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Abstract. This paper briefly reviews some of the recent re­
sults on the problems and algorithms for their solution in quadratic 
0-1 optimization. First, the complexity of problems is discussed. 
Next,some exact algorithms and heuristics are mentioned. Finally, 
results in the analysis of the algorithms for 0-1 quadratic problems 
are summarized. The papers written in Russian are considered 
more thoroughly here. 
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IntroductiQn. The general quadratic 0-1 optimization 
problem considered in this paper is stated as follows. Given 
symmetric an n X n-matrix (Cij) and an n-vector (Ci), find a 
subset V ~ N = {1, 2, ... , n} so as to maximize 

fey) = L Cij + LCi' (1) 
i,jEV,i<j iEV 

subject to 

VEH ~H, (2) 

where H is the family of all subsets of N, and ii is a set of 
feasible solutions. This problem may be represented in the 
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form involving 0-1 variables Xi 

n-1 n n 

maxf(x)....:. 2: 2: CijXiXj + 2: Ci Xi, (3) 

s.t. 

i=l j=i+1 i=l 

n 

2: ajiXi ~ bj,j = 1, ... , m, 
i=l 

(4) 

XiE{O,l:},i=I, ... ,n, (5) 

where (aji).is an m X n - matrix and (bj ) is an m,-vector. 
With a function f we can associate the graph G f = (Vf, E f 1 
whose vertices are the elements o~ NU {n + I} and whose edge 
set consists of all unordered pairs (i,j), such that i < j ~ n, 
Cij =1= 0, or i < j = n + 1,ci=l= o. To each edge (i,j) E Ef 
we attach a weight Cij or Ci. Then (3)-(5) (or alternatively 
(1),(2)) may be viewed asa problem of determining in Gf an 
induced subgraph having maximum total sum of edge weights 
over the set of all induced subgraphs, containing the vertex 
n + 1 and guaranteeing (4) (or (2)) to be satisfied. 

A general problem (3)-(5) includes as special cases a va­
riety of other problems, e.g.,' the unconstrained quadratic 0-1 
optimization problem (3),(5) (or (1),(2) with ii = H) and the 
well known quadratic assignment problem (QAP). It is easy 
to see/that (3) may be rewritten as 

n-l n n 

maxf(x) = 2: 2: C~j(Xi - Xj? + 2: CiXi, (6) 
i=l j=i+1 ;=1 

where C~j' c~ are expressed through Cij,Ci • Thus the uncon­
strained problem (3), (5), in fact, coincides with that of par­
titioning a weighted graph into two parts with the maximum 
total weight of edges between the~. If C~j ~ 0, i, j = 1, ... , n, 

i < j, c~ = 0, i = 1, ... , n, in (6), then we obtain even more 
specialized case of (3)-(5)-the max-cut problem. 
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All the problems displayed above have a wide applicabil­
ity to the modeling of many important real world situations in 
many diverse areas. For a discussion of most relevant ,applica­
tions, see the surveys by'Hansen (1979) and Burkard (1984). 

The purpose of this paper is to survey some recent results 
concerning the problems and algorithms for their solution in 
quadratic 0-1 optimization. Since the papers written in Rus­
sian are presumably not so well known for researchers through­
out the world, they are discussed more thoroughly here. More­
over, when the list of references was drawn up, the priority was 
given to such papers. 

Complexity of problems. It is well known, that all 
the problems mentioned in the introduction are NP~complete. 
Therefore, it is natural that the research dealing with the com­
plexity analysis of problems is concentrated mainly in the fol­
lowing two directions. First rather simple special cases of the 
problems are tried to be declared as being NP-complete or 
NP-hard. Second, polynomial-time (i.e. efficient) algorithms 
are designed for solving nontrivial specialized versions of gen­
eral problems. 

We proceed with the NP-hardness results. A natural 
question is the following: what is the complexity status of a 
continuous relaxation of (3)-(5),which is obtained when con­
straints (5) are replaced by inequalities 0 ~ Xi ~ 1, 
i = 1, ... ,n ? The answer is "NP-hard" even for the problem 
without (4) (Murty and Kabadi, 1987). The following fact has 
been settled by Kuzjurin (1984). For a given constant c > 0, 
there does not exist, unless P=NP, any polynomial heuristic 
for obtaining c-approximate solutions to (3)-(5). A necessary 
reduction is carried out from the set partitioning problem. 

Let Gj denote a signed graph obtained from G f by delet­
ing the vertex n + 1 with all incident edges and marking the 
remaining edges according to signs of Cij' If Gj is balanced 
(no cycle has an odd number of negative edges), then the 
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corresponding problem (3),(5) is efficiently solvable (see e.g. 
Hansen, 1979). Ageev and Beresnev (1988) consider a par­
ticular case of such a problem, when Gj is a bipartite graph 
having all edges negative. If the signs of edges are arbitrary, 
then this problem is obviously NP-hard. Other polynomially 
solvable cases of (3),(5) are -due to the special structure of 
o ,-graph obtainable from Gj by ignoring the signs. Such 
special g~aphs are trees (Hansen and Simeone, 1986; Matic­
kas and Palubeckis, 1986) and series-parallel ones (Barahona, 
1986). Also, an efficient (in fact, O(n2 ) -time) algorithm was 
proposed (Matickas and Palubeckis, 1986) for the problem 
(6),(4),(5) with 0, being a tree and (4) consisting of the two 

n 

inequalities a ~ E Xi ~ b. Such a problem with the above 
i=l 

inequalities replaced by EdiXi ~ b, however, is NP-har~. 
Polynomial-time algorithms are- also known for the max-cut 
problem on some classes of graphs, e.g., planar graphs and 
graphs without odd cycles of length exceeding clog n, c being 
a constant (Fleishman, 1988). Polynomially solvable cases of 
the QAP include some layout problems on the line, e.g., that 
of linear arrangement of trees. 

Finding an optimal . solution. ~n this section, we shall 
discuss some of the approaches to solving quadratic 0-1 opti­
mization problems. Many of the algorithms for these problems 
use branch and bound techniques. The most relevant part of 
such algorithms is a bounding procedure. A rather straight­
forward approach to obtaining bounds on max f( x) is based 
on the transformation of (3)-(5) into an equivalent positive 
definite form and on a subsequent continuous relaxation of it. 
Such bounds were applied in the algorithms (e.g., McBride and 
Yormark, 1980), which have allowed to solve problems with up 
to 30-50· variables. -

Four relaxations of the problems equivalent to (3),(5) 
have been investigated by Hammer, Hansen and Simeone 
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(1984). They have shown that the bounds associated with 
the four relaxations are equal. 

Recently the bounding routines involving a Lagrangean 
relaxation have been developed for the unconstrained (Korner 
and Richter, 1982) and general (Shor and Davydov, 1985; 
Shor, 1987) quadratic problems. Suppose a function f(x) 
given by (3) is minimized. Let the linear inequalities (4) be 
denoted as 9j(x) ::;;; ° (in general, we may even allow functions 
9j to include the quadratic terms). Then the lower bound on 
minf(x) is (see Shor and Davydov, 1985) 

'IjJ* = sup{'IjJ(u) = inf[L(x,u) = 
uEU xEX 

m n (7) 
=f(x) + L Uj9j(X) + L Ui(X; - Xi)]}, 

j=l i=l 

where X is a set of feasi ble solutions, u is an (m + 11, )-vector of 
Lagrange multipliers and U is a set of such vectors satisfying 
Uj ~ 0, j = 1, ... ,m. The function L(x,u) may be rewritten 
as a sum of quadratic and linear parts x']{ ( u)x + l( x, u ). Let 
U' = {u E U I K( u) be positive semidefinite } and 'P( u) = 
= -'ljJ( u). It is easy to see that 'IjJ* = - inf 'P( u). The problem 

uEU' 
min 'P( u) can be solved,using the methods of nondifferentiable 
uEU' 
minimization. 

A method outlined above was applied (Stetsenko and 
Shor, 1984) to derive the upper bounds on the maximum pos­
sible weight of an independent set in a weighted graph G = 
= (N, E). The problem is formulated as a(G) = 

n 
= max{L: CiXilxiXj = O,(i,j) E E, X;-Xi = O,i = 1, . .. ,n}. 

i=l 

The value of (7) with sup and inf interchanged provides an up­
per bound on a(G). As shown by Stetsenko and Shor (1984), 
this bound is equivalent to the well-known Lovasz bound. The 
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bounds of the type (7) were incorporated in a branch and 
bound algorithm for the vertex packing problem. Shor (1987) 
reports the computational results on weighted graphs with up 
to 60 vertices. 

For an induced subgraph Gi = (Vi, Ei) of G f, let x(Vi) 
denote the incidence vector of El' With a quadratic function 
f we can associate the convex hull of the incidence vectors of 
all the subgraphs induced by subsets VI containing n + 1, i.e., 
the polytope 

A similar polytope Pn( G f) related to f without a linear part 
can be defined. Both polytopes (called the subgraph poly­
topes) have been studied by Palubeckis (1985) from two differ­
ent viewpoints. First, several classes of facets of Pn +1(Kn +1 ), 

Pn(Kn) have been derived. For example, the following in­
equalities define the facets of P n+ 1(I<n+d 

iEAjEB 
L Xij-

i,jEA,i<j i,jEB,i<j 

X"­
~J 

-2 L Xi,n+l + L Xi,n+l ~ 1, 
iEA iEB 

(8) 

L LXij - L Xij - L Xij - L Xi,n+l ~ 0, (9) 
iEC JED i,jEC,i<j i,jED,i<j iEC 

where A,B,C,D ~ Vf\{n + l},AnB = 0,CnD = 0, 
IAI ~ 1, IBI ~ 3 or A = 0, IBI ~ 2, and ICI ~ 1, IDI ~ 2 
or ICI = IDI = 1. Moreover, a complete facetial characteriza­
tion of both Pn and Pn has been obtained for graphs coming 
from some restricted classes. Second, necessary am1 sufficient 
conditions for the extreme points of Pn , Pn to be neighboring 
have been provided. 
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A partial facetial characterization can be used to derive 
bounds on fo = minf(x). Consider, for example, the prob­
lem with f(x) = -6XIX2 + 2XIX3 + 10XIX4 - 2X2X3 + 8X2X4 + 

+ 4X3X4 - 4X3 -10x4' Replacing XiXj by Xij in f and adding 
to f the linear combination of the left hand sides of the face­
tial inequalities (each of the type (8),(9)) 2[(X2 + X4 - X24) + 

+(X12 + X23 - X2 - X13)] + 4[(Xl + X4 - X14) + (X12 - xd] + 

+4(X3+X4-x34),onemay get a lower bound -10 = -(2+4+4) 
on fo , which is equal to optimal value of f attained at a point 
(0,0,1,1). It is worth noti~g,that a 0-1 linear problem involv­
ing inequalities (9) with ICI = IDI = 1 only is close to the 
discrete Rhys form (see e.g., Hammer, Hansen and Simeone 
(1984) for the latter). 

A polytope similar to Pn , Pn can be associated with the 
graph partitioning problem. Two classes of facetial inequali­
.ties of such a polytope, namely, {Xij + Xik - Xjk ~ a}, 
{Xij + Xik + Xjk ~ 2} , have been exploited in deriving a 
branch and bound algorithm for this problem (Matickas and 
Palubeckis, 1986). 

Ageev (1984) considers the problem of the form 

n-l n n 

~iQf(x) = L L CijXiXj + L Ck(l- Xk) (10) 

i=l j=i+l k=l 

with all Cij, Ck being nonnegative and X consisting of all 0-
1 vectors. This problem is equivalent to that of minimizing 
L:L::CijZij + L:CkYk, subject to Yi + Yj + Zij ~ 1,Yk,zij E 
{a, I}, i, j = 1,. ~ . , n, i < j, k' 1, ... ,no A continuous relax­
ation of the latter has an optimal solution with all the com­
ponents equal' to 0,1 or 1/2 (Ageev, 1984). Let yO, zO be any 
such a solution. Then an optimal solution XO to (10) exists 
satisfying the property: x~ = 1- a( a = ° or 1) if y~ = a. The 
bound obtained via a relaxation of the set covering problem 
given above is used in an algorithm described in (Ageev and 
Beresnev, 1988). 
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Many algorithms for solving the quadratic problems have 
also been developed, which differ from those of branch and 
bound type. Such an algorithm generating all local maximiz­
ing points for (3), (5) was suggested by Gulati, Gupta and 
Mittal (1984). Computational experience with this algorithm . . 
IS encouragIng. 

A new bounding procedure for the QAP was proposed by 
Sergeev (1988). It is based on the following formulation of the 
QAP 

n n 

minf(x) = L L ZijXij, (11) 
i'=1 j=1 

n n 

Zij = L L eikdjlXkl, i,j = 1, ... , n, (13) 
k=1 1=1 

where X is a set of permutation n x n- matrices and (eik), (djl ) 

are n x n-matrices defining a QAP. The procedure resorts to 
solving the linear assignment problem (11), '(12) and the use 
of a special bound improvement operation. . 

Heuristics. As computational results indicate, the exact 
solution methods can guarantee only relatively small quadratic 
0-1 optimization problems (especially the QAPs) to be solved 
optimally within a reasonable amount of time. Therefore, 
heuristic methods are acceptable for producing good, but not 
necessarily optimal solutions. 

A very simple heuristic for solving the unconstrained 
problem is the following (described with respect to (1),(2)). 

Algorithm GREEDY 
l.V:=0. 
2. If V = N, then go to 4. Select a vertex k E N\ V such 

that 9k = max [9i = f(V U{ i}) - feY)]. If 9k > 0, then set 
iEN\V 

V = V U{ k} and repeat 2; otherwise go to 3. 
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3. If IVI ~ n - 1 , then go to -4. Select a pair of vertices 
k,l such that gkl = . ~ax [gij = f(V U{i,j}) - fey)]. If 

1,)EN\ v 
gkl > 0, then set V = V U{ k, I} and go to 2; otherwise go 
to 4. 
_ 4. Stop, V is a suboptimal solution to (1),(2) with 
H=H. 

For any x EX, let N s ( x) denote the set, called the neigh­
borhood of x, consisting of all x' E X satisfying condition 

n _ 

E IXi - x~ I ~ s. It seems that the following heuristic algo-
i=l 
rithm should have a better performance than GREEDY. This 
algorithm needs an initial x to be given. 

Algorithm LOCAL2 
1. Check whether hex') := f(x) - f(x /) ~ 0 for all x' E 

N 1(x). If yes, then go to 3; otherwise choose x' E N1(x),such 
that h( x') < O. 

2. x := x'. Return to i. 
3. Check whether hex') ~ 0 for all x' E N2(x )\N1 (x). 

If yes, then stop; otherwise choose x' E N 2 (x) such that 
hex') < O. 

4. x := x'. Return to 1. 
Dropping the steps 3 and 4 gives, in fact, an algorithm 

LOCAL described in the work by Gulati, Gupta and Mittal 
(1984). 

The heuristic algorithms for solving the QAP are espe­
cially needed, since the size of problems amenable to exact 
solution methods remains to be bounded above by n = 15 
(Burkard, 1984).The most widely used heuristic for the QAP 
is a pairwise exchange method which is capable to yield the 
solutions that are, in general, superior than those produced 
by constructive methods. In order to achieve even better so­
lutions, other iterative methods would be applied. A simple 
way to improve a final solution is to repeat the start of the 
pairwise exchange heuristic from a sufficient number of dif-
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ferent initial solutions. This approach like a similar one with 
"pairwise" replaced by "triple" leads to the solutions of quite 
a good quality (Bruijs, 1984). An algorithm being a gener­
alization of the pairwise exchange heuristic was proposed by 
Metelsky and Kornienko (1983). Each iteration of it starts by 
selecting such a subset No ~ N that the graph G(No) induced 
by edges,corresponding to eij "1= 0, i,j E No, (see (11), (13)) 
has a simple structure, e.g., is a forest. Next, the objects from 
No are permuted while those from N\No are retained at their 
locations. An optimal permutation is chosen only from the 
group of automorphisms of a weighted graph G( No ) .. Recently 
an iterative algorithm based on an analogy with the anneal­
ing process has been developed (Burkard and Rendl, 1984). 
Computational experience shows very good behaviour of this 
algori thm. -

The analysis of algorithms. The value of a heuristic 
solution to (3), (5) can be compared against Mf = max Mj, 

O<m<n 

where Mj is the expected value of f(x) on Xm - {; E X I 
2: Xi = m}. The following algorithm for any f yields a solu­
tion X satisfying f(x) ~ Mf. The algorithm involves first iden­
tifying I such that M} = M f' and then selecting I variables 
sequentially, which are set to 1. At the kth step, a free variable 
Xi, i E N\N', N' . {slx s = I} is selected, giving a maximum 
to the function hj = aj + Cj + dj(l- k)/(n - k -1) with aj = 
f(N'U{j})-f(N') and dj = f(N\N')- f(N\(N'U{j}))-Cj. 
The index i is then included in N'. 

Now we shall show that, unless P=NP, no polynomial 
h~uristic for (3), (5) can guarantee to yield a solution X with 
f(x) > M f (though such a solution exists).On the contrary, let 
A be such a heuristic. Then the following algorithm, which is 
clearly polynomial for small integer Cij, Ci, solves the NP-hard 
problem (3), (5). . 

1. Apply A to (3), (5). Let x' be a solution obtained: 
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X~ = 1, i E K ~ N, x~ = 0, i fj. K. If f(x ' ) = Mf, then stop. 
2. Replace Xi, i E K, by 1 - Xi in (3) and return to l. 

This fact is of the type of the results obtained by Lieberherr 
(1981). 

Let R: { (VI, V2)} --+ { " <If ,If =11 ,If >" } denote the 
oracle performing a comparison of f(Vd and f(V2). Let Ks 
stand for the class of all deterministic algorithms for (1), (2) 
with jj = H exploiting the oracle R only for the pairs (VI, V2) 
such that I(VI \ V2) U (V2 \ Vdl ~ 8. The algorithms GREEDY, 
LOCAL and LOCAL2 belong to K 4 , KI or K2 (depending on 
the x' selection strategy) and K2 or K 4 , respectively. 

The following assertions are proved by Palubeckis (1989). 
Assume jj = H in (2). Let Vo, V* denote, respectively; an op­
timal solution of (1), (2) and a solution delivered by a heuris­
tic algorithm for (1), (2). Let 8 ~ 1, n ~ max(4,.s + 1) 
and c be any positive constant. Then the class Ks contains 
no algorithm having for any instance of (1), (2) (or, respec­
tively, (1), (2) without a linear part) the performance ratio 
r(J) = f(V*)/f(Vo) ~ c ( r(J) ~ (S;2) / (n;2) + c, respec­
tively). For 8 = 4, the second bound is tight: a modifica­
tion of GREEDY has a guaranteed performance of 1/ (n;2). 
Also, the bounds for polynomial-time local search algorithms 
forming the subclass of Kn have been obtained. It should 
be mentioned,that not all simple local search algorithms are 
polynomial.For example, assume that the choice of x' in steps 
1 and 3 of LOCAL2 is arbitrary among all x' E N2 (x), satis­
fying h(X') < O. As shown by Palubeckis (1984), such a ver­
sion of LOCAL2 for graph partitioning into two equally sized 
subgraphscan take an exponential number of iterations. Ob­
viously, the same is true for the problem (3), (5) (since the 
constraint LXi = n/2 can be brought into the objective). 

For special case problem (10) an O(n3 )-time algorithm 
with r = maxr(J) ~ 2 was discovered by Ageev (1984). This 
algorithm is based on solving a relaxation of the set, covering 
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problem equivalent to (10). The algorithms admitting 
r = min r(f) close to 1 (e.g. r ~ 0.5 ) are known also for the 
max-cut problem. 

Now we look at the QAP again. Several heuristics for 
this problem are known that produce solutions x with f( x) 
always not greater than the expected value M f of f on X. This 
holds for the pairwise exchange heuristic if at least one of the 
symmetric ,matrices (eik), (d;l) has equal row sums (Klipker, 
1978).An example constructed by Klipker (1978) shows that 
this condition is also necessary. 

The probabilistic methods have been applied by Burkard 
and Fincke (1985) to evaluate the asymptotic behaviour of 
QAPs. The main result states that the ratio maxf(x)/ 
/ min f( x) is arbitrarily Close to 1 with probability tending to 
1 as n -+ 00. Obviously, the same is true for the ratio r(f) = 
= f(x*)/ f(xO) with respect to any heuristic (x* is a solution 
achieved by it and xO is an optimal one). However,it seems 
that q(J) = [f(x*) - f(xO))/[Mf - f(xO)) is a more realistic 
measure for the evaluation of heuristic solutions to the QAP. 
The ratio q(f), contrary to r(f), is invariant under adding a 
constant to all elements of any matrix defining a QAP. 

In the remainder of this section, we deal with an approach 
to an experimental investigation of heuristics based on the use 
of algorithms for g~nerating test problems with a priori known 
optimal solutions. Recently, such generators have been devel­
oped for several combinatorial optimization problems.We shall 
describe an algorithm for generating unconstrained quadratic 
problems with known optimal 0-1 vectors. In fact, this algo­
rithm is an extension of the test problem generator (Matickas 
and Palubeckas , 1985) for graph partitioning into two equally 
sized subgraphs. The main operation of the algorithm is related 
to the choice of a facet Xii + X;I - Xi; > 0 of the graph bipar­
,titioning polytope. 

Given an integer m = n/2 expressed as a product of 
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positive integers mx and my , we denote by Q the rectangular 
grid of dimension 2mx x my with the edges of length 1 between 
the neighbouring points. Suppose that the set N of points is 
divided into two subsets NI, N2 ,corresponding to the left and 
right mx x my subgrids, respectively. Let dij denote the length 
of a shortest path from point i to point j in Q , and S(i,j) 
be a set of all shortest paths between i and j. The algorithm 
goes as follows. 

1. Set Wij = h > 0 and compute dij for all i,j E N, i < j. 
Set k = O. 

2. Choose a pair (i,j), i E NI, j E.N2, with a largest 
d ij among those having Wij = h, d ij > 1. If no such a pair 
exists, then go to 4. Randomly choose a point Ion some path 
Sij E S(i,j) so that Idil - did ~ 6. 

3. Set Wij = 0, Wil = Wil + h, Wjl = Wjl + h, k = k + 1. 
If k < t = lto (;)J, then return to 2. 

4.Randomly generate a permutation p = (p(1), ... ,p(n)). 
Renumber the points of Q according to p. This gives a function 
f of (6) with c~ = 0, i = 1, ... , n, ci j = W uv , where u, v are 
such that p(u) = i, p(v) = j, i,j = 1, ... , n, i < j. 

5. Add,\ 0::: Xi - n/2)2 , ,\ > h, to f. Changing the signs 
of coefficients leads to the problem (3), (5) with Cij = 2( ci j -,\) 

and Ci = '\(n -1) - 2:ci· -' 2: c\. 
.. . J ... J 
J,t<J J,J<t 

The optimal vector XO to the problem generated is defined 
by a set {x~ li = p( u), u E Nd of components equal to 1. The 
optimal value f(xO) = (,\ - h)n2 /4. The parameters of the 
generator are 6, to, h, ,\; m x, my. First two parameters in 
all the experiments were set to 1 and 0.1,respectively. 

The above described generator was applied to test algo­
rithms GREEDY, LOCAL and LOCAL2. A version of local 
algorithms was examined that selects first x' encountered such 
that h( x') < O. The results are given in Tables 1 and 2. Both 
tables present the averages of function values for 10 test prob­
lems and, in the last row, the number z of problems (out of 
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solved to optimality by LOCAL2 applied to initial x = O. In 
Table 2, the second row of values for LOCAL2 corresponds to 
the case when initial x is delivered by GREEDY. For LOCAL, 
initial x = O. The quality of the solution.s may be measured 
by the error evaluators 

r(J) =-j(x*)/ f(xO) or 

r'(J) = [f(xO) - f(x*)]/[J(xO) - f(1/2)]. 

Both measures, however, are not free from drawbacks. As 
Table 1 indicates, using our algorithm it is possible to generate 
test problems that are not easy for rather good heuristics as 
LOCAL2 is. For n ~ 60, average r(f) equals to approximately 
0.7. Table 2 demonstrates the strength of test problems for 
various h and),. For h = 1, ). = 50, only 6 (out of 10) 
solutions delivered by LOCAL had the objective value not 
less than M j = 44010. 

Table 1. Performance of algorithms on problems with 
h = 100, ). = 101 

n 30 40 50 60 70 80 90 100 

mx 3 4 5 5 5 5 5 5 
optimal 225 400 625 900 1225 1600 2025 2500 

GREEDY, 
LOCAL2 223 357 582 671 825 913 1437 1740 
LOCAL 215 350 569 585 684 846 1092 1539 

z 8 3 6 2 2 2 2 0 
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Table 2. Effect of changes in h and '\(n = 60, mx = 5) 

h 100 100 10 1 1 1 

,\ 101 105 11 2 10 50 
optimal 900 4500 900 900 8100 44100 

GREEDY 671 3917 S39 892 8092 44092 
LOCAL 585 3857 856 894 8032 44013 
LOCAL2 671 4316 884 896 8094 44097 

671 3966 854 895 8094 44094 
z 2 5 6 3 5 4 

An algorithm for generating QAPs with known optimal 
solutions was presented by Palubeckis (1988). The value of 
q(J) on these problems appears to be approximately 0.5 and 
0.2 for simple constructive algorithms and for pairwise ex­
change heuristic, respectively. 

Conclusions. The work aimed at the development of 
new and improvement of existing algorithms, both exact and· 
heuristic, for solving 0-1 quadratic problems should be con­
tinued. This should be done in regard to both NP-hard prob­
lems and their polynomially solvable partial cases. The study 
of some mathematical problems could stimulate the design of 
bet ter algorithms. 

The results in the analysis of algorithms for quadratic 
problems have been obtained along few lines only. Much more 
work in this area is needed. The results obtained may suggest 
new algorith~ic ideas and solution techniques in quadratic 0-1 
optimization. 
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