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RECURSIVE ROBUST ESTIMATION OF
DYNAMIC SYSTEMS PARAMETERS
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Abstract. In the previous paper (Pupeikis, 1990) the prob-
lem of model order determination in the presence of outliers in
observations has been considered. The aim of the given paper is
the development of the recursive algorithms of computation of M-
estimates ensuring their stability conditions. In this connection
the approach, based on adaptive Huber’s monotone psi-function.
is worked out. It is also used for the detection of the outliers in
time series and for the correction both outliers and Af-estimates
during successive calculations. The results of numerical simulation
by computer (Fig. 1 and Table 1) are given.
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Statement of the problem. By identification and pa-
rameter estimation of real objects it is often assumed that
the additive noise affecting the output of a dynamic system
is Gaussian. However in many cases this assumption 1s not
valid because of the outliers in observations, used for parame-
ter estimation. That's why the recursive least squares (RLS)
algorithm applied to the current calculation of the unkuown
parameters appeared to be non-effective. In this case the ro-
bust analogues of the RLS, based on the recursive calculations
of M-estimates, may be used.
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Consider a single input z; and a single output yi linear
discrete-time system described by the difference equation

Yb = =@ Yk—1 — o — Qulfk—n + 01Tf—1 + ... + 0nTh—n. (1)

Suppose that y; is observed with an additive noise £j, i.e..

ug = yr + & (2)
then
Uk = — A Uk—] — ... — QulUj—n + Dy T+ 3)
co i F bnThen + &+ a1k + ..o+ Wnk=n
or 1
ug = i—f—i—(—:-;)—l—)@rwéz (4)

by introducing the backward shift operator z~! defined by

= lre =il where
i :

i

€k = (1 = vr)ve + Yemk (5)

is the sequence of indeperdent identically distributed variables
with e-contaminated distribution of the shape

p(éx) = (1 = £)N(0,07) + N (0, 03), (6)

p(€x) is a probability density distribution of the sequence é;:
7k is a random variable, taking the values of 0 and 1 with
the probabilities p(vx = 1) = ¢, p(yx = 0) = 1 — &5 vp, Mk
are the sequences of independent Gaussian variables with the
zero means and o2, o2 respectively; n is the order of difference
equation (1);

g =[1+4:"N"& (0
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Jis the sequence of the correlated additive noise:

B(;’l) = blzdl + ...+ bn,‘:-’n.
Az =a 27 4+ FapzT"

are polynoniials and

ol =(ay,...,a;), b7 = (b;,....by)

are object parameters, subject to estimating.

It is assumed that the roots of A(z~!) are outside the
unit circle of the z~!-plane. The true orders of the polyno-
mials A(z7!) and B(z7!) are known. The input signal rj is
persistently exciting of an arbitrary order.

Recursive parameter estimation in the absence
of outliers in observations. Suppose that in equation (6)
¢ = 0, therefore p(£;) = N(0.0%). In this case. as it is shown
in (S.Ljung and L.Ljung, 1985) to estimate the vector of the
unknown parameters 87 = (a”,bT) the basic RLS algorithm
of the shape

Or+1 = Ok + Rp L Pkt1€r+1 (9)
Rit1 = ARi + vi419541+ (10)
€kt = Uks1 — Phyq Ok (11)
is used, where
0{-;-1 = (aTaET)k+1 = (ay,...,0n, by, ,Zn)k-n (12)

is the vector of the unknown parameter estimates after & + 1
samples;

T .
Crt1 = (—Uky. .oy —Ukg1=nThy -+, Tht1=n) (13)
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is the vector of n most recent observations of input zx and
output uy; '

k
6 = Ry D prudt (14)
t=1
. ,
Re = wipl A (15)
t=1

0.95 < A <1 is a time-varying weighing factor.
The basic RLS can be rewritten as

Ort1 = 6 + Rpgi€is1, (16)

Py @k
Aol Pepigr

Kyyy =

Pk@k-‘}»l‘i"{.}.lpk -1
Py =P - : A (18
= (P ) |
Py=al, a>>1 (19)
by introducing
’ Piy1 = R}, (20)

and applying the matrix inversion lemma to (10).
This algorithm minimizes the yuadratic loss function

s

V(@)=Y Al +1% (21)

f==1

if )\ i1s constant and

3 S

vey=Y (T]r) e+

t=1 =t

S~
[V

in the c posite case (Rao Sripada and Grant Fisher, 1987).
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In equations (21),(22)
Vo = (8 - 65)T P16 — 6,) (23)

and depends on the initial conditions of RLS.

It is known (Astrém and Eykhof, 1971) that under the
above mentioned and some other conditions RLS is going to
have the maximal con: ~rgence rate.

Recursive parameter estimation in the presence
of outliers in observations. It was assumed earlier that in
equation (6) ¢ = 0. Now let 1~ consider such a case, when this
assumption is invalid. Then RLS used for the current estima-
tion of unknown parameters of a mathematical model of the
dynamic object (1)—(8) becomes of a little use. As a result the
computer time has been uselessly wasted to obtain unsatisfac-
tory results. In this case instead RLS the algorithms of compu-
tation.of M-estimates, which are worked out by (Novovicova,
1987) may be used.

These algorithms are:

~~ e k o~
Pr @41 Ul/’("fx-.;.); /)

Okt =6 + - , oy , o (24)
[ﬁ"(rii’l /U)] + ¢{+1Pk Yl
' Py oryropyy Pi
: {‘4' (rkﬂ/o')] + P+ Py pi+1
S-algorithm,
Py 0141 5 ¥(r}31/3)
Brir =6 + - e (26)
T+ @i P k41
Py ors1 pyy Pa -
Piyy = Pp — —2k41 Pkt (27)

14+ ol Prorsr
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H-algorithm,

Pr ors1 37‘#-)
Okv1 = Ok + —15 - 1 . (28)
[wi:+1}_l + Pit1 Py pr+41 :

Piorri ot Pr

Py =P — (29)

(k) 1 ) i
[wiia] ™! + @igq Pegrn
~ o (K) pay g (K (k) :
(ky _ a‘i’("'i+llla)/’"lc+1 forriy, #0

etr1 =Y o) (30)

o, for rpi, =0,
k

r;;.:l = Ugg1 — S"z;.] 8 (31)

and W-algorithm, generating current Af-estimates by means
of minimizing sums

p

Ep(%) =min (32)

=1

or by solving tie system of nonlinear equations

S 6 (%) im0 (33)
=1 ‘

if the derivatives with respect to & are taken. Here p(-) is a
symmetric robustifying loss function, ¥ = p'(- ), & denotes an-
estimate of the innovations scale and may be obtained simul-
taneously (Novovi¢ova, 1987).

As initial values for the above mentioned algorithms the
least square estimates obtained for small data set can be used.

Adaptive Huber’s psi-function. There have been
worked out various psi-functions for M-estimators (Stockin-
ger and Dutter,1987). The most popular of them is a Huber’s



R. Pupeikis _ 585

psi-function which can be written as

ot if |t/ <cy
dHA(.t) - {CH signt if It] >cy, (34)

where cy > 0 is given, t = rwl/&‘.

Unfortunately, the problem of the choice of cy while es-
timating the parameters has not been solved by now. That’s
why therefore appear two situations — the observations will be
damaged if we choose cy too small or the outliers will be let
pass without a special processing in the opposite case. Besides,
current estimates az;l = (@y.....0n)r4+; may be obtained
outside the permissible stability area  of the parameters of
a respective difference equation. In this connection there ap-
pears the problem to choose such an adaptive ¢y which will en-
sure the current estimates of the parameters al = (dyvev.in)
inside-of the mentioned area. Therefore it will be shown lower
how to choose ¢y for the simpie second order system.

Suppose, that the problem of recursive computation of
M-estimates of the dynamic system described by the equation

Up + a3 Up—1 + G2 Up—2 = by Tp—y + b2 Tro2 + &k (35)
with

Q= {a:al—a2<1, ay; +a; > -1, ——1<(1.2<1} (36)

is solved. ,
Then four inequalities take place:

A1, ,, + 0, =1, + 2 +wit1 Ok41 ¥(H) > -1,
gy, — Gy, =1, — Gz, + Vi Frpr ¥(8) < L,

Q,,, =02, + Bry1 Gk (1) < 1,

A2,,, = G2, + Br+1 Gr+1 Y(t) > -1, (37)
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which can be rewritten as
~Wi+1 Ok+1 ¥(t) < 14 @;, +ag,,
Vi41 Tkt ¥(t) <1 -4y, + @y, .

-1 -3z, < Br41 041 ¥(t) <1 —ay,,
where
Wi+l = Tk41 + Bit1s
Viks1 = Yhs1 = It

P (1, 1)pr41 (1) + Pe(1.2) oy (2)
Te+1 = —F
1+ Pr+1 Pk P41

3. = P (2, ) or1(1) + Pr(2.2) pr41(2)
k41 — 1 T P. .

if H-algorithm is used, Pi(i, ;) are the respective elements of

the matrix P;.

Thus, )
CH= min{tlks t?,gs t3k}a ) (38)

where R R
¢ 1+ ay, + aq x
1y & ~ .
—wWk41 Ck41
1- Eih, + ag .
ty, = ———————.
Vi+i Tk+1
l—’a\z o
——t— if By >0
t3, = Brs10k 11
* 1+a. . ‘
2k if ,’3};4..1 < 0.
Br4+1Ck 41 )
It is known that for great order systems the parameter
stability inequalities are non-linear. In this case a decompo-
sition cf the initial system into a successive combination of

simple systeins may be used.
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* Notice that for first and second order systems some sim-
ulation results obtained by using the adaptive psi-function is
given in { Pupeikis, 1989; Nazlauskas and Pupeikis, 1991).

Qutliers correction. It is obvious that the above de-
veloped approach, based on the adaptive Huber’s psi-function,
may be also used for the detection and correction of outliers
in observations. Suppose that in the k-th time of recursive
calculations there appears an outlier ug4;. Then according to
(34) for second order system (35) psi-function becomes

ylt) =t (39)
if all four inequalities are satisfied or
Yi(t) =cy sign 1 (40)

if at least one of them is invalid, where cy is of the shape {38).

In order to decrease the outliers influence on the accu-
racy of the next calculations. a correction may be done in the
following way:

Upgr = Ok CH + PAT~+1 Ok . (41)

The case, when there exists outlier, which could not be de-
tected using inequalities {37), is very special and more sensi-
tive methods for the outliers detection and the following cor-
rection are required.

Simulation resuits. The efficiency of H-algorithm in
the presence of outliers was investigated by numerical simu-
lation by means of a computer. The noiseless sequence yi
was generated by the equation from the paper (Astrém and

Eykhoff, 1971)

¢! +0.5:72 |
= Tisd o (k=1500) (42)

Yk
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In the capacity of the input z; the realizations of the sequences
of independent Gaussian variables (; with zero mean and um-
tary dispersion and of first order AR model of the shape

T =09z + 043¢ (43)

were used. As the additive noise € the realization of the
discrete AR process was generated according to the equation

=(1-152z"14+0.7=7%)71¢, (44)

where £; i1s a sequence of independent identically distributed
variables of shape (5) with ¢ - contaminated distribution of
shape (6) and 02 = 1, ¢2 = 100. 10 experiments with different
realizations of the noise £} at the noise level af. / az = 0.5 were
carried out. In each i-th experiment the initial Py, 6, for H-
algorithm with constant and adaptive cy were obtained using

formulas:
50 -
={X wiel}
=4

50
90 = -—Po Z $;uj.

j=4

While simulating was assumed that in expression (6) ¢ = 0.5
and in Huber’s psi-function (34) cg = 0.5. The current M-
estimates of the vector § by means of the H-algorithm with
classical Huber’s psi-function (34) and adaptive one (34), (38)
were received.

In Fig.1 the averaged by 10 experiments square parame-
ter errors related to square true parameters according to

1 & | :
W= Z w, | (45)
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, for an object (42), (44) are presented. Here

T (65 — 802
Ej:l 9_?

W) —

3y

where

9(%) 3 @(t) Y

(i) _ 709
2& 3 94): b

()
91': alk ’ 10 2% ?
are the estimates of the respective parameters of the equation

(42) on -th experiment and &-th time,,
8] = ai, 92 = Az, 93 = bl) 94 = [)2

are the true parameters of the mentioned equation.

In Table 1 the averaged by 10 experiments variables (45)
and their confidence intervals, obtained using classical formu-
las (Bendat and Piersol, 1971) and calculated for different
inputs are given. In this connection the first line of each input

Table 1. Averaged values (45) and their confidence inter-
vals depending on observatlons

50 200 350 500

Input — Gaussian process

16.047+4.516  9.109+3.191 7.116+2.55 6.1+2.362
15.688+4.391  8.713+2.056 5.586+1.72  4.49+1.503

Input — AR process

70.553+£23.359 49.592+20.91 42.386+19.517 38.302+18.108
70.781+26.327 37.824+13.965 24+12.754 = 20.718+9.48
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corresponds to the values (43). which were ca'rulated by
means of H-algorithm with constant ¢y. The second line cor-
responds to the same values which were obtained using H-
algorithm and adaptive cy. From the simulation results, pre-
sented in Fig.1 and Table 1, it follows, that for the diffcrent
inputs the accuracy of the M -estimates will be different too
independently of choosing cy in (34). On the other hand
accuracy of the A -estimates for the same input depends on
choosing of cy. If we calculate it, using the approach pre-
sented here , we will reach a higher accuracy comparing with
coustant cy.

W I

80

80

50 200 350 observations

Fig. 1. Averaged values (43) depending on observations.
Input: Gaussian process — curve 1, 2: AR
process — 3, 4. cg: constant - curve 2, 4; adap-
tive - 1, 3.

Conclusions. For the determination of ¢y in Huber's
psi-function during recursive paraneter estimation it is possi-
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ble to use the above presented approach based on checking of
the stability conditions of tlie difference equation parameters.
The results of numerical simulation, carried out by computer
prove the usefulness of the proposed approach.
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