
INFORMATICA, 2010, Vol. 21, No. 4, 505–519 505
© 2010 Vilnius University

From XML to Relational Models

Elena CASTRO, Dolores CUADRA, Manuel VELASCO
Computer Science Department, Carlos III University of Madrid
Avda. Universidad, 30, 28911 Leganes, Madrid, Spain
e-mail: {ecastro, dcuadra, velasco}@inf.uc3m.es

Received: July 2008; accepted: July 2010

Abstract. For many businesses and organizations, the achievement of interoperability has proven
to be a highly desirable goal. However, without efficient schema mapping mechanisms or models
that allow for the storage and management of information from several distinct systems, the goal
of interoperability is impossible to attain. Due to the role of XML as a standard in information
exchange, considerable research has been undertaken to find effective methods or algorithms for
the conversion from XML to database models. This paper reviews leading research in the field –
focusing particularly on three novel approaches taken – and proposes an original schema mapping
mechanism using a conceptual model which, due its higher level of abstraction, maximizes the
preservation of semantics.

Keywords: inlining, mapping, data model semantics, data model, schema, metaschema.

1. Introduction

Since the rise of Extensible Markup Language (XML) as a de facto standard in data
exchange, the W3C has proposed various models for the management of XML document
collections (W3C, 2007). While such collections had traditionally been managed using
Document Type Definitions (DTDs), XML Schema is currently the most widely used
model since its formalism offers developers a set of tools for concept definition with
more semantics.

XML documents can be categorized as data-centric XML (almost entirely structured)
or document-centric XML (semi-structured or unstructured) and there exist four different
proposals for their storage and management: using a file system, a native XML database,
a relational database management system or an object-oriented database management
system (Pokorny, 2009). While most technologies currently provide mechanisms for deal-
ing with XML data, no model mapping currently exists – due to the differences in model
structures – that is able to completely preserve the semantics of the original. Given the
importance of relational database technology and advanced data management to ensure
data availability, concurrency and confidentiality, it is necessary to analyze this loss of
semantics and to propose a new, robust mapping mechanism.

An XML document collection usually follows a fixed structure given by a DTD or an
XML Schema. In spite of the fact that DTD formalism has become obsolete, a good deal

506 E. Castro et al.

of legacy data nevertheless exists which requires processing. As a result, it is necessary
to analyze methods and techniques capable of handling it.

The aim of this study is to review the principle algorithms for the mapping between
XML data (and/or their underlying schemata) and relational databases (Florescu and
Kossman, 1999). In Section 3 of the paper, three recent algorithms are analyzed and a
new proposal is introduced. Sections 4 and 5 develop this new proposal more fully and
present related experimental results. The paper ends with sections for conclusions as well
as proposals for future lines of research.

2. Background

Mapping between XML and relational databases (or, for that matter, any other technol-
ogy) can be achieved in two ways: by mapping from XML to the other model or vice
versa. While this paper confines itself to an analysis of the former process, some space is
nevertheless dedicated to the question of original XML document reconstruction raised
in the latter process.

An important technological gap in mapping XML data to relational databases is that
the mapping algorithms generally focus on DTD structure, ignoring the semantic aspects
of these schemas. In order to bridge this gap, a number of different approaches have been
taken.

In the mapping of XML data to relational databases, one of the more noteworthy at-
tempts has been STORED (Semi-Structured to Relational Data; Deutsch et al., 1999), ac-
cording to which data-mining techniques are employed to obtain information from which,
in turn, rules are derived for mapping XML to relational databases. In addition, some
authors (Bourret, 2001) have proposed algorithms that combine natural language tech-
niques in order to derive transformation rules; whereas others have proposed algorithms
that do not use data-mining or natural language techniques, but rather focus strictly on
DTD structure (Shanmugasundaram et al., 1999; Bohannon et al., 2002; Tatarinov et al.,
2002; Elmasri and Navathe, 2006). Recently, additional approaches have proposed meth-
ods whereby semantics are preserved reusing existing algorithms in conjunction with
regular grammars (Lee, 2002a, 2002b, 2003). Due to the importance of this last, mixed
technique, it has been included among the algorithms examined more carefully in the
following section of this study.

Regarding mapping based on conceptual models, McBrien and Poulovassilis (2002)
propose an intermediate graph model to facilitate conversion. Liu and Ling (2000), on the
other hand, use an object-oriented formalism in mapping HTML data to schemas, though
their study does not consider XML data directly. Finally, Conrad et al. (2000) use UML
to try to model XML more easily.

Another interesting approach is that of Dos Santos Mello and Heuser (2001) who
propose a mapping between DTD-dependent XML data collections, complete DTDs and
conceptual schemata using ORM/NIAM and EER model functionalities. To achieve this
aim and obtain a canonical representation of the conceptual schemata, they generate a set

From XML to Relational Models 507

of conversion rules for the DTD structure and heuristics for various semantic interpreta-
tions of this structure. In addition, an ontology is employed as a layer in the processing
of the query system, interacting with the user for the validation and retrieval of these
schemata. While the authors take mixed models, cardinality constraints and exclusive
elements into account, they nevertheless fail to distinguish between constructors and em-
ploy the user validation in an attempt to make up for the fact.

Another novel approach is that proposed by Atay et al. (2007) in which DOM and
SAX are used to write an algorithm for mapping XML to relational data while taking
into account their underlying schemata. This algorithm will be discussed in greater detail
in the following section.

3. Advanced Research: Mapping Between XML and Database Models

Since the late 1990s, numerous mechanisms have been developed and published for the
automatic translation of XML data into relational databases. Following the brief review
from the previous section of this paper, one may generally classify such mechanisms as
those that are regular-grammar-based, graph-based or work with mixed mechanisms. In
the subsections that directly follow, the most representative proposals of each of these
classifications are presented and discussed.

Due to the hierarchical nature of XML and the unordered nature of relational models,
model mechanisms need to employ robust algorithms when mapping the former to the lat-
ter. Additionally, a majority of these algorithms works with XML data (XML documents)
rather than with their underlying schemas, inevitably resulting in the loss of domain se-
mantics during mapping (Castro, 2004). For this reason, the subsections below in this
paper limit themselves to reviewing recent research techniques solely for the mapping
between DTDs or XML Schema and relational models.

In order to facilitate comparison between the models discussed below, a common
example (Fig. 1) is used regarding a DTD for information about the staff of an advertising
agency. While, due to the specific aims of this paper, conversion of the DTD to an XML
Schema has not been done here, it is nevertheless important to note that all information
represented in a DTD could be so converted.

3.1. A Comparative Study of Three Mapping Algorithms

3.1.1. XSchema
This algorithm proposed by Mani and Lee (2002) achieves conversion from XML
schemas or DTDs to relational schemas using regular tree grammar (RTG) theory.

If we assume that an RTG is a 4-tuple G = (N ; T ; S; P), where

• N is a finite set of non-terminals;
• T is a finite set of terminals;
• S is a set of start symbols (S being a subset of N);
• P is a finite set of production rules of the form X → Y , where Y may be a

non-terminal symbol, a terminal symbol or a mixture of non-terminal and terminal
symbols.

508 E. Castro et al.

<!ELEMENT Address (Street*, City, ZipCode?, Country) >
<!ATTLIST Main_address (yes | no) ”yes” >

<!ELEMENT Street (#PCDATA) >
<!ELEMENT City (#PCDATA) >
<!ELEMENT ZipCode (#PCDATA) >
<!ELEMENT Country (#PCDATA) >

<!- <People> ->

<!ELEMENT staff (Person*) >

<!ELEMENT Person (NamePerson, Email*, Address?) >
<!ATTLIST Person
personID ID #REQUIRED
role (A | B | C | D) #REQUIRED
>
<!ELEMENT Email (#PCDATA) >

Fig. 1. DTD fragment.

Mapping to relational schemas can be established after considering an intermediate
step in which an XSchema is denoted by a 6-tuple X = (E; A; M ; P ; r; S), where

• E is a finite set of the schema elements;
• A is a set of the schema attributes of a specified element;
• M is a function receiving an element as input and giving its composition as output;
• P is a function similar to M , but receiving an attribute as input and giving its

characteristics as output;
• r is a finite set of root elements;
• S is a finite set of integrity constraints for the XML document.

Applying this definition to the DTD of Fig. 1, therefore, the following grammar
(Fig. 2) is obtained.

Having reached this point in the procedure, the authors then perform inlining to add
attributes to each element and generate the relational schema (relational graph).

E = {Person, NamePerson, Email, Address, Street, City,
ZipCode, Country}

A(Person) = {personID, role}
M(Person) = (NamePerson, Email*, Address?)
P(PersonID) = (ID, not null, Desc)
P(role) = (string, not null, (A | B | C | D))
. .
r = { Person, Address }
S = {Name, email -> Person’s primary key, Street, ZipCode,

Country ->
Address’s primary key}.

Fig. 2. Figure 1 DTD grammar.

From XML to Relational Models 509

Taking this example into account, therefore, it can be deduced that the selection of
relational constraints, such as primary keys, is not an automatic process and requires an
expert user in the domain of the initial schema. Additionally, IDREFS attributes are al-
ways foreign keys. In the case of complex content models which may present several
possibilities for mixing elements, the algorithm creates a table for each possibility. Fi-
nally, element order is taken into account, adding a field indicating the position of the
element in the schema.

The mechanism proposed by the authors is sufficiently robust and complete. However,
due to the large number of tables generated, the mechanism in some cases may also
produce non-normalized relational schemata and require user intervention.

3.1.2. Bell Labs: LegoDB
Proposed by Bohannon et al. (2002) and offering an alternative to the use of regular
grammars, the design of the LegoDB algorithm is based on the following three principles:
cost-based searches, logical/physical independence and the reuse of existing technology.
As inputs, the algorithm requires the XML document, the DTD or XML Schema, a set
of statistical data about the former and a representative workload (i.e., the most frequent
queries). After these requirements have been met, an intermediate schema is built and
a search is run among several relational technologies in order to identify the optimal
technology.

Following the procedure from the preceding paragraph, Fig. 3 displays the intermedi-
ate schema built for the DTD of Fig. 1.

As demonstrated in Fig. 3, the algorithm mixes elements with their attributes to build
a type, introduces data types for all elements and takes into account the elements’ cardi-
nality. Having generated an intermediate schema, a relational technology is chosen using
the workload and the intermediate schema is mapped to a relational schema applying five
basic rules:

Type Person = person [personId [Integer],
role [string],
namePerson,
Email {0, n},
Address*]

Type namePerson = [string]
Type Email = [string]
Type Address = address [main [string],

Street {0,n},
City [string],
ZipCode {0,n},
Country]

type Street = [string]
type ZipCode = [integer]
type Country = [string]

Fig. 3. Code generated by LegoDB.

510 E. Castro et al.

• For each type, a relation Rt is created.
• For each relation Rt, a primary key is automatically created.
• The (primary) parent key is exported to all child keys to maintain foreign keys.
• Each element included in a type is mapped to a column in the relation Rt.
• All required attributes are considered not null in the relational schema.

As a final analysis of the LegoDB mechanism, therefore, the following points must
be stressed. First, as can be observed in the preceding discussion, LegoDB attributes do
not work with IDREFS. Additionally, the automatic creation of primary and foreign keys
results in semantic loss in the final schema. Finally, original element order is not taken
into account.

3.2. ODTDMap

Proposed by Atay et al. (2007), ODTDMap differs from the algorithms discussed in the
previous subsections in that its application is limited solely to the mapping between DTDs
and relational schemata.

After first transforming a DTD into a more simplified version, the ODTDMap algo-
rithm uses directed and ordered graphs to produce an intermediate schema with which the
final conversion is carried out. As shown in Fig. 4, nodes represent elements and attributes
whereas edges denote parent-child relationships. Below is a rendering of the Fig. 1 DTD
following the ODTDMap procedure.

As a next step, the algorithm includes the children in the parent only if the minimum
cardinality of the former is one. After this inlining process, a set of rules is defined to
transform the intermediate schema into a relational schema. While this rules set takes
the order of the DTD and IDREFS into account, some drawbacks of the mechanism
nevertheless include the production of a non-normalized relational schema (due to the
inlining process) and the inability to preserve all the semantics of the original (due to the
simplification of the original DTD).

Having presented three different mapping algorithms, Table 1 summarizes the princi-
ple characteristics and drawbacks discussed for each.

Fig. 4. Graph for Fig. 1 DTD.

From XML to Relational Models 511

Table 1

Principle characteristics and drawbacks of mapping algorithms

Characteristics Drawbacks

XSchema Uses regular grammars to generate Non-normalized relational schemata

an intermediate schema

LegoDB Uses statistical data to generate Semantic loss; order not considered

LegoDB an intermediate schema

ODTDMap Uses a directed and ordered graph Semantic loss; non-normalized relational

ODTDMap as an intermediate schema schemata

4. Preserving Semantics in Schema Conversion

One does not engage in hyperbole by saying that perhaps all existing algorithms for
mapping between XML and relational models are domain-specific. Thus, in order to
attain a generalized mechanism capable of managing any schema, independent of the
schema’s underlying domain, an in-depth study of these algorithms is necessary. In addi-
tion, schema repositories ought to be employed to facilitate schema reuse and construc-
tion. Taking these factors into consideration, what follows is a discussion of an original
mechanism allowing for the storage, management and recovery of any scheme, regardless
of its underlying domain.

As all models consist of a set of constructors and a set of rules, it seems relatively
easy to establish a parallelism between any two models. The only question, then, where
parallelism is concerned is that of the semantics associated with each model. Due to
the scarcity of the semantics in logical models, parallelism must be established between
conceptual models. For this reason, a class diagram in UML is a promising candidate to
facilitate this comparison, especially when taking into account the simplicity with which
schemas modelled in UML can be mapped to relational databases.

Figure 5 illustrates the intermediate schema proposed for achieving this mapping de-
scribed above. The translation for XML schemata is very similar. To make the schema
easier to understand for the reader, stereotypes have been used as proposed in Ambler
(2003).

Each DTD constructor has been mapped into classes and the relationships between
which have been translated into associations in a UML diagram. A particularly impor-
tant question to consider at this point of the procedure is how to capture complex content
models which, in their structures, may contain multiplicities (“,”) and/or sequences (“|”).
Sub-elements as well as parameter entities of a fixed element may appear with a cardinal-
ity of zero or one time (“?”), one and only one time (“ ”), one or more times (“+”) or zero
or more times (“∗”). Conversely, sub-elements and parameter entities may form a chain
with nesting levels using logical operators AND (“,”) and OR (“|”). All of these char-
acteristics have been collected through two multivalued properties called “Frequency”.
In order to capture complex content model semantics, an algorithm has been developed
(briefly described below) for these properties, where

512 E. Castro et al.

Fig. 5. Metaschema approach.

• L = {lj }j=1,...,n , is a finite set of nested levels for the main element. A level is
defined as the role a specific element plays in its content model (i.e., the number
of possible cardinalities for an element). This set is represented by the property
“Level” in the design.

• Lei = {ln − k}, where k is the number of open brackets to the left of the sub-
element ei, showing the first nested level for each element.

• Card = {“?”, “1”, “ ∗ ”, “ + ”}, the set of all possibilities for the appearance of
an element in a content model (where “1” denotes a one and only one cardinality).
This set is defined as a domain “D_Cardinality” on top of the property “Cardinal-
ity” in the design.

• Op = {“|”, “, ”, “Null”, “ ”}, is the set made up of logical operators AND (“,”) and
OR (“|”) in a DTD specification. “Null” denotes the non-existence of one operator
in the final nested level of an element, whereas the empty value “ ” reflects the
case where an operator is not required to catch any other operator for a particular
complex element. Op is also the set of values that may appear in the property
“Operator” and is defined in the “D_Operator” domain.

In the proposed mechanism, the number of levels for each sub-element Lei is cal-
culated first. Next, the cardinality and operator for each sub-element ei are calculated
taking into account the situation of these values to the right of the sub-element. As an
example (equally valid for parameter entities), suppose one element e with sub-elements
ei, i = 1, . . . , 5, nested as follows:

〈! ELEMENT e (((e1*| e2+)?, e3?, e4) + |e5)〉.

From XML to Relational Models 513

• L={I1}I=1,...,4={1,2,3,4}
• Le1{In−k}={4-3,4-2,4-1}
• Le1=1=>Cardinality(e1)=*,Operator(e1)=|=>e1*|
• Le1=2=>Cardinality(e1)=?,Operator(e1)=,=>(e1*|e2+)?,
• Le1=3=>Cardinality(e1)=+,Operator(e1)=|=>((e1*|e2+)?,e3?,e4)+|
• Le1=4=>Cardinality(e1)=1,Operator(e1)=Null=>(((e1*|e2+)?,e3?,e4)+|e5)

Fig. 6. Algorithm for complex content models.

Figure 6 shows the value properties for the e1 sub-element.
The algorithm presented above allows one to capture the semantics associated with

mixed and complex content models and, as shown in Fig. 5, to obtain a semantic reposi-
tory for web schemata. In addition, due to the fact that the metaschema captures the order
of any element or “Code” attribute and of the ROWID during the transformation to the
relational schema, the mechanism allows for the retrieval of the original schema and the
reuse of schema fragments during the building of new schemata. In short, the use of a
conceptual model or metaschema appears to be a good mechanism for mapping between
DTDs or XML schemas and relational databases insofar as the transformation produces
a normalized solution.

5. Experimental Study

In order to demonstrate the soundness of the proposal presented in the previous section of
this paper, two questions must be taken into account: (1) does the output schema capture
the same semantics as the original schema and (2) is the original schema retrievable after
the translation? While both questions seem rather similar, the former refers specifically to
the preservation of the semantics intrinsic to a DTD (e.g., order, complex content models,
ID and IDREFS, etc.), whereas the latter refers directly to the efficiency (in terms of
structure normalization) of the final relational schema.

What follows is a discussion of the experimental application of these questions to
the mechanism presented in Section 4 of this paper. The first subsection outlines this
experiment while the second subsection presents and analyses the results obtained.

5.1. Experiment Description

The efficiency and optimization of a system depends not only on the technology used, but
also on a good application design (since good design leads to proper implementation and
avoids the typical deficiencies of systems that are not based on normalized schemata). In
this respect, one of the advantages of relational systems is that they are easy to optimize
due to their high-level relational operations. The system detailed in this paper was devel-
oped using Oracle 10g, chosen here for its importance among RDBMSs currently on the
market.

In this experiment, a repository of thirteen free, non-commercial DTDs with different
sizes, levels of complexity and purposes was used such that, through query analysis,

514 E. Castro et al.

the ability of the proposed algorithm (1) to preserve original DTD semantics and (2) to
function efficiently could be clearly demonstrated. Table 2 below presents each of the
DTDs from this repository along with their respective purpose and file size.

In addition to the creation of the DTD repository, several queries were designed to
simulate end-user requests. These queries can be classified into two groups: complete
and partial queries.

Complete queries are all those related to the obtainment of a complete DTD and could
be useful in cases where a user must retrieve a predefined schema. To achieve this goal,
a query was implemented to retrieve any schema together with its constructors and at-
tributes.

Partial queries allow for the retrieval of DTD fragments for their reuse in a new
schema. These queries can be further classified into two additional groups: simple queries
(i.e., queries for isolated elements in the DTD) and complex queries (i.e., queries for DTD
constructors with their content models). In the present experiment, simple queries were
designed to measure response time in the retrieval of simple constructors, while complex
queries were designed to retrieve complex content model elements.

All RDBMSs have an optimizer module selecting the best data access path for a query
depending on the style in which the query is written. However, in this experiment where
queries are not very difficult and their operators are not overly complex, different trials
run with several versions of the same sentence do not yield significantly different results.

Table 2

DTDs stored in repository

DTD name DTD purpose DTD size

(bytes)

Records.dtd DTD modelling a record collection 576

Log.dtd DTD providing an XML-formatted log message 2,517

Message.dtd DTD modelling electronic messages 633

Music.dtd DTD for Music Markup Language (MusicML), an XML application
displaying musical notation on web pages

3,141

NewsML.dtd DTD for News Markup Language (NewsML), an XML standard for
the tagging of news stories and related documents (developed by the
International Press Telecommunications Council)

13,964

Novel.dtd Simple XML DTD for marking up novels 1,453

Osd.dtd Vocabulary (Open Software Description Format) for describing soft-
ware packages and their dependencies for heterogeneous clients

1,267

Play.dtd DTD for Shakespearian plays 1,138

Pml.dtd DTD for Portal Markup Language (PML) describing portal related
data and metadata and allowing the exchange of information across
portals of the same or different manufacturers

9,064

Preferences.dtd DTD for preference tree 1,256

Tstmt.dtd DTD for wills and testaments 1,074

Xcard.dtd DTD for electronic business cards 1,104

Xmi.dtd DTD for XML Metadata Interchange 3,376

From XML to Relational Models 515

Finally, in this experiment, especially taken into account were the parameters of re-
sponse time and catalogue statistics. That said, however, due to the fact that response
times change with the number of records requiring processing rather than with the com-
plexity of the query, parameters between queries were not compared here.

5.2. Experiment Results

In order to gauge the utility of the proposed algorithm with regard to the two criteria
described in Section 5.1, the present experiment took into account the number of records
retrieved from the repository and the corresponding retrieval times (measured in millisec-
onds) for each query. The results from this experiment for complete queries suggest that
schema size is directly related to retrieval time (i.e., the larger the schema, the longer the
retrieval time); while for partial queries searching for constructors or schema fragments,
retrieval time does not appear to have been much affected by the size of the DTD. In order
to clearly demonstrate that that these results do not indicate a lack of system efficiency,
the average response time for each query was calculated and is presented below in Fig. 7.

Of the three queries with the highest response times according to Fig. 7, Query 1
had requested a complete schema, Query 3 had requested parameter entities included in
elements and Query 6 had requested the complex content model. Additionally, these three
queries had more joins than the rest, resulting in a greater number of tables that required
accessing.

Finally, to determine whether the complexity of the schemata is an indicator of sys-
tem efficiency (particularly in cases where the size of a DTD did not affect retrieval), each
schema was assigned a number representing its relative complexity. In order to do so, all
constructors and their relationships for each particular schema were taken to account,
as were the ways and the number of operations necessary to achieve each one. Schema
elements, therefore, were assigned a corresponding weight depending on these complex-
ity factors where elements received a weight of zero (since every schema had to have
at least one element), while content elements were accorded the greatest weight (due to
their nested structure). As a last step, the total complexity of each individual schema was

Fig. 7. Average query response times.

516 E. Castro et al.

Fig. 8. Cost relative to DTD complexity.

calculated as the sum of the complexity weights given to each of the items and elements
in the schema. In this way, a cost for each constructor in each schema was obtained.

Following this step, complexity measurements and query response times were com-
pared for each corresponding schema. As evidenced by Fig. 8, it can be concluded that
schema complexity directly affects retrieval time, insofar as increases in the former re-
sulted in proportional increases in the latter. That said, and following other criteria, DTD
fragment retrieval time was quite acceptable, taking an average of 185 milliseconds.
Therefore, the relational schema appears to be efficient with regard to the number of ta-
bles and joins. In addition, complete queries retrieved schemas as well as their complete
original semantics.

It seems obvious that the size and the complexity of a DTD may influence response
times. At the beginning of this section it was noted that the experiment should serve to
demonstrate the robustness of the proposed algorithm by taking the following two points
into consideration: the possibility of retrieving a complete DTD with full capture of its
original semantics and the efficiency of the relational database generated. As regards the
former and using complete queries, any DTD can be reconstructed in the same order
and with the same structures (in the same position) by the ROWID of each record. As
regards the latter, the number of tables generated in transforming the conceptual schema
of Fig. 5; following the methodology presented in Elmasri and Navathe (2006) ensures a
normalized result that positively affects schema efficiency.

6. Conclusions

This paper presents a review of recent research on mapping between XML and relational
databases. In any XML formalism or schema, the order in which elements are written
is fundamental for the reconstruction of the original document; however, the relational
model does not take this order constraint into account. Thus, this paper has analyzed how
algorithms can be designed to accurately preserve this order and the original semantics.

Furthermore, this paper presented an overview of three recent algorithms and a new
proposal for handling XML models. This proposal emphasized the need to capture as

From XML to Relational Models 517

many original semantics as possible (including the DTD order of the constructs), as well
as the importance of obtaining a normalized relational schema. The benefits offered by
the proposal were demonstrated in the discussion of experimental results, with special
attention being paid to the storage and management of DTD schemas.

In the final section of this paper, the need for future research efforts in the open field
of XML storage and management will be briefly discussed.

7. Future Work and Trends

Further research on mapping between XML and relational models is necessary for the
acquisition of a reliable automatic mapping mechanism. Currently, with the help of data
models and meta-constructors (the latter permitting the representation of the construc-
tors of any model (Atzeni et al., 2005; Bernstein et al., 2000), experts are researching
techniques for automatic conversion between any two models.

Nevertheless, and as repeated throughout this paper, any mapping between two mod-
els must allow for the reconstruction of the original schema and, moreover, it should be
reusable. This reusability means not only the possibility to retrieve fragments of schemata
or a complete schema, but also the original semantics. Moreover, the reusability is linked
as the attainment of the long-awaited interoperability. However, without the use of on-
tologies or controlled vocabularies (Gomez-Pérez and Benjamins, 2002; Magdalenic and
Radosevic, 2009), this goal is not being met.

Focusing specifically on the proposal presented in Sections 4 and 5 of this paper, it
could be productive to develop a detailed study around a mechanism for the inclusion of
XML document collections in their underlying and stored schemata.

Acknowledgements. This study is the result of work undertaken as part of the “Soft-
ware Process Management Platform: modeling, reuse and measurement”. Project num-
ber: TIN2004/07083.

References

Ambler, S.W. (2003). Agile Database Techniques. Wiley, New York.
Atay, M., Chebotko, A., Liu, D., Lu, S.,Fotouhi, F. (2007). Efficient schema-based XML-to-relational data

mapping. Inform. Syst., 32(3), 458–476.
Atzeni, P., Cappellari, P., Bernstein, P.A. (2005). ModelGen: model independent schema translation (demo). In:

Intenational Conference on Data Engineering, ICDE.
Bernstein, P.A., Levi, A.Y., Pottinger, R.A. (2000). A vision for management of complex models. Microsoft

Research Technical Report MSR-TR-2000-53.
Bohannon, P., Freire, J., Roy, P., Siméon, J. (2002). From XML schema to relations: a cost-based approach

to XML storage. Bell Labs. In: Data Engineering, Proceedings 18th International Conference on on Data
Engineering (ICDE’02), pp. 64–75.

Bourret, R. (2001). Mapping DTDs to databases. Retrieved January 21, 2003.
http://www.XML.com/lpt/a/2001/05/09/DTDodbs.html.

Castro, E. (2004). An approach to the documental structures reusability in the frame of the semantic Web.
Doctoral thesis. Carlos III University of Madrid, Spain.

518 E. Castro et al.

Conrad, R., Scheffner, D., Freytag, J.C. (2000). XML conceptual modeling using UML. In: 19th International
Conference on Conceptual Modeling (ER’2000), pp. 558–571.

Deutsch, A., Fernandez, J., Suciu, D. (1999). Storing semistructured data with STORED. In: Proceedings ACM
SIGMOD International Conference on Management of Data, Philadephia, PA USA, pp. 431–442

Dos Santos Mello R., Heuser, C.A. (2001). A ruled-based conversion of a dtd to a conceptual schema. Retrieved
February 2, 2003. http://citeseer.nj.nec.com/500727.html.

Elmasri, R., Navathe, B. (2006). Fundamentals of Database Systems, 5th ed., Addison-Wesley, Boston.
Florescu, D., Kossman, D. (1999). Storing and querying XML data using RDMBS. IEEE Data Eng. Bull.,

22(1), 27–34.
Gomez-Pérez, A., Benjamins, V.R. (2002). Knowledge engineering and knowledge management: ontologies

and the semantic web. In: 13th International Conference on Knowledge Engineering and Knowledge Man-
agement, EKAW’2002. LNAI, Vol. 2473, Sigüenza, Spain. Springer, Berlin, pp. 114–121.

Lee, D., Mani, M., Chu, W.W. (2002a)). NeT & CoT: Inferring XML schemas from relational world. In: Pro-
ceedings of the 18th International Conference on Data Engineering.

Lee, D., Mani, M., Chu, W.W. (2002b). NeT & CoT: translating relational schemas to xml schemas using
semantic constraints. In: Proc. 11th ACM Int. Conf. on Information and Knowledge Management, McLean,
VA, USA, pp. 282–291.

Lee, D., Mani, M., Chu, W.W. (2003). Schema conversion methods between XML and relational models. In:
Knowledge Transformation for the Semantic Web, Frontiers in Artificial Intelligence and Applications, Vol.
95, IOS Press, Amsterdam, pp. 1–17.

Liu, M., Ling, T.W. (2000). A conceptual model for the web. In: Proceedings 19th International Conference on
Conceptual Modeling (ER’2000), pp. 225–238.

Magdalenic, I., Radosevic, D. (2009) Dynamic generation of web services for data retrieval using ontology.
Informatica, 20(3), 397–416.

Mani, M., Lee, D. (2002). XML to relational conversion using theory of regular tree grammars. In: Proceedings
of the 28th VLDB Conference, pp. 81–103.

McBrien, P., Poulovassilis, A. (2001). A semantic approach to integrating XML and structured data sources. In:
13th Conference on Advanced Information Systems Engineering.

Pokorny, J. (2009). XML in enterprise systems. Informatica, 20(3), 417–438
Shanmugasundaram, J., Tufte, K., He, G. (1999). Relational databases for querying XML documents: limita-

tions and opportunities. In: Proceedings of the 25th VLDB Conference, pp. 302–314.
Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasundaram, J., Shekita, E., Zhang, Ch. (2002). Storing and query-

ing ordered XML using a relational database system. In: Proceedings of the 2002 ACM SIGMOD Interna-
tional Conference on Management of Data, pp. 204–215.

W3C (2007). The world wide web consortium. Retrieved March 1, 2007. www.w3c.org.

From XML to Relational Models 519

E. Castro received a MSc in mathematics from the Complutense University of Madrid
in 1995. Since 1998, she has been working in the Advanced Databases Group in the
Computer Science Department at the Carlos III University of Madrid. In 2004, she ob-
tained a PhD in information science from the Carlos III University of Madrid. She cur-
rently works as associate professor and is currently teaching relational and object oriented
databases. Her research interests include database conceptual and logical modeling, ad-
vanced database CASE environments, information and knowledge engineering, natural
language processing and E-learning fields.

D. Cuadra received the MSc in mathematics from Universidad Complutense of Madrid
in 1995. In 1997, she joined the Advanced Databases Group, at the Computer Science
Department of Carlos III University of Madrid, where she currently works as associate
professor. In 2003, she obtained the PhD degree in computer science from Carlos III
University of Madrid. Her research interests include advanced database technologies,
spatio-temporal databases and their applications to Situation management. She has been
working in Computer Science Department at Purdue University of West Lafayette (Indi-
ana) for nearly a year, where she has applied her research in spatio-temporal database.
Apart from this, she is working on several national research projects regarding human-
computer interaction, specifically on cognitive models for natural interaction systems.

M. Velasco received the MSc in computer science from Universidad Complutense of
Madrid in 1992. In 1993, he joined the Software Engineering Group, at the Computer
Science Department of Carlos III University of Madrid. In 1998 he obtained the PhD
degree in computer science in the Artifitial Intelligence Department from Universidad
Politecnica of Madrid. Since 1999 he works as associate professor at Carlos III University
of Madrid. His research interests include software reuse, software testing and spatio-
temporal databases. Apart from this, he is working on several national research projects
at SEL (Software Engineering Laboratory).

XML schem ↪u atvaizdavimas ↪i reliacinius modelius

Elena CASTRO, Dolores CUADRA, Manuel VELASCO

Kuriant daugel↪i veiklos ir organizacij ↪u sistem ↪u vienu iš svarbiausi ↪u siekiam ↪u tiksl ↪u yra j ↪u in-
teroperabilumas. Tačiau šio tikslo ne↪imanoma pasiekti, neturint vien ↪u schem ↪u atvaizdavimo ↪i kitas
efektyvaus mechanizmo arba toki ↪u modeli ↪u, kurie sudaro galimybes saugoti ir tvarkyti informacij ↪a
keliose skirtingose sistemose. Kadangi XML yra informacijos main ↪u standartas, yra atlikta gana
daug ↪ivairi ↪u tyrim ↪u bandant sukurti efektyvius metodus bei algoritmus XML schemoms transfor-
muoti ↪i duomen ↪u bazi ↪u modelius. Straipsnyje apžvelgiami svarbiausi šios srities tyrimai, pagrindin↪i
dėmes↪i skiriant trims naujausiems tyrimams, ir siūlomas originalus koncepciniu modeliu grindžia-
mas schem ↪u atvaizdavimo mechanizmas, kuris savo aukšto abstrakcijos lygio dėka maksimizuoja
semantikos išsaugojim ↪a.

