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Abstract. Combinatorial problems serve as an important resource for developing practical public
key cryptosystems and several combinatorial cryptosystems have been proposed in the crypto-
graphic community. In this paper, a combinatorial public key cryptosystem is proposed. The se-
curity of the proposed cryptosystem is dependent on a combinatorial problem involving matrices.
The system features fast encryption and decryption. However, the system also suffers from some
drawbacks. The ciphertext expansion is relatively large and the key sizes are somewhat larger than
that of RSA. The security of the system is carefully examined by illustrating the computational
infeasibilities of some attacks on the system.

Keywords: public key cryptography, combinatorial cryptosystem, integer factorization, lattice
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1. Introduction

It is striking to note that nowadays the security of most of the widely-used public key
cryptosystems (PKCs) is based on number-theoretic problems, such as factoring integers
and finding discrete logarithms over some cyclic groups (Liu and Huang, 2010; Sun et al.,
2010; Wang et al., 2009). The desire to have a wide variety of available cryptosystems so
as not to put all cryptographic eggs in one number-theoretic basket motivates the cryptog-
raphers to design more PKCs. An interesting area in public key cryptography is to design
PKCs based on some combinatorial problems.

Trapdoor knapsack, a concept proposed by Merkle and Hellman (1978), can be seen as
the first practical realization of combinatorial cryptosystems. The basic Merkle–Hellman
trapdoor knapsack was broken by Shamir (1984). Whereafter, many work has been done
to realize secure and efficient trapdoor knapsacks. However, almost all additive trapdoor
knapsacks are shown to be insecure, including the most resistant one, the Chor–Rivest
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knapsack system (Chor and Rivest, 1988; Vaudenay, 2001). The painful experience trau-
matized many cryptographers, and also lowered the initial enthusiasm for combinatorially
based cryptosystems. See the survey papers (Lai, 2003; Odlyzko, 1990) for the rise and
fall for trapdoor knapsacks.

In 1994, Fellows and Koblitz reignited the cryptographers’ enthusiasm for com-
binatorial cryptosystems by developing a combinatorial–algebraic cryptosystem, Polly
Cracker (Fellows and Koblitz, 1994; Koblitz, 1998), which was modified by Ly (2006).
The modified Polly Cracker is called Polly Two in Ly (2006). The Polly Cracker and
Polly Two cryptosystems attracted a lot of attention and the security of the cryptosystems
was discussed in some well-written papers (Steinwandt and Geiselman, 2002; Hofheinz
and Steinwandt, 2002; Steinwandt et al., 2002; Ackerman et al., 2006). More gener-
ally, we also can look the braid-based cryptographic primitives (Ko et al., 2000; Ahshel
et al., 1999) and NTRU (Hoffstein et al., 1998) as combinatorial–algebraic cryptosys-
tems.

In this paper, we propose a new combinatorial PKC. The encryption of the proposed
cryptosystem only involves several modular multiplications and additions. The computa-
tional costs for the user to decipher a ciphertext are also several modular multiplicative
operations. The proposed cryptosystem suffers from some drawbacks. The information
rate is somewhat lower than that of RSA and ElGamal, and the key sizes are relatively
large. When developing the cryptosystem, we use the integer factorization problem to
disguise the secret key. However, the security of the system is not dependent on the inte-
ger factorization intractability assumption but a combinatorial problem involving matri-
ces.

The rest of the paper is organized as follows. In Section 2, we give the detailed descrip-
tion of the proposed cryptosystem; Section 3 analyzes the computational complexity of
the system and specifies the parameter selection. The security of the system is discussed
in Section 4. Section 5 gives some concluding remarks.

2. The Proposed Cryptosystem

Throughout this paper, we use R and Zn = {0, . . . , n − 1} to denote the field of real
numbers and the complete system of the least nonnegative residues modulo n, respec-
tively. We write gcd(a, b) for the greatest common divisor of a and b. If gcd(a, b) = 1,
a−1mod b denotes the inverse of a modulo b. We use 〈b〉p to mean the least nonnegative
remainder of a divided by p. We use a = b(mod N) to mean that a is the least non-
negative remainder of b modulo N and use a ≡ b(mod N) to denote that a and b are
congruent modulo N . The symbol |A| represents the determinant of a square matrix A

and |a| means the binary length of an integer a.
The cryptosystem consists of three sub-algorithms: key generation, encryption and

decryption.
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2.1. Key Generation

The proposed encryption scheme involves matrices with dimension of an even integer
n. In real life practice, we can choose n = 4. The basic steps to choose parameters run
as follows.

Randomly generate a 1024 RSA modulus N = pq with p and q primes and |p| =
|q| = 512. Randomly choose an n-dimensional matrix A = (aij)n×n with |aij | = 59. We
require that the matrix A is invertible over R and denote its inverse as A−1. We randomly
choose four matrices C = (cij)n×n, D = (dij)n×n, E = (eij)n×n and F = (fij)n×n

with cij , dij , eij , fij ∈ ZN . The generated matrices C, D, E, and F satisfy the following
conditions. For i = 1, . . . , n, we require that p divides cij + ei(n+1−j) when i is an odd
integer, and q divides cij + ei(n+1−j) when i is an even integer, that is,

{
cij + ei(n+1−j) = αijp, when i is odd,

cij + ei(n+1−j) = αijq, when i is even,
(1)

where αij ∈ ZN . We also require that p divides din + fi1 and dij + fi(j+1) for
j = 1, . . . , n − 1 when i is an odd integer, and q divides din + fi1 and dij + fi(j+1)

for j = 1, . . . , n − 1 when i is an even integer, that is,

⎧⎪⎪⎨
⎪⎪⎩

din + fi1 = βinp, when i is odd,

din + fi1 = βinq, when i is even,

dij + fi(j+1) = βijp, j = 1, . . . , n − 1, when i is odd,

dij + fi(j+1) = βijq, j = 1, . . . , n − 1, when i is even,

(2)

where βij ∈ ZN . Now we generate another matrix A
′
= (a

′

ij)n×n, where

{
a

′

ij = aij + γijp, when i is odd,

a
′

ij = aij + γijq, when i is even,
γij ∈ ZN . (3)

To make the proposed cryptosystem well work, we also require that the matrices A′, C,
D, E and F are invertible modulo N . We denote the inverses of D, F modulo N as D−1

and F −1 respectively. We compute

B = (bij)n×n ≡ D−1A′(mod N),
G = (gij)n×n ≡ D−1C(mod N),
H = (hij)n×n ≡ F −1E(mod N).

(4)

The matrices of B, G and H and the modulus N are the public key; whereas the secret
key consists of D, F , A−1, p and q.

2.2. Encryption

The plaintext to be encrypted is M with |M | = 450n, which is divided into n blocks
m1, . . . , mn with every block mi, |mi| = 450. To encrypt M , the sender randomly
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chooses 2n integers r1, . . . , rn, s1, . . . , sn ∈ ZN . The sender computes the cipher-text
(U, V ) as follows,

U =

⎛
⎜⎝

u1

...
un

⎞
⎟⎠ ≡ B

⎛
⎜⎝

m1

...
mn

⎞
⎟⎠ + G

⎛
⎜⎝

r1

...
rn

⎞
⎟⎠ +

⎛
⎜⎝

s1

...
sn

⎞
⎟⎠ (mod N),

and

V =

⎛
⎜⎝

v1

...
vn

⎞
⎟⎠ ≡ H

⎛
⎜⎜⎜⎜⎜⎝

rn

rn−1

...
r2

r1

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝

sn

s1

...
sn−2

sn−1

⎞
⎟⎟⎟⎟⎟⎠ (mod N). (5)

The ciphertext is the 2-tuple (U, V ) and is sent to the intended receiver.

2.3. Decryption

Given a ciphertext vector (U, V ), the receiver does the followings to recover the cor-
responding plaintext vector M . The receiver first computes T = (t1, . . . , tn)T ≡
DU + FV (mod N), and sets wi = 〈ti〉p, when i is odd, and wi = 〈ti〉q , when i is
even. Then he recovers the plaintext,

M = (m1, . . . , mn)T = A−1(w1, . . . , wn)T . (6)

2.4. Why Decryption Works

It is easy to verify that

T ≡ A′M + C

⎛
⎜⎝

r1

...
rn

⎞
⎟⎠ + D

⎛
⎜⎝

s1

...
sn

⎞
⎟⎠ + E

⎛
⎜⎜⎜⎜⎜⎝

rn

rn−1

...
r2

r1

⎞
⎟⎟⎟⎟⎟⎠ + F

⎛
⎜⎜⎜⎜⎜⎝

sn

s1

...
sn−2

sn−1

⎞
⎟⎟⎟⎟⎟⎠ (mod N).

So for i = 1, . . . , n − 1,

ti ≡
n∑

j=1

a
′

ijmj +
n∑

j=1

[cij + ei(n+1−j)]rj +
n−1∑
j=1

[dij + fi(j+1)]sj

+ (din + fi1)sn(mod N).
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From (1), (2) and the construction of the matrix A′, we know when i is odd, we have

ti ≡
n∑

j=1

aijmj + p

[
n∑

j=1

(γijmj + αijrj + βijsj)

]
(modN),

and when i is even, we have

ti ≡
n∑

j=1

aijmj + q

[
n∑

j=1

(γijmj + αijrj + βijsj)

]
(mod N).

Accordingly, we get

wi = 〈ti〉p ≡
n∑

j=1

aijmj(mod p), when i odd ,

wi = 〈ti〉q ≡
n∑

j=1

aijmj(mod q), when i even.

Note that |aij | = 59, |mi| = 450, |p| = |q| = 512. So we can conclude that

0 <

n∑
j=1

aijmj < p, 0 <

n∑
j=1

aijmj < q.

In other words, when i is odd, we have

wi = 〈ti〉p =
n∑

j=1

aijmj ,

and when i is even, we have

wi = 〈ti〉q =
n∑

j=1

aijmj .

We can write the equation as

(w1, . . . , wn)T = A(m1, . . . , mn)T .

The plaintext is recovered by computing M = A−1(w1, . . . , wn)T .

2.5. An Example

To make the proposed cryptosystem easy to understand, now we use a small example
to illustrate the procedure. Firstly, the receiver generates two primes p = 999979 and
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q = 999631, and computes their multiplication N = pq = 999610007749. Then five
matrices are generated as follows,

A =
(

4 5
3 4

)
,

C =
(

248569123540 369785444609
838897460095 756483645235

)
,

E =
(

285078802953 627901470191
232874146978 159186111117

)
,

D =
(

156889736501 287632569851
652322010023 665130086997

)
,

and

F =
(

400904970557 667425952506
100154418780 137373484774

)
.

It is easy to verify that the generated matrices C, D, E, and F satisfy the conditions (1)
and (2). Then the receiver generates another matrix A

′
= (a

′

ij)n×n according to (3),

A
′
= A +

(
687356p 355865p

771023q 560041q

)
=

(
687341565528 355857526840
770738492516 559834344875

)
.

The receiver computes D−1(mod N) and F −1(mod N),

D−1 =
(

631418586541 354198766323
106207153194 865153161893

)
,

F −1 =
(

254565584792 195881254137
529308392657 71437726285

)
.

Therefore, the receiver can compute the public matrices

B ≡ D−1A
′
(mod N) =

(
41728074639 951212423002
416683313190 775553060663

)
,

G ≡ D−1C(mod N) =
(

641231320645 468099058568
95261839148 118089802391

)
,

H ≡ F −1E(mod N) =
(

907836643133 572493941408
431066561770 130333978646

)
.

Assume that the plaintext to be encrypted is M = (m1, m2)T = (89436, 77201)T .
The sender randomly generates r1 = 846320073629, r2 = 635508996021, s1 =
384620183512, s2 = 201556638534 ∈ ZN . Then he computes and sends the receiver
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the ciphertext (U, V ),

U =
(

u1

u2

)
≡ B

(
m1

m2

)
+G

(
r1

r2

)
+

(
s1

s2

)
(mod N) =

(
824702160981
951670702040

)
,

V =
(

v1

v2

)
≡ H

(
r2

r1

)
+

(
s2

s1

)
(mod N) =

(
81144043583
305049716413

)
.

To decipher the ciphertext (U, V ), the receiver firstly computes

T =
(

t1
t2

)
≡ DU + FV (mod N) =

(
599460154837
773188165575

)
.

Then he computes w1 = 〈t1〉p = 743749 and w2 = 〈t2〉q = 577112. The plaintext is
recovered by performing

M =
(

m1

m2

)
= A−1

(
w1

w2

)
=

(
4 −5

−3 4

) (
743749
577112

)
=

(
89436
77201

)
.

3. Parameter Specifications and Performance

3.1. Parameter Specifications

When generating the parameters, we require that A is invertible over the field of R.
Generally speaking, the entries in the matrix A−1 are rational numbers but not necessarily
integers. So the matrix A−1 cannot be efficiently represented. Three methods can be used
to overcome the drawback. Firstly, we can choose the matrix A such that |A| = 1, in
which case, the entries of the matrix A−1 are also integers. Secondly, for a randomly-
chosen invertible matrix A, we denote its inverse as A−1 = 1

|A| A
∗, where A∗ is the

adjoint of A. When we do the computation (6) to decipher a ciphertext, we compute
A∗(v1, v2)T and then divide the resultant vector by |A|. Thirdly, we can compute the
inverse A−1 of A modulo p. Then (6) should be modified as

M = (m1, . . . , mn)T = A−1(w1, . . . , wn)T (mod p). (7)

We also require the matrices A
′
, C, D, E and F are invertible modulo N . This is only

for security considerations. In fact, if one of the matrices is non-invertible modulo N , at
least one of the public matrices B, G and H will be non-invertible modulo N . Without
loss of generality, we assume that B is non-invertible modulo N . So gcd(|B|, N) will be
greater than 1. If gcd(|D|, N) �= N , then gcd(|D|, N) will give a prime factor of N . So
the security of the proposed cryptosystem will be reduced. In fact, such matrices are easy
to generate. Note that a matrix A is invertible modulo N if and only if gcd(|A|, N) = 1.
So for a small dimension n and a large RSA number N = pq, a randomly-chosen n-
dimensional square matrix A is always invertible modulo N .

The suggested parameters are listed in Table 1.
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Table 1

The suggested parematers with respect to security level

Security level Moderate security Higher security Highest security

n 2 4 4

Length of N , |N | 1024 1024 2048

3.2. Performance

3.2.1. Key Size
We evaluate the public key and the secret key sizes. The public key consists of three n-
dimensional square matrices B, G and H and the modulus N . So the public key size is
about (3n2+1) times the binary length of the modulus N , i.e., (3n2+1) × 1024 = 50176
bits in the case of n = 4. The secret key consists of D, F , A−1, p and q. So the secret
key size can be evaluated via 2n2 × 1024+n2 × 512+2 × 512 = 41984 bits. The public
key size of the proposed cryptosystem is relatively large.

3.2.2. Information Rate
The information rate for a cryptosystem is defined as the ratio of the binary length lm of
the plaintext block to that of the ciphertext block lc. In the proposed cryptosystem, the
size of the plaintext block is n×450 = 450n bits, whereas the size of the ciphertext block
is about 2n × 1024 = 2048n bits. So the information rate of the proposed cryptosystem
is r = lm/lc = 450n/2048n ≈ 0.22. In other words, the ciphertext expansion of the
proposed cryptosystem is about 4.55:1.

3.2.3. Computational Complexity
In the proposed cryptosystem, only several modular multiplications and additions are
performed during encryption and decryption. The most costly operations are the modular
multiplications. So the computational complexity of the system to encrypt a plaintext and
to decipher a ciphertext is given as O(k2), where k = 1024 is the security parameter.
However, to make our evaluations more precise and concrete, we need to evaluate how
many modular multiplications are needed during encryption and decryption.

Note the fact that it needs 10242 bit operations to do a multiplication modulo
a 1024-RSA modulus N . We also assume that n = 4. The cryptosystem has to
carry out three costly operations B(m1, . . . , mn)T mod N , G(r1, . . . , rn)T mod N and
H(rn, rn−1, . . . , r1)T mod N to encrypt a message, where |mi| = 450, |ri| = |si| =
1024. So it takes about n2 × 1024 × 450 + 2n2 × 1024 × 1024 ≈ 4 × 107 bit operations
to do the computations. The computational cost for doing these is equivalent to that of
4×107

10242 ≈ 39 1024-modular multiplications.
The decryption algorithm needs to do the two costly computations DU +FV (mod N)

and A−1(w1, . . . , wn)T (mod p) (we assume that the receiver use (7) to decipher a cipher-
text) to recover a plaintext. So the computational cost is about 2n2 × 1024 × 1024+n2 ×
512 × 512 ≈ 3.77 × 107 bit operations, which is equivalent to computing 3.77×107

10242 = 36
1024-modular multiplications.
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3.3. Implementation and Comparisons

We make a comparison for our cryptosystem and the RSA system. When generating
the key pairs, both our cryptosystem and RSA need to generate two strong RSA num-
bers. Additionally, our system needs to randomly choose several modulo N invertible
matrices and RSA must pick out a public parameter e. However, a randomly-chosen n-
dimensional square matrix A is always invertible modulo N , as pointed out earlier. So
the computational time for the key generation of the proposed scheme is about the same
as that of RSA. The RSA system is a trapdoor permutation, so its ciphertext expansion
is 1:1. The ciphertext expansion of RSA is of course somewhat lower than that of our
system. From the evaluations about the key sizes, we conclude that the key sizes of the
proposal is larger than that of the RSA system. However, as far as the information rate
and the key sizes concerned, our system remains practical. The advantage of our sys-
tem over RSA should be its speed. The computational costs for the encryption algorithm
and decryption algorithm of RSA is 1.5 log2 e and 1.5 log2 d modulo multiplications re-
spectively. Of course, the RSA system can pick a small e to speed up the encryption;
or it can choose small dp ≡ d(mod p − 1) and dq ≡ d(mod q − 1) to accelerate the
decryption by using the Chinese Remainder Theorem. However, it is very difficult to
make the encryption and the decryption very efficient simultaneously. Whereas both the
encryption and the decryption algorithm of the proposed system is of quadratic bit com-
plexity.

To illustrate the advantages and disadvantages of the proposed cryptosystem over
RSA, both RSA and our cryptosystem are implemented on an Intel Pentium D
Cpu 2.80GHz computer with 1Gb of RAM. The computations are performed in
C++ in vs2008 and Windows XP environments, using Crypto++ 5.6.0 library. See
www:cryptopp.com. When implementing RSA-1024, we randomly choose an en-
cryption exponentiation e, and use the Chinese remainder theorem to accelerate the de-
cryption. Our cryptosystem is implemented by choosing a higher security level, i.e., set-
ting n = 4 and |N | = 1024. With respect to encryption/decryption efficiency, we mea-
sure their computational time in encrypting and decrypting a 1024-bit plaintext. Both
RSA and the proposed cryptosystem are implemented 1024 times. Hence, the RSA al-
gorithm encrypts and decrypts 1024 × 1024 bits plaintexts. We measure the consumed
time for RSA to encrypt and decrypt a 1024-bit plaintext by the total time divided by
1024. The proposed cryptosystem encrypts and decrypts 1024 × 4 × 450 bits plaintexts,
and the computational time of the proposed cryptosystem in encrypting and decrypting a
1024-bit plaintext is estimated by the total time divided by 4 × 450. The implementation
results are summarized in Table 2.

From the implementations, we can see that the proposed encryption scheme is more
efficient on computational cost. But its key size and information rate are relatively large
compared with the RSA cryptosystem. Hence, the proposed scheme is not suitable for
resource-constraint environment like wireless communication in which the used device
has limited memory storage and the transmission cost is very high.
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Table 2

Implementation results for both RSA and our proposal

Cryptosystem Key generation Encryption Decryption

RSA 70.283 ms 70.682 ms 18.023 ms

Our proposal 75.369 ms 1.134 ms 0.946 ms

4. Security

There are two methods used for the security analysis in public key cryptography. One is
provable security theory. The basic idea of provable security is to reduce the security of
a PKC under some attack model to a mathematically hard problem. Another method is
to deliver the PKC to the literature for attacks. If the PKC is secure against all known
attacks, we can assume its one-wayness. Here, we exclude provable security discussions
about our system and just provide some known attacks on it.

Koblitz (1998) pointed out that in a PKC there are two types of one-way functions:

1. the encryption function (whose inversion is called the cracking problem);
2. the underlying function used to construct the trapdoor (the problem of reversing the

basic mathematical construction of the trapdoor is called the trapdoor problem).

The basic requirements for a PKC to be secure are that both the cracking problem
and the trapdoor problem are computationally infeasible. Now, we discuss several attacks
aiming at solving the cracking problem and the trapdoor problem in our system.

4.1. Lattice Attack

As powerful cryptanalytic tools, lattice basis reduction algorithms had been used to attack
many cryptographic primitives (Joux, 1998). Especially, when a cryptosystem involves
linear equations, the cryptanalytic history tells us that it is always vulnerable to lattice
attacks. So we must examine the security of the proposed cryptosystem against lattice
attacks.

4.1.1. Lattice Attack on the Cracking Problem
To decihper a cipher-text, the attacker can solve the encryption function (5) for the plain-
text M regardless of the special structure of the secret keys. The most powerful tool for
solving linear multivariate equation with small variables is the lattice basis reduction al-
gorithms, such as LLL (Lenstra et al., 1982). However, the lattice attacks do not apply to
cryptanalyze our cryptosystem due to the following considerations. Firstly, lattice basis
reduction algorithms are applicable to the normed spaces. Note that our cryptosystem
involves the arithmetics in Zn, which is not a normed space. So the lattice-based attacks
are not applicable to find the solutions to (5). Secondly, even if the involved space is a
normed space, the lattice attacks cannot break our cryptosystem. As we know, the lattice
reduction algorithms are used to approximate the shortest vector in a lattice. However, in
the proposed cryptosystem, the encryption function (5) is a system of linear multivariate
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equations with large variables r1, . . . , rn, s1, . . . , sn. So we cannot expect constructing a
lattice such that the plaintext and the random coins r1, . . . , rn, s1, . . . , sn are the entries
of the shortest vector of the lattice.

4.1.2. Lattice Attack on the Trapdoor Problem
The construction of the trapdoor of the system uses a similar structure to that of NTRU
(Hoffstein et al., 1998): using the multiplication for one element and the inverse of an-
other element over some algebraic structure (the truncated polynomial ring in the case
of NTRU and the matrix ring over Zn in the case of the proposed cryptosystem). So the
attacker looks forward to recovering the trapdoor information by constructing a lattice
similar to the lattice defined by Coppersmith and Shamir (1997). However, the two alge-
braic structures underling the two cryptosystems are very different. It is not known how
to construct such a lattice from the matrix ring over Zn. Even if the attacker can construct
such a lattice, it is impossible for the attacker to obtain enough information to retrieve
the secret key by learning the lattice. In fact, the proposed cryptosystem does not use a
small element as its secret key. So the short vector in the lattice found by the attacker will
contain little information about the secret key and hence will make no sense.

4.2. Key Recovery Attacks

The key recovery attacks aim at recovering from the public information the secret key
used by the intended receiver to decipher a cipher-text. The secret key of the proposed
cryptosystem consists of D, F , A−1, p and q. In fact, if the attacker recovers the exact
value of the matrices D and F , he can retrieve the matrices A

′
, C and E. So he can obtain

the exact values of p and q by computing p = gcd(c11 + e1n, N) and q = gcd(c21 +
e2n, N), where the gcd’s can be efficiently computed by the Euclidean algorithm. Note
that aij = a

′

ij(mod p), when i is odd and that aij = a
′

ij(mod q), when i is even. So the
attacker retrieves the matrix A. It is an easy thing to compute the inverse matrix A−1

of A. So the attacker can recover the secret key (D, F, A−1, p, q) if he recovers D and F .
So one method for the attacker to recover the secret key is to search for the matrices D

and F subject to (1) and (2).
To recover the secret matrix D, the attacker can use the fact that the secret matrix

D−1mod N is a common multiplier for the public matrices B and G to recover the se-
cret matrix D. Now we show that the attacker cannot use the fact to distil some useful
information about the secret matrix D. The ring of matrices defined over ring Zn is not
an Euclidean domain. So we cannot expect developing an Euclidean-like algorithm to
compute a common divisor for the two matrices B and G. In fact, for any invertible
matrix O modulo N , O always can serve as such a common divisor for B and G, i.e.,
B ≡ O(O−1B)(mod N) and G ≡ O(O−1G)(mod N). Now we can conclude that it is
infeasible for the attacker to distill the common multiplier D from the public matrices B

and G.
Note that H ≡ F −1E(mod N). It is also impossible to obtain the matrices E and F

by decomposing H into the product of E and the inverse of F . In fact, for any invert-
ible matrix O modulo N , we always can write H as H ≡ O−1(OH)(mod N). So the
individual matrix H provides no information about the matrices E and F .
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As discussed above, to obtain some useful information about the secret key, the at-
tacker must use the interrelations underlying the public matrices G and H . Formally, we
define this problem as matrix combinatorial problem.

The Matrix Combinatorial Problem. Given two matrices G and H and an RSA mod-
ulus N(=pq), decompose the matrices G and H into the forms of G ≡ D−1C(mod N),
H ≡ F −1E(mod N) such that the entries of the matrices C, D, E and F are subject to
(1) and (2).

This special matrix combinatorial problem on which the proposed cryptosystem is
based is a new algebraic–combinatorial problem. However, we do not know the compu-
tational complexity for solving the combinatorial problem. So the readers are encouraged
to study the problem and to provide attacks on the proposed cryptosystem. In the pro-
posed cryptosystem, the integer factorization problem is also used to disguise the secret
key. We do not know whether the prime factorization of the modulus N will lead to the
solution to the matrix combinatorial problem and hence compromise the security of the
system or not. If not, then we also can publicize the primes p and q without reducing
the security. And also, we can cancel the requirements that the matrices A

′
, C and E are

invertible mod N .

4.3. Algorithms for the Matrix Combinatorial Problem

Now we provide two algorithms for the matrix combinatorial problem and analyze their
computational complexities.

4.3.1. Algorithm I
Given two matrices G and H and an RSA modulus N = pq, the attacker wants to decom-
pose the matrices G and H into the forms of G ≡ D−1C(mod N), H ≡ F −1E(mod N)
such that the entries of the matrices C, D, E and F are subject to (1) and (2). One straight-
forward way for the attacker is to do exhaustive search for D and F . For any possible ma-
trices D and F , the attacker computes C ≡ DG(mod N) and E ≡ FH(mod N) to obtain
four matrices C = (cij)n×n, D = (dij)n×n, E = (eij)n×n and F = (fij)n×n. Then
he uses the Euclidean algorithm to compute the greatest common divisor of c11 + e1n

and N , that is, gcd(c11 + e1n, N). If gcd(c11 + e1n, N) = 1 or N , the attacker
argues that the matrices D and F are invalid and should be discarded. Otherwise,
1 < gcd(c11 + e1n, N) < N , so he concludes that gcd(c11 + e1n, N) is a prime
factor of N , denoted as p. The attacker can easily obtain the value of q just by doing
a simple division, q = N/p. At this stage, the attacker possesses the following values
C = (cij)n×n, D = (dij)n×n, E = (eij)n×n, F = (fij)n×n, and p, q. Then he can
use these values to verify whether the conditions (1) and (2) are satisfied or not. If the
conditions are satisfied, the attacker solves the matrix combinatorial problem.

Now we analyze the computational complexity of the algorithm. The algorithm needs
to do exhaustive search for the matrices D and F whose elements have a binary length
almost the same as that of N . Hence, it needs about (Nn2

)2 = N2n2
= 22n2 log2 N opera-

tions to exhaust the matrices D and F . The algorithm also needs to perform the Euclidean
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algorithm to calculate the greatest common divisor of c11+e1n and N , which costs about
O(log3

2 N) operations. After p and q are obtained, the attacker needs to do 2n2 divisions
to justify the conditions (1) and (2). The 2n2 divisions needs about O(n2 log2

2 N) opera-
tions. To summarize, we give the computational costs of the algorithm as the product of
the aforementioned three costs, that is, O(22n2 log2 Nn2 log5

2 N), a computational com-
plexity exponentially increasing with the input length log2 N .

4.3.2. Algorithm II
A better algorithm for the matrix combinatorial problem may exist. What follows presents
such an algorithm.

The algorithm is intended to recover the matrices D and F by determining the row
vectors of D and F with an exhaustive search approach. We denote the ith row vector
of D and F as Di = (di1, di2, . . . , din) and Fi = (fi1, fi2, . . . , fin), respectively. The
attacker does exhaustive search for D1 and Fn. Then he computes

c11 =
n∑

i=1

d1igi1, e1n =
n∑

i=1

fnihin.

From (1), we conclude that if D1 and Fn is valid, then we must have p|c11 + e1n. So the
attacker can compute the greatest common divisor of c11+e1n and N , gcd(c11+e1n, N).
If 1 < gcd(c11+e1n, N) < N , the attacker sets gcd(c11+e1n, N) = p, and thus D1 and
Fn are also recovered. The attacker repeats this procedure to retrieve all the row vectors
of D and F , that is, (D2, Fn−1), . . . , (Dn, F1). By doing this, the attacker recovers the
matrices D and F . Hence, the combinatorial matrix problem is solved.

Now we analyze the computational complexity of the algorithm. Note that it takes
(Nn)2 = N2n = 22n log2 N bit operations to recover the row vectors Di and Fn+1−i. The
Euclidean algorithm to calculate the greatest common divisor of c11 + e1n and N costs
about O(log3

2 N) operations. Hence, the computational complexity to recover every vec-
tor pair (Di, Fn+1−i) is given as O(22n log2 N log3

2 N). Hence, the computational costs to
recover the matrices D and F should be n times the complexity of O(22n log2 N log3

2 N),
that is, O(n22n log2 N log3

2 N). The algorithm performs better than Algorithm I. However,
both algorithms are computationally infeasible.

4.4. Provable Security Remarks

The proposed public key cryptographic primitive does not match any provable security
objectives. Hence, it cannot be used directly in real life practice. We should note that
almost all the provably secure PKCs are constructed from the number-theoretic prob-
lems, i.e., integer factorization and discrete logarithm problems. As a public key cryp-
tographic primitive, the proposed cryptosystem needs further studies. In fact, most of
the newly-designed public key cryptographic primitives based on new intractability as-
sumptions failed to obtain a provable security goal, for example, the NTRU algorithm
proposed by Hoffstein et al. (1998), the braid-based public key encryption algorithm
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proposed by Ko et al. (2000), the knapsack cryptosystems developed recently (Wang
et al., 2007; Wang and Hu, 2010), the digital signature schemes using noncommunica-
tive algebraic structures (Sakalauskas, 2004, 2005), the key agreement protocol using
conjugacy problem (Sakalauskas et al., 2007). In the authors’ point of view, provable
security theory does not apply to analyze the security of those PKCs based on new in-
tractable problems. Security analysis for a newly-designed trapdoor one-way function
should be centered on the estimation of the hardness of reversing the encryption function
and retrieving the trapdoor information. If no efficient algorithms have been found for a
long time to compromise its security, we can assume its one-wayness and begin to con-
sider adding paddings to it to make it obtain provable security objectives. For example,
the NTRU algorithm has survived the serious security scrutiny during the last decade,
and now cryptographers begin to complete the provable security for the NTRU algorthm
(Howgrave-Graham et al., 2003). In some cases, some cryptosystems are built based on
some new intractable problems which are not well understood in the literature. For ex-
ample, the braid-based cryptosystem is based on the conjugator search problem defined
over braid groups. However, this cryptographic construction were shown insecure in that
it suffices to break the cryptosystem just by solving the braid decomposition problem
other than the braid conjugator search problem (Kalka, 2006). This is why we argue that
the security for a newly-designed public key cryptographic primitive should be centered
on the estimation of the hardness of reversing the encryption function and retrieving the
trapdoor information. We encourage the reader to examine the security of the proposed
cryptosystem, and hope that some paddings can be made to the cryptosystem to make it
satisfy some provable security goals if possible.

5. Conclusions

This paper constructed a fast PKC from a new algebraic–combinatorial problem called
the matrix combinatorial problem. The security of the system is carefully studied. No
attacks have been found to compromise the security of the proposed cryptosystem. We
also carefully examine the hardness of the matrix combinatorial problem by illustrat-
ing the computational infeasibilities of several algorithms for the problem. However, we
pointed out that the proposed construction is not provably secure. We hope that the read-
ers examine the security of our proposal and if possible provide some paddings for the
cryptosystem in order to obtain a provable security argument.
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Nauja kombinatorinė viešojo rakto kriptosistema

Baocang WANG, Yupu HU

Straipsnyje pasiūlyta kombinatorinė viešojo rakto kriptosistema, kurios sauga priklauso nuo
kombinatorinio uždavinio su matricomis sprendimo sudėtingumo. Kriptosistemos privalumai –
greitas užšifravimas ir iššifravimas, o trūkumai – užšifruotas tekstas yra palyginus didelis, o rak-
tai, palyginus su RSA, ilgesni. Straipsnyje analizuojama kriptosistema ir parodyta, kad kai kurios
atakos skaitmeniškai yra ne↪ivykdomos.


