XXX
branch) were chosen for the experiments each having a learning set of at least 100 articles,
resulting in a total of 5338 articles.

The dictionary of scientific terms was constructed by extracting all the keywords from
the articles in the database. The single words that build up keywords-phrases were also
added. This resulted in a list of 17,632 unique terms.

Three major parts of texts were available for each article: title, abstract, and full text
(or simply text). This means that various learning/testing sets configurations were avail-
able. These configurations are referred to in format text/abstract where the first item de-
notes the parts of texts used for the learning documents and the second item denotes the
parts of texts used for the testing documents.

4.2. The Algorithms

Let us recall the random experiment from Section 2.1 which results in random article
a ∈ A, it’s unobserved class η, and the observed vector of terms aI .

For non-probabilistic algorithms (see kNN, SVM, and LLSF right below) a different
representation of article’s terms is used. Having fixed the order of all h terms of vocabu-
lary V , the observed part of article is represented by an h-length vector in which the ith
element stands for the weight of the ith term (from V ) in this observed text. The binary
weight scheme (1 if term is present in the observed part of the article, 0 if not) was used
in this research.

Let us once again have the learning sample of the observed parts of n texts and their
classification results X = (y(1), η(1)), . . . , (y(n), η(n)) (see Section 2.3). As noted in
the previous paragraph, for the non-probabilistic algorithms, y(·) is an h-length vector of
zeroes and ones.

The algorithms:

• IDC. Algorithm based on the proposed approach.
• nB (naive Bayes with additive smoothing); see Mitchell (1996). A rather similar

probabilistic method that builds on the same assumption of conditional indepen-
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dence and stationarity of terms’ distributions over text. The equivalent of (6) clas-
sification rule is used:

η̂ = arg max
w∈K

[
Q(w)

∏
i∈I

P (ai|w)
]
.

Q(·) and P (· | ·) are empirically estimated from the learning set. When estimating
P (· | ·) a fixed small number is added to the counts to eliminate estimates equal to
zero (so-called additive smoothing).

• kNN (k nearest neighbours); see Yang (1994). A common instance-based algorithm
that defers the learning phase until the document to be classified arrives. Then a
number of nearest documents from the learning set is chosen. The classification
decision is derived from the classification decisions of these nearest documents
(majority voting, distance-weighted voting, etc.). As documents are represented by
a fixed-length binary vectors, a number of common distance measures may be used
to find the nearest neighbours. In this paper, cosine of the angle between vectors
was chosen as distance measure (higher accuracy of the algorithm was observed as
compared to using Euclidian distance).

• SVM (Support Vector Machines); see Vapnik (1995). Algorithm interprets docu-
ments as points in the h-dimensional Euclidian space and for each class calculates
the hyperplane separating positive and negative examples from the learning set. Of
all the possible separating hyperplanes the one that separates positive and nega-
tive examples by the widest margin is chosen. The extended methods are available
for the cases when the examples cannot be cleanly separated. In the classification
phase each possible class is assigned a probability depending on which side of
the hyperplane the document falls as well as on the distance from it. The specific
implementation SV M light (Joachims) was used in this research.

• LLSF (Linear Least Squares Fit); see Yang and Chute (1992). Let us similarly as
with V fix the order of classes from K. Then a classification decision for a docu-
ment may be represented as a fixed-length vector having exactly one element “1”
while the remaining are zeroes. Algorithm assumes the existence of linear depen-
dence between vector (consisting of zeroes and ones) representing terms and vector
representing classification decisions of an article. The least squares fit method over
learning data is used to find the matrix that defines this linear dependence. Then
the classification phase is reduced to a simple multiplication of vector and matrix
and finding the biggest element of a resulting vector.

All the considered algorithms (except for kNN) perform by analysing the positive and
the negative examples of classes and building discriminative rules so that they classify
learning data as correct as possible.

The algorithms implement the ranking procedure: for each document a list of classes
that document could be attributed to with the corresponding weights (that roughly rep-
resent the probability that the document should be attributed to the class) is delivered.
Then, depending on some threshold strategy, a subset of classes with the highest weights
is chosen.
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4.3. Performance Measures

The k-fold cross validation procedure with k = 5 was used to evaluate the algorithms.
The common measures precision (Pr ), recall (Re), and the harmonic average F1 = 2Pr ·
Re/(Pr + Re); see, e.g., Yang (1999) were used to compare the true (denoted by KT )
and the guessed (denoted by KA) classification decisions (sets of assigned class labels).
All the above listed measures depend on the number of classes chosen by algorithm.

A measure similar to 11-point average precision (Yang, 1999) was used to estimate
the efficiency without fixing the number of classes the algorithm selects for the document.
Let us have a document that has to be classified. Assume that it has m classes (labels)
assigned (|KT | = m). The classification algorithm ranks all the available classes in de-
creasing order of relevance to the document (each algorithm has its own interpretation
of relevance). Let us pick the highest ranked class from this list and assign its label to
the document. Then pick the second highest ranked class and so on. Thus we gradually
construct KA set. Each time we assign a label we check if it coincides with any of truly
assigned ones from KT . When all the true labels from KT are matched we halt the pro-
cess. At this moment, value of recall is 1. Each time the newly assigned label coincided
with one from the KT , value of recall increased by 1/m. At these points the precision was
equal to a number of already matched classes divided by a number of steps taken. The
average precision for a document is defined as the average of precision values at recall
increase points: Pravg(a) = (1/n1 + 2/n2 + · · · + m/nm)/m where a is article consid-
ered and ni is the number of steps taken until i true labels were correctly assigned. The
average over all documents from a testing set gives the measure of algorithm efficiency,
denoted by Pravg and called average precision.

4.4. Results

In (9) we presented a statistical hypothesis testing based method for selecting the most
informative terms. We will refer to this method as hyp. Another one, hyp/stop is defined
by (8) and the values of s and l are now determined as

s = max{k: α(vj) < α, j = 1, k},

l = max{k: α(vh−j) < α, j = 0, k}.

One more method hyp/fixed is defined by yet the same (8), with the values of s and l

determined as

s = | {k: ψ̃w(vk) > 1, α(vk) < α}|,
l = | {k: ψ̃w(vk) < 1, α(vk) < α}|.

This one is quite similar to hyp method as both of them choose the same number of
informative terms. However, the terms may be different.

In Fig. 1, the results of the comparison of these most informative terms selecting
procedures under text/text setting are presented. The F1 measure was calculated for a
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Fig. 1. The influence of the most informative terms selecting procedure on the performance.

number of fixed-number class assignment strategies (number varying from 1 to 5). Val-
ues of α from 0.001 to 0.01 were found to be optimal (the figure is presented for a case
of α = 0.01). It is evident that hyp/stop method performs the worst and hyp method – the
best. The results when using hyp/fixed method are near to optimal. This can be explained
as follows. When using long (full) texts for learning the probabilities are estimated rather
reliably. In such a case it is improbable that very big or very small value of the ψw(·)
estimate proves to be insignificantly different from 1. This means that hyp/fixed method
which selects the terms having the biggest and the smallest values of this estimate makes
almost the same decisions as hyp method. However, me must note that hyp/fixed method
gets the number of terms to be chosen from hyp method and these numbers are different
for each class and they also depend on the value of α. The non-adaptive method which se-
lects the same numbers for all the classes performs much worse (comparably to hyp/stop
method).

The Table 1 presents the estimated efficiency of algorithms (measured by average
precision Pavg ) over various combinations of learning and testing sets.

DF (document frequency) method was used to exclude the uninformative terms – all
the terms that were observed in less than some fixed number of different documents were
effectively removed from vocabulary – as according to Yang and Pederse (1997) it is
among the best for non-aggressive feature space dimensionality reduction. The optimal
number of different documents for each term was found to be between 3 and 6 – the size
of vocabulary was reduced by a factor of 2–3 while efficiency of algorithms increased.

kNN algorithm (k ranging from 25 to 50) performed the worst while SVM came out
as a winner by a slight margin. The efficiency of the IDC algorithm is very similar to
that of the SVM. Comparing these results to the ones published in Rudzkis and Balys
(2008) it is evident that IDC algorithm gained a substantial increase in efficiency because
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Table 1

Pavg of algorithms for various learn/test sets configurations

nB kNN SVM LLSF IDC

Title/title 0.512 0.485 0.503 0.500 0.502

Abstract/abstract 0.584 0.540 0.590 0.580 0.592

Abstract/text 0.598 0.562 0.602 0.594 0.604

Text/abstract 0.618 0.568 0.629 0.555 0.617

Text/text 0.653 0.586 0.661 0.628 0.658

Fig. 2. The influence of text length on the performance.

the informative terms selecting procedure was changed from a hyp/stop variant to hyp.
Another difference is that now not only the terms with weights bigger than 1 but also the
terms with weights smaller than 1 are used which was not possible previously. Note, that
the presented results are for the case when only the first 110 terms are used instead of full
documents (in text/text setting) and IDC algorithm does not use auxiliary information.

The Fig. 2 shows how the average precision Pavg changes when longer texts (the
length of text is measured in a number of scientific terms) are used for both learning
and testing. The first 100–110 terms of text are the most useful as the average precision
steeply increases. Starting from approximately 120 terms the performance of nB dras-
tically decreases possibly due to the problem of irrelevant and unseen terms starting to
show after the introductory parts of the articles are finished. The results for all the remain-
ing algorithms almost stabilise when using texts that are longer than 300 terms while for
the IDC there are weak signs of decrease.
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The Table 2 presents the results obtained when IDC algorithm uses auxiliary infor-
mation. The first four columns are for the Pravg results of the IDC algorithm and the last
one – for the corresponding Pravg value of the SVM algorithm. The first column is for
the case when auxiliary information is used only for the trimming of texts (only that part
of the texts is used that has non-zero σ value, but the weights of all these terms are set
equal to 1). The second column is for the case when auxiliary information is used only
in learning, i.e., functionals ψw(·) are estimated by using (10)–(12) but the classification
procedure is (6) that does not use weights. The third column is for the case when auxil-
iary information is used only in testing phase, i.e., classification procedure is (13) but the
estimation of ψw(·) is performed by not using weights (i.e., all weights are equal to 1).

Table 2

The influence of extending IDC to use auxiliary information to the efficiency.

Pravg value when auxiliary information is used for . . . The corresponding

Trimming Learning Testing Learning and testing Pravg value for SVM

θ = (−0.005, 110)

0.658 0.658 0.659 0.659 0.661

θ = (0, 60, −0.01, 110)

0.658 0.659 0.659 0.660 0.661

θ = (0, 110, −0.5, 111, 0, 200)

0.667 0.668 0.669 0.671 0.670

θ = (0, 110, −0.5, 111, 0, 300)

0.668 0.668 0.671 0.673 0.673

θ = (0, 110, −0.5, 111, 0, 200, −0.2, 201, 0, 300)

0.668 0.669 0.672 0.675 0.673

θ = (0, 110, −0.5, 111, 0, 400)

0.667 0.668 0.671 0.673 0.675

θ = (0, 110, −0.5, 111, 0, 200, −0.2, 201, 0, 400)

0.668 0.670 0.673 0.676 0.675

θ = (0, 110, −0.5, 111, 0, 200, −0.3, 201, 0, 400)

0.668 0.670 0.674 0.678 0.675

θ = (0, 110, −0.5, 111, 0, 500)

0.667 0.669 0.673 0.676 0.677

θ = (0, 110, −0.5, 111, 0, 200, −0.2, 201, 0, 500)

0.667 0.670 0.675 0.679 0.677

θ = (0, 110, −0.5, 111, 0, 200, −0.2, 201, 0, 350, −0.2, 351, 0, 500)

0.667 0.670 0.677 0.681 0.677
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The fourth column is for the case when auxiliary information is used both in learning
and testing phases. The values of Pravg for the SVM algorithm in the fifth column are
calculated for the trimmed texts similarly as in the first column for the IDC algorithm.

The weight functional σ is defined by considering one of the sequential numbers
(term, word, sentence, paragraph) to be a descriptor of position. The experiments showed
that the results are rather similar for all these cases. The one difference is that it is easier
to choose the optimal value for the parameters vector θ in case of using paragraph or
sentence number as the position descriptor. The results in Table 2 are presented in case
when functional σ is defined by considering term number as a position descriptor.

It is evident from the results that by using auxiliary information the results can be im-
proved for the IDC algorithm. The biggest effect is achieved when auxiliary information
is used both for learning and testing. The best results are achieved using simple θ values
that define a small number (2–3) of positions at which the weight is reduced by discrete
steps of 20–30% until it is equal to zero. The more complicated models with the weight
linearly decreasing over some intervals did not yield any improvement over this simple
case.

5. Discussion and Conclusions

In this paper, the scientific texts classification methodology, based on the analysis of
terminology distribution over text, is further developed.

New procedures for the selection of the most informative terms are formulated. Exper-
imental evaluation confirms a significant increase in classification accuracy as compared
to the results reported in the publication Rudzkis and Balys (2008).

The procedures of making use of auxiliary contextual information for the classifica-
tion are presented. These procedures formalise the heuristic reasoning of different dis-
criminative weight depending on the term location. By using the procedures, the classifi-
cation accuracy is improved for very long texts.

Analogously, contextual information may well be used in more complicated cases
when not only single terms but also pairs of them are considered. In such a case, a limited
approach to analyse only neighbouring pairs may be generalised. Distant pairs (with some
terms in between them) could be considered. And the pairs could be treated differently
depending on the context between them. Preliminary experiments look encouraging but
for a full-scale evaluation bigger databases are needed.

The classification algorithm, based on the proposed approach of statistical analysis
of terminology distributions, not only slightly outperforms the analysed alternative ones,
but also has some practical advantages. The relations of model parameters (e.g., term
weights) are both explicit and interpretable. These relations gives valuable information
about the considered scientific field. On the other hand, methods improvement by in-
cluding some expert knowledge about the field is also possible. And the parametrisation,
presented in Rudzkis et al. (2006), greatly simplifies this inclusion as the weights of terms
can be calculated knowing only their order of importance towards some class.
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Statistinis mokslo publikacij ↪u klasifikavimas

Vaidas BALYS, Rimantas RUDZKIS

Straipsnyje nagrinėjamas automatinio mokslo tekst ↪u klasifikavimo uždavinys. Tiriami statistine
mokslo terminijos pasiskirstymo tekstuose analize paremti metodai. Pateikiamos informatyviausi ↪u
termin ↪u nustatymo ir papildomos kontekstinės informacijos, susijusios su termin ↪u pozicijomis tek-
ste, panaudojimo klasifikavime procedūros. Pristatomi nagrinėt ↪u ir alternatyvi ↪u algoritm ↪u eksperi-
mentinio tyrimo, atlikto reali ↪u publikacij ↪u duomen ↪u bazi ↪u pagrindu, rezultatai.


