
INFORMATICA, 2010, Vol. 21, No. 3, 321–338 321
© 2010 Institute of Mathematics and Informatics, Vilnius

An Approach to Formalize Metainformation
of Software Localizable Resources

Valentina DAGIENĖ, Tatjana JEVSIKOVA
Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania
e-mail: dagiene@ktl.mii.lt, tatjanaj@ktl.mii.lt

Received: May 2010; accepted: August 2010

Abstract. Software localization is one of important tasks to insure a successful computer user
experience. The paper discusses how localization of the software dialog text can be accelerated and
how to raise the quality of software product localization. We also discuss the main features and
common structure of localizable software resources, their formats and preparation for localization.
As a result, we suggest applying a modified formalism of attribute grammars to describe localizable
resources, taking the graphical user interface as a basic grammar structure, localizable strings and
their parts as terminal symbols, and using the attributes to add important metainformation and
context to the resources. The main principles of creation of such attribute grammars are presented.

Keywords: software localization, software internationalization, localizable resources, metainfor-
mation of localizable resources, user interface adaptation, attribute grammars.

1. Introduction

The concept of software localization is defined differently by different authors. In this
paper, we will stick to the localization as a process of modifying software to be suitable
for a particular cultural and linguistic environment. The success of this process depends
directly on how software and its resources are prepared for localization, i.e., internation-
alized.

The two main parts of software localization, identified in most research literature on
the topic (e.g., Esselink, 2000; O’Sullivan, 2001; Yang, 2007) are: (1) software adap-
tation to the target locale (adjustment of character encoding, number formats, date and
time formats, document templates, etc.); (2) translation and adaptation of user interface
(menu items, button labels, check boxes, error messages, etc., including online help and
documentation).

The problems of software adaptation to the target locale are usually solved by means
of formal locale definitions (e.g., ISO/IEC 15897, 1999; ISO/IEC 14652, 2004; ISO/IEC
9945-2, 2003; Unicode, 2007); they have also been discussed in detail in the papers
(Jevsikova, 2006; Dagienė, Jevsikova, 2009). The translation and adaptation of graphi-
cal user interface is more complicated due to a large amount of the user interface text
(called “text strings”, or just “strings” in this context) and the lack of context of text

322 V. Dagienė, T. Jevsikova

strings. As a consequence, the localization quality is obtained going through iterations of
the user interface text translation, testing, and correction. Existing methods of machine
translation (e.g., Sepesy Maucec, Brest, 2010) can be applied to prepare draft version of
long texts (e.g., software documentation) translation, but specifics of user interface text
strings (short text or phrases without context) do not let us prepare an accurate translation
in an automated way.

Our aim is to find a solution, how to provide a localizer with contextual information
on localizable resources, and, as a result, to help raise the quality of localizations and
reduce localization testing expenditure. Therefore, in this paper, the ways of separation
of user interface text strings and their representation formats are analyzed (Sections 2
and 3), and an approach to include metainformation on the context of text strings, based
on a modified attribute grammar, is proposed (Section 4).

2. Structure of Localizable Resources

One of the main steps during software preparation for localization is separation of the
localizable resources from the software source code, i.e., externalization of all texts,
graphics, videos, sounds, and locale-specific parameters used in the program. Most of
the large software producers create their own methods of separation of such resources
from the program source code. Open source software development initiatives have their
own adopted methods. However, all the existing methods present localizable resources
without the context of their usage in the graphical interface of software, or with slight
and not extensive contextual information. The process of development, separation and
delivery of localizable resources is shown in Fig. 1.

During Step 1 (Fig. 1) the context of all the texts and other resources is known. After
the separation of resources from the source code, the context (or its major part) is lost. In
Step 3 the separated resource files are delivered to localizers. They do not receive infor-
mation on the context of the resources. A very important part of contextual information
is lost between Step 2 and Step 3. The separated localizable resources are delivered in
the default format of the resources separation method, or transformed into another (e.g.,
simple textual or intermediate) format.

As a result of the lack of context of user interface text strings, the percent of the
text strings translated does not correspond to the real localization work completed. Some
models are proposed that allow us to evaluate localization work done in relation with the

Fig. 1. Software preparation for localization: a scheme of the main stages.

An Approach to Formalize Metainformation of Software Localizable Resources 323

percent of strings translated, e.g., 90% of the translated strings mean that only about 42%
of localization work is done (Dagienė, Grigas, 2006).

A detailed analysis of the main wideused localizable resource separation methods and
formats (RC, RESX, GNU Gettext, Java Resource Bundles, Mozilla, XLIFF, and PHP)
has shown that, despite the variety of separation methods and formats existing today,
most of them present textual localizable resources in a similar way: a simple database
of key-value pairs (key is an identifier of a text string; value is a text string to be shown
on the screen or to specify a preference of the program). Additional information can be
added through localization comments. Exceptions are RC, RESX dialog section formats,
and XLIFF format.

RC and RESX formats do have some means to present contextual information on
dialog and menu sections, but do not present any contextual information on the string
section.

XLIFF format has many advantages, comparing with any other format. However, it in-
herits all the shortcomings of other formats, because it is used as an intermediate format,
to which data is converted from other existing formats. So, the main contextual informa-
tion is not present in fact. XLIFF is a universal format not only for interface strings, but
also for long texts with enough context (e.g., documentation) to translate. Therefore, it
has a lot of tools to handle formatting and other information that is not so important for
software interface strings.

GNU Gettext is the only format of all before analyzed ones that brings tools to handle
the forms of words, written after the number.

3. Context in Localizable Resources

Formats of localizable resources are similar in the presentation of general textual localiz-
able resources as a set of text string identifiers and text strings pairs. Text strings here are
not only texts and messages, shown on the screen during program’s runtime, but also val-
ues of some parameters, e.g., font, character encoding names, dialog box sizes, adaptation
of which can make the functional effect on the program.

Localizers, working with textual localizable resources, face the following main prob-
lems:

1. They deal with separated words or phrases without the context of use in the graph-
ical user interface of the program.

2. The context of a localizable text is obtained while running the program and search-
ing for a particular text string, or examining the program source code (if the soft-
ware license allows doing it).

3. A part of dialog texts can be noticed only in rare and exceptional situations (e.g.,
errors, interaction with other programs), that are very difficult or impossible to
model in practice.

4. Fusional languages (languages in which one form of a morpheme can simultane-
ously encode several meanings; Payne, 1997) face a lot of problems in choosing

324 V. Dagienė, T. Jevsikova

the correct form, part of speech, etc., deciding from a short English phrase with-
out the context of use (most of software today is localized from English). For ex-
ample, File, noun and verb, are written in the same way, but in Lithuanian it is
failas (noun), ↪itraukti [↪i aplank ↪a] (verb); login is prisijungti (verb), prisijungimas,
prisijungimo vardas (noun). Another problem is terminology variations, slang and
metaphors.

The analysis of software programs (web browsers, email clients, virtual learning envi-
ronments, etc.) has shown that more than 50% of textual localizable resources are strings
of 1 to 4 words (it means that they will probably lack context, important for localization).
Localization would be accelerated if the context (linguistic, as well as user interface) was
provided.

Some contextual information can be included into localization comments, folders and
localizable resource file names, using the existing formats of localizable resources. Unfor-
tunately, providing localization comments, naming folders and files depend on a software
developer, it is not a systematized way of providing contextual information. Therefore,
an approach, aimed to include contextual information into localizable resources and help
to solve the issues mentioned above, is presented in the next section.

4. An Approach to Formalize Metainformation of Localizable Resources Using
Attribute Grammar

The approach, proposed in this paper, is based on attribute grammar AG = 〈G, A, R〉
formalism, consisting of three components:

1. Context-free grammar G.
2. Finite set of attributes A.
3. Finite set of semantic rules R.

Here G = 〈N, T, P, S〉:

1. N is a finite set of non-terminal symbols;
2. T is a finite set of terminal symbols;
3. P is a finite set of grammar productions X → α, where X ∈ N,

α ∈ (N ∪ T)∗ (set of all strings, comprised of non-terminal and terminal
symbols, including the empty string ε).

4. S (S ∈ N) is a starting non-terminal symbol.

Such attribute grammar formalism has been proposed by Knuth (1968) four decades ago
for specifying and implementing the (static) semantic aspects of programming languages,
but remains still often used in many fields where relations among structured informa-
tion play a central role. Some examples include general software engineering, databases,
distributed programming, logic programming, static programming, visual programming,
and natural language interface. As far as authors of this paper know, attribute grammars
have not been used before to formalize contextual information of software localizable
resources.

The main steps of the algorithm of the approach as well as the main aspects of attribute
grammar formalism modification are presented below.

An Approach to Formalize Metainformation of Software Localizable Resources 325

4.1. Main Aspects of Attribute Grammar Preparation

Formalization of localizable resources metainformation is started by describing a context-
free grammar, according to the main principles:

1. Context-free grammar G is written for a particular program, taking into account
the graphical user interface structure of a program and relating its elements with
the corresponding localizable strings.

2. The grammar has two main parts, based on the usage of non-terminal and terminal
symbols: representation of the structure of software graphical user elements, and
representation of localizable strings and their structure.

3. Usage of non-terminal symbols:

3.1. A non-terminal for each graphical user interface element (control), according
to the specifics of the program.

3.2. A non-terminal for a whole string from localizable resources.
3.3. If a resource string has a parameter(s) inside, a non-terminal is used to address

each parameter. The decision to do so is based on the result of investigation of
localizable resources of software that about 10% of localizable strings have
one or more parameters inside. Usage of a parameter (variable) is a poten-
tial source of errors for most of fusional languages. The production with a
parameter symbol on the left-hand side has one or more non-terminals on
the right-hand side, representing resource strings, planned to be used instead
of a parameter, or ε (empty string), if the value of the parameter is obtained
dynamically during the program runtime.

3.4. If the menu element or another control uses the text, composed of several re-
source strings, then in the grammar derivation tree these strings should appear
alongside, introducing separate non-terminals for the control and each string.

4. Terminal symbols are resource strings or resource string segments. If a string
doesn’t have parameters, then all the string is a terminal symbol, if there are some
parameters, then segments between the parameters are taken as terminal symbols.
The next steps are extension of a context-free grammar to the attribute grammar:

5. Grammar symbols are augmented with attributes, which are used to present in-
formation, important from the localization point of view. Selection of attributes is
based on the analysis of localization errors and features of the language. The list of
common attributes is presented in the next section.

6. The rules to calculate the values of attributes (semantic rules) are defined.

The software graphical user interface strings are related to the interface elements (con-
trols). We distinguish the common cases, how localizable text strings can be shown in
the graphical user interface. This affects the choice of grammar symbols (Steps 1–4,
described above). The elements are presented graphically as fragments of the grammar
derivation tree. The main cases are the following:

1. A whole string, shown on a simple control. A case, where the string has no pa-
rameters inside, is presented in Fig. 2a. There is one string segment F , node C

326 V. Dagienė, T. Jevsikova

Fig. 2. Grammar derivation tree fragments, according to various cases of text string display in controls.

corresponds to the control non-terminal symbol, node L is a whole localizable text
string non-terminal symbol.

2. Compound strings. Each string has its own name in localizable resources, i.e., the
strings are presented separately in the resources, but shown together in the graph-
ical user interface. Despite that such a method of using compound strings causes
many problems during localization and is unacceptable (it can tolerate making er-
rors when localizing to some languages, when it is needed to adjust grammatical
forms of words or phrases, presented in different stings), it is quite usual in local-
ization practice. A case where two composed strings are shown in the same control
is presented in Fig. 2b.

3. Localizable string, having one or more parameters inside. There are several cases:

a. A string from the localizable resources is used instead of the parameter dur-
ing the program runtime (e.g., one string from the possible group of strings,
meant for use instead of the parameter, depending on the situation). We as-
sume that a string, used as a value of the parameter, has no parameters inside.
Then, a group of strings to be used as values of the parameter corresponds to
a non-terminal P (Fig. 2c).

b. A value, not existing in the localizable resources, is used instead of the pa-
rameter during the program runtime. The value is dynamic, e.g., the number
of objects created by the user, user name and surname, taken from the reg-
istration database. Then, an attribute is needed to bring more information to
the localizer: what type of data is the parameter value. Fig. 2d shows a case
where there is one parameter with a dynamically used value inside.

4. A group of several strings from the localizable resources is shown on a control,
depending on the context arising during the program runtime. Such a case is some-
times used when software developers try to avoid using parameters inside the local-
izable strings: a separate string is created for each case of the context. This case is
included into the grammar in the same way, as case 2 (Fig. 2b), therefore, additional
information whether the strings are compound or dynamically used is presented by
means of attributes.

An Approach to Formalize Metainformation of Software Localizable Resources 327

Fig.3. Grammar derivation tree fragments: (a) the same string is used in several controls,
and (b) complex control.

5. A string from the localizable resources is used in several controls (e.g., as a button
label and as an item of a context menu). When including such a case into the gram-
mar, the string is duplicated (Fig. 3a), the attributes are compared. If the attributes
of duplicated strings match, then one instance of a string can be kept in the local-
izable resources. If the attributes do not match, it means that the string should be
localized in one way for one control, and in another way for another control. In this
way, we can detect internationalization bugs during grammar preparation. Such a
bug can be fixed including more copies of the string into localizable resources. In
this case, creation of a grammar can also help minimize the number of string in-
stances in localizable resources. Sometimes software developers try to avoid the
bug mentioned above by including into resources too many instances of the same
string, for each different control to be used in. While analysing the attributes of the
grammar, we can decide whether we need an instance of a string in a particular
case, or not.

6. A complex control (i.e., a control which shows more than one string, according to
its purpose, e.g., drop-down or any other list). Dealing with any simple element
E of a complex control C, one of the cases, discussed above can be used. Below
we present a case where a complex control has three simple elements (E), one of
which has a string with a parameter (Fig. 3b). Non-terminal L corresponding to the
whole string from localizable resources, is introduced keeping the same grammar
preparation principle, because theoretically more than one strings can be used in
one simple element (E), e.g., as alternative strings.

If software uses command keys and access keys for the controls (e.g., menu, button
commands), then it is reasonable to change that keys during localization, so that they fit
the localized command name (e.g., Print, access key P , in Lithuanian localization would
be Spausdinti, access key S). Our research has shown that about 17% of all localizable
strings of web browser “Mozilla Firefox” and email client “Mozilla Thunderbird” are
command keys and access keys. Therefore, the grammar should include symbols for the
access key and command key, if any.

328 V. Dagienė, T. Jevsikova

Fig. 4. Derivation tree fragment, corresponding to a button with an access key, command key, and a tooltip.

User interface controls may also have tooltips to explain commands in more detail
than the name, displayed on the control does. Therefore, if there are any tooltips, it is rea-
sonable to include the corresponding symbol into the attribute grammar. Below, a frag-
ment of the grammar derivation tree, corresponding to a button control, is presented,
where a button B has a name (L), made of two strings taken from the localizable re-
sources (one of the strings is included through the parameter P), an access key (AK),
a command key (CK), and a tooltip (TL) (Fig. 4).

Here, B corresponds to a button, L is the whole text string to be shown on the button
(a name of button command), AK is an access key (K1 is an actual letter, marking that
key), CK is a command key (K2 is an actual symbol, marking that key), TL is a tooltip,
P is a parameter, F is a terminal symbol (string segment, some times coinciding with a
whole string).

Figure 5 shows a fragment of the grammar derivation tree for a hypothetical software
dialog box.

The greyed area corresponds to a part of the grammar graphical user interface. An-
other part is a string part. Grammar symbols, written in bold, correspond to the terminal
symbols (localizable strings, e.g., “Archive”, “Web pages”, “Name:”). One of such strings
has a parameter (P).

4.2. The Main Attributes

In order to formalize metainformation of localizable resources, attribute grammars have
been augmented with new tools:

• A notion of the primary attribute has been introduced. The set of attributes of a
grammar can be expressed as A(X) = S(A) ∪ I(A) ∪ E(A). Here S(A) is a set
of synthesized attributes, I(A) is a set of inherited attributes, and E(A) is a set of
primary attributes. Primary attributes are assigned not only to terminal symbols,
but to non-terminal symbols as well.

• The values of primary attributes are provided externally, e.g., using the attribute
questionnaire which is filled by the software developer or experienced localizer.

An Approach to Formalize Metainformation of Software Localizable Resources 329

Fig. 5. Grammar structure of localizable resources: GUI and strings parts.

• The scope of attributes passing through the attributed derivation tree has been con-
trolled, limiting it to the surrounding of a particular node.

All the attributes are expressed independently of the language by means available in
the English language, so that the author of software is able to assign the values. Thus,
most of the attributes and their values are common to fusional alphabetic languages.

The list of some attributes, used to extend the context-free grammar, is presented
below.

4.2.1. Noun/Verb Phrase
This attribute is used to avoid an error arising from the same spelling of English nouns
and verbs. The attribute is especially important to short strings. For example, the same
phrase Open file in the menu context would have a verb form, but in a dialog box, the
title would have the noun form in Lithuanian. When assigned automatically, the attribute
is recommendatory.

4.2.2. Controlling Word of a Phrase
This attribute marks the word that controls the forms of other words of a phrase. In fu-
sional languages it can help select the correct case of surrounding words.

4.2.3. String Description
The attribute is provided for strings, having special characters, abbreviations, unclear
semantics or rare error messages.

4.2.4. First Letter (Capital or Small)
In English, capital letters are usually used in the middle of the phrases and sentences,
e.g., months, day names, titles. In other languages, e.g., in Lithuanian, only the proper

330 V. Dagienė, T. Jevsikova

nouns, abbreviations in the middle of a phrase are usually written in a capital letter. In
other cases, a small letter is used.

4.2.5. Form
A word form, expressed by the question it answers to, e.g., who, what, whom, where,
when, or a preposition: to, from, in. Who and what questions are divided into two groups:
subject and object.

4.2.6. Term
The attribute is designed to specify the meaning of homonymous terms, marking the
number of a meaning according to the agreed dictionary. For example, the term key has at
least four meanings in Lithuanian: (1) klavišas, (2) raktas, (3) kodas, (4) šifras, etc. The
dictionary can be a glossary, designed for a particular program’s localization needs, or a
common dictionary of computer terms.

4.2.7. Internal Function
A link to the internal function, implementing a particular command. In some cases it is
needed to better understand the meaning of the command.

4.2.8. String Identifier
An identifier of a string in a resource system. It is used as an auxiliary attribute to keep a
set of strings to be substituted instead of the parameter, compound strings or alternative
strings.

4.2.9. Width or Height
An attribute, used to define the width or height of a dialog box or its control. It is used to
calculate whether there is enough place to display the translated string.

4.2.10. Indicator of a Compound String
Several strings, used to compose a single user interface string, are included in the gram-
mar tree alongside. Since the compound strings and alternative strings have the same
formal description, the attribute is used to indicate whether the strings are composed. The
attribute is also used to calculate the length of the composed string.

4.2.11. Data Type
If a string has a parameter, it is useful to know what type of data will be written instead
of it during the program runtime. The attribute will help to choose the forms of words
surrounding the parameter, e.g., if the number of an object is inserted instead of the pa-
rameter, then it is necessary to adjust the forms of a noun, written after the parameter; if
the parameter is a person’s name, then it is necessary to foresee a change in the forms and
gender of surrounding words. It is also an indicator for software developers to include a
component to adjust such a change in forms.

An Approach to Formalize Metainformation of Software Localizable Resources 331

Fig. 6. Fragment of a dialog box (a) and the corresponding localizable strings (b).

4.2.12. Tracking of Access Keys and Command Keys
This group of attributes is designed to keep control of access and command keys, changed
during the localization: check of duplicated keys in the scope.

The next step is a definition of semantic rules (functions, depending on the values of
other attributes or values, submitted externally). A part of attributes is calculated; another
part of attributes is submitted externally, e.g., via a questionnaire. Semantic information
on localizable resources is spread over the entire attributed derivation tree, but not col-
lected in the attributes of a root symbol of a tree.

4.3. An Example

In this section, we provide a small example of formalization of metainformation of lo-
calizable resources of a dialog box fragment (Fig. 6a) and a corresponding set of dialog
strings (Fig. 6b). This example does not include all types of contextual information and
attributes, but lets us demonstrate, how the attributes can help to choose the right gram-
matical forms in localizable strings.

The corresponding context-free grammar is presented below.
GW = 〈NW , TW , PW , W_fragment〉, where
NW = { 〈W_fragment〉, 〈control〉, 〈caption〉, 〈text_box〉, 〈check_box〉, 〈L〉, 〈P〉}

is a set of non-terminal symbols;
TW = {F}, F ∈ {Format; Scale:; %; Print; Colors; Background images; Colors

& background image} is a set of terminal symbols (% represents a percent sign
in localizable resources);

PW is a set of productions:
PW = { 〈W_fragment〉 → 〈L〉 〈control〉 {〈control〉}
〈control〉 → 〈caption〉
〈control〉 → 〈text_box〉
〈control〉 → 〈check_box〉
〈caption〉 → 〈L〉{ 〈L〉}
〈text_box〉 → 〈L〉{ 〈L〉} | ε
〈check_box〉 → 〈L〉{ 〈L〉}
〈L〉 → (F | 〈P〉) {(F | 〈P 〉)}
〈P〉 → 〈L〉{ 〈L〉} | ε
〈L〉 → F };
〈W_fragment〉 is a starting non-terminal symbol.

332 V. Dagienė, T. Jevsikova

Table 1

Attribute list, used as an example

Attribute Attribute description/corresponding Attribute Attribute

name section of the paper type data type

desc Section 4.2.3 ↑← Text string

noun_verb Section 4.2.1 ↓← Text string

c_type Type of a control, e.g., “button” ↓← Text string

d_type Section 4.2.11 ↓← Text string

order Display order of dialog controls (names of several
controls can form a single phrase or sentence)

↓← Number

form Section 4.2.5 ↓← Text string

id String identifier in a resource system (auxiliary
attribute)

↑← Text string

idlist List of identifiers of related strings (e.g., possible
parameter values)

↑ Text string
array

letter Section 4.2.4 ↑← Boolean

term Section 4.2.6 ← Text string

proper Indicates, whether a noun is a proper name or not ← Boolean

ctrl_word Section 4.2.2 ↓← Text string

Names of non-terminals in productions are written in brackets 〈 〉 to distinguish them
from non-terminal simbols.

The next step is to assign attributes (a list of attributes is presented in Table 1). ↑
marks a synthesized attribute, ↓ means that the attribute is inherited, ← marks a primary
attribute, provided externally, e.g., by the developer using a questionnaire. Arrow com-
binations mean that the attribute is provided externally, and then is passed up/down the
grammar derivation tree.

The attribute grammar for the chosen example (a fragment of dialog box) is presented
in Table 2. Pn in Table 2 corresponds to the grammar production number in the first
column, the second column presents a production (written in bold) and semantic rules,
written in pseudo code.

In the right-hand side of the productions we use EBNF syntax, presenting not pre-
defined number of symbol occurrences (e.g., 〈L〉{〈L〉}). Therefore, we should agree on
how we mark attributes of any occurrence of the symbols.

In semantic rules, we use the attribute names presented in Table 1, after the names
of grammar symbols (without brackets), separating them by a full stop, e.g., L.letter. An
index in the attribute name means ith occurrence of the symbol in the production, e.g.,
Li.order (i = 1, 2, . . . , n, where n is number of symbol occurrences in the production).
The statement Xi.a = b means that attribute a of all the occurences of symbol X in the
procuction, must be assigned value b.

The values of external attributes, e.g., term, are provided in a questionnaire (a frag-
ment of the questionnaire is presented in Table 3. In Table 3 we use Pi.j to mark the
productions: production number i = 1, 2, . . . , 10, and production application number

An Approach to Formalize Metainformation of Software Localizable Resources 333

Table 2

Attribute grammar for a dialog box fragment

Production No. Production and semantic rules

P1 〈W_fragment〉 → 〈 L〉〈control〉{〈control〉}

W_fragment.desc = L.desc

L.noun_verb = NOUN

L.letter = 1

P2 〈control〉 → 〈caption〉
caption.order = control.order

P3 〈control〉→ 〈text_box〉
text_box.order = control.order

P4 〈control〉 → 〈check_box〉
check_box.order = control.order

P5 〈caption〉→ 〈L〉{〈L〉}

Li.c_type = “caption”

Li.order = caption.order

P6 〈text_box〉 → 〈L〉{〈L〉} | ε

Li.c_type = “text box”

Li.order = text_box.order

P7 〈check_box〉 → 〈L〉{〈L〉}

Li.c_type = “check box”

Li.order = check_box.order

P8 〈L〉→ (F | 〈P 〉) {(F | 〈P〉)}

Pi.ctrl_word = L.ctrl_word

Pi.noun_verb = L.noun_verb

L.letter:

if L.order > 1 and L.proper = 0

then L.letter = 0

else L.letter = 1

Fi.id = L.id

Fi.c_type = L.c_type

Fi.c_type = L.c_type

P9 〈P〉 → 〈 L〉{〈L〉} | ε

P.letter:

if P.proper = 1

then P.letter = 1

else P.letter = 0

P.idlist:

add(P.idlist, Ti.id)

Li.d_type = P.d_type

Li.form = P.form

P10 〈L〉→ F

F.id = F.id

F.noun_verb = L.noun_verb

F.form = L.form

334 V. Dagienė, T. Jevsikova

Table 3

A fragment of a questionnaire, used to assign the values of external attributes

Production Attribute Question Answer/ Value examples,

name options comments

P1.1 controli.order Which is the order number of 0

a control? 1

1, 2, . . . , n if strings of the 2

corresponding controls are related

(form a single phrase/sentence),

0 if strings are not related.

.

P8.j T.noun_verb Is the text string a verb phrase (VERB) VERB

or a noun phrase (NOUN)? NOUN

Use value NA if impossible to specify. NA

P8.j T.ctrl_word Which word is a controlling word of Print

a string? Use value NA if impossible NA

to specify. images

P8.j T.proper Is the text of a string a proper name, Yes

an abbreviation, or starts with No

a proper name or abbreviation?

P8.j T.id Please provide a string identifier. 01

02

P8.j Si.term If a string/string segment has format (1)

an ambiguous term, please provide scale (2)

the number of its meaning. certificate (2);

If one string has more than one key (4)

ambiguous term, then provide meaning

values, separating them by a semicolon.

If there is no ambiguous term in

a string, leave the field empty.

.

j = 1, 2, . . . , n to assign attribute values to every application of the production, n is the
number of production i applications.

The corresponding attributed derivation tree with actual attribute values is presented
in Fig. 7.

Dealing with the real software localizable resources, the approach presented here can
be applied in the following steps:

1. A software component (or a whole program) is split into a set of relatively au-
tonomous parts, corresponding to the sets of graphical user interface related ele-
ments. The size of components is not essential, the main aspect is that localizable
strings of the component are useful to analyze together.

An Approach to Formalize Metainformation of Software Localizable Resources 335

Fig. 7. Attributed derivation tree of localizable resources of the example.

336 V. Dagienė, T. Jevsikova

2. A context-free grammar is prepared for each component or part of a component, as
described in Section 4.1.

3. Every context-free grammar is extended into an attribute grammar, assigning at-
tributes to each grammar symbol and defining semantic rules. The attribute list and
semantic rules are prepared according to the software specifics.

4. Attribute grammars are combined into a whole.
5. Using the prepared attribute grammar, localizable resources are translated, and the

results written into files.

5. Conclusions

The analysis of existing localizable resources formats has shown that there are not enough
means to provide metainformation on the localizable resources that would help to choose
the correct translation of strings (usually, short texts) in the localization and prepare local-
ized products of a high quality. Therefore, an approach to include metainformation into
localizable resources has been proposed. The approach presented is not tied to any par-
ticular technology (it can be considered as a matter of implementation). The main novel
aspects of the approach are as follows:

1. It extends attribute grammars by three main novelties: (a) attribute grammars are
augmented with a new attribute type; (b) computed attributes are complemented by
some attributes, entered from outside; (c) the attribute context scope is controlled.

2. It presents localizable resources in a systematized way and helps to notice interna-
tionalization errors in the early software development (or even specification) stage.

3. It includes into localizable resources information that describes their context and is
useful to raise the quality of localization: the place where the resource string will
appear on the screen, relations between the related strings, and semantic informa-
tion of each text string.

4. The approach is suitable not only for static user interface strings, but also for dy-
namic strings (formed during program runtime) as well.

As far as the attributes are expressed by the means not related to a specific language,
the approach, presented here, will be suitable to most fusional European languages.

References

Dagienė, V., Grigas, G. (2006). Quantitative evaluation of the process of open source software localization.
Informatica, 17(1), 3–12.

Dagienė, V., Jevsikova, T. (2009). Cultural elements in internet software localization. In: Lenca, P., Brézillon,
P., Coppin, G. (Guest Eds.) Revue d‘intelligence artificielle. Human-Centered Processes – Current Trends,
Vol. 23, No. 4/2009. Hermes–Lavoisier, pp. 485–501.

Esselink, B. (2000). A Practical Guide to Localization. Benjamins.
ISO/IEC 15897:1999 (1999). Information Technology – Procedures for Registration of Cultural Elements.
ISO/IEC 9945-2:2003 (2003). Information Technology – Portable Operating System Interface (POSIX). Part 2,

System Interfaces.

An Approach to Formalize Metainformation of Software Localizable Resources 337

ISO/IEC 14652:2004 (2004). Information Technology – Specification Method for Cultural Conventions.
Jevsikova, T. (2006). Internationalization and localization of web-based learning environment. In: R. Mittermeir

(Ed.) Informatics Education – the Bridge Between Using and Understanding Computers. Proc. ISSEP 2006,
Lecture Notes in Computer Science, Vol. 4226. Springer, Berlin, pp. 310–319.

Knuth, D.E. (1968). Semantics of context-free languages. Math. Syst. Theory, 2(2), 127–145.
O’Sullivan, P. A. (2001). Paradigm for Creating Multilingual Interfaces. Doctoral dissertation. University of

Limerick.
Payne, T. E. (1997). Describing Morphosyntax: A Guide for Field Linguists. Cambridge University Press, Cam-

bridge.
Sepesy Maucec, M., Brest, J. (2010). Reduction of morpho-syntactic features in statistical machine translation

of highly inflective language. Informatica, 21(1), 95–116.
Unicode, Inc. (2007). Unicode CLDR Project: Common Locale Data Repository.

http://unicode.org/cldr/ [accessed on 2010-07-30].
Yang, Y.X. (2007). Extending the user experience to localized products. In: Aykin, N. (Ed.) Usability and

Internationalization, pt 2, Proc. Global and Local User Interfaces. Lecture Notes in Computer Science, Vol.
4560. Springer, Berlin, pp. 285–292.

V. Dagienė is the head of the Department of Informatics Methodology at the Institute
of Mathematics and Informatics as well as a professor at the Vilnius University. She has
published over 100 scientific papers and the same number of methodological works, has
written more than 50 textbooks in the field of informatics and ICT for high schools (part
of them is written together with co-authors). She has been working in various expert
groups and work groups, guiding the activity of a Young Programmer’s School, for many
years, she has been organizing the Olympiads in Informatics among students. Valentina
Dagienė has also been engaged in localization of software and educational programs,
e-learning, and problem solving. She is a national representative of the Technical Com-
mittee of IFIP for Education (TC3), a member of the Group for Informatics in Secondary
Education (WG 3.1) and for Research (WG 3.3) of IFIP, a member of the European Logo
Scientific Committee, and a member of the International Committee of Olympiads in In-
formatics. She is an Executive Editor of international journals “Informatics in Education”
and “Olympiads in Informaticsy”.

T. Jevsikova is a researcher in the Department of Informatics Methodology at the Insti-
tute of Mathematics and Informatics as well as a lecturer at the Vilnius University. She
received her PhD in computer science from Vytautas Magnus University and Institute of
Mathematics and Informatics. Her main research interests include software localization,
cultural aspects of human-computer interaction, e-learning, and standards. She is the au-
thor (or a co-author) of more than 15 scientific papers, several methodological books and
dictionaries of computer science terms.

338 V. Dagienė, T. Jevsikova

Programinės ↪irangos lokalizuojam ↪uj ↪u ištekli ↪u metainformacijos
formalizavimas

Valentina DAGIENĖ, Tatjana JEVSIKOVA

Programinės ↪irangos lokalizavimas – vienas svarbesni ↪u veiksni ↪u kompiuteri ↪u taikymo srityje.
Straipsnyje nagrinėjama, kaip galima būt ↪u paspartinti programinės ↪irangos dialog ↪u tekst ↪u vertim ↪a
ir pagerinti lokalizacij ↪u kokyb ↪e. Siūloma pasiremti atributinėmis gramatikomis ir jomis aprašyti
lokalizuojamuosius išteklius, per atributus ↪itraukiant lokalizavimo požiūriu nauding ↪a kontek-
stin ↪e informacij ↪a. Aptariamas programinės ↪irangos ištekli ↪u parengimas lokalizavimui, lokalizuo-
jam ↪uj ↪u ištekli ↪u struktūra ir ypatumai. Pateikiami lokalizuojam ↪uj ↪u ištekli ↪u formaliosios gramatikos
sudarymo principai.

