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Abstract. The paper deals with the use of formant features in dynamic time warping based speech
recognition. These features can be simply visualized and give a new insight into understanding the
reasons of speech recognition errors. The formant feature extraction method, based on the singular
prediction polynomials, has been applied in recognition of isolated words. However, the speech
recognition performance depends on the order of singular prediction polynomials, whether sym-
metric or antisymmetric singular prediction polynomials are used for recognition and as well on
the fact even or odd order of these polynomials is chosen. Also, it is important to know how in-
formative separate formants are, how the speech recognition results depend on other parameters of
the recognition system such as: analysis frame length, number of the formants used in recognition,
frequency scale used for representation of formant features, and the preemphasis filter parame-
ters. Properly choosing the processing parameters, it is possible to optimize the speech recognition
performance.

The aim of our current investigation is to optimize formant feature based isolated word recog-
nition performance by varying processing parameters of the recognition system as well as to find
improvements of the recognition system which could make it more robust to white noise. The opti-
mization experiments were carried out using speech records of 111 Lithuanian words. The speech
signals were recorded in the conventional room environment (SNR = 30 dB). Then the white noise
was generated at a predefined level (65 dB, 60 dB and 55 dB) and added to the test utterances. The
recognition performance was evaluated at various noise levels.

The optimization experiments allowed us to improve considerably the performance of the for-
mant feature based speech recognition system and made the system more robust to white noise.

Keywords: formant features, singular prediction polynomials, isolated word recognition, dynamic
time warping, optimization.

1. Introduction

Speech recognition is widely used in various applications. Continuous speech recognition
is used in dictation, information systems. Isolated word recognition is mostly applied in
control by voice systems. In many applications control by voice can be accomplished us-
ing a simple speaker-dependent dynamic time warping technique. Thus, the focus of our
research is reliable isolated word recognition, using the dynamic time warping approach.
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The speech recognition performance highly depends on the features used for speech
recognition. Traditional features, in this case, are the parameters of a linear prediction
model (LPC features) and cepstral features. These features are sensitive, especially LPC,
to background noise, recoding conditions, etc. However, transformations of LPC features
can significantly improve recognition performance (Bastys et al., 2010). We looked for an
alternative feature set and chose estimates of formant frequencies as features for speech
recognition. These features can be simply visualized and give us a new insight in under-
standing the reasons of speech recognition errors.

Several attempts were made to use formant features in HMM based speech recog-
nition (De Wet et al., 2004; Welling et al., 1998; Weber et al., 2001). The results have
showed that inclusion of the formant features can increase the recognition accuracy.

Earlier we have investigated the use of formant features in dynamic time warping
based speech recognition (Lipeika, 2005). The first three formants were used for the
pattern matching. The formants were estimated from the roots of the 10th order LPC
polynomials. The autocorrelation method was used to estimate the LPC parameters. The
recognition results were encouraging; however, a more accurate method was desired for
the formant frequency estimation.

The reliability of formant feature extraction depends on the method used for the lin-
ear prediction model parameter estimation. The autocorrelation method previously used
for the linear prediction model parameter estimation was not reliable enough for formant
feature extraction. Therefore we were looking for a more reliable method of the lin-
ear prediction model parameter estimation. The previously used autocorrelation method
was compared with covariance (Markel and Gray, 1976), Burg (Kay and Marple, 1981),
Marple (Marple, 1980) methods and the modified Split Levinson algorithm (Willems,
1987). It has been concluded that autocorrelation, covariance, Burg and Marple meth-
ods are similar from the point of view of formant feature extraction. The modified Split
Levinson algorithm is a modification of the Split Levinson algorithm (Delsarte and Genin,
1986, 1987) and provided the best formant feature estimates (Lipeika, 2007).

The Split Levinson algorithm is based on the calculation of the singular prediction
polynomials. If we have a set of the LPC polynomials

Ak(z) = 1 + ak(1)z−1 + ak(2)z−2 + · · · + ak(k)z−k, k = 1, . . . , p, (1)

the polynomials obey the recurrence relation

Ak+1(z) = Ak(z) + ρk+1z
−(k+1)Ak(z−1), (2)

where ρ1, ρ2, . . . , ρp are reflection coefficients. Assuming ρk+1 to be either 1 or −1, from
(1) we obtain two singular prediction polynomials:

Pk+1(z) = Ak(z) + z−(k+1)Ak(z−1)

= 1 +
(
ak(1) + ak(k)

)
z−1 +

(
ak(2) + ak(k − 1)

)
z−2 + · · ·

+
(
ak(k) + ak(1)

)
z−k + z−(k+1) (3)
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and

Qk+1(z) = Ak(z) − z−(k+1)Ak(z−1)

= 1 +
(
ak(1) − ak(k)

)
z−1 +

(
ak(2) − ak(k − 1)

)
z−2 + · · ·

+
(
ak(k) − ak(1)

)
z−k − z−(k+1). (4)

The polynomial Pk+1(z) is symmetric, and Qk+1(z) is antisymmetric. Thus, we have

Ak+1(z) = 1/2
[
Pk+1(z) + Qk+1(z)

]
. (5)

Equations (3) and (4) mean that even without using the Split Levinson algorithm, we can
calculate the pth order singular prediction polynomials Pp(z) or Qp(z) from the (p − 1)th
order standard LPC polynomial, as well as the magnitude spectrum S(f)from these poly-
nomials and find spectral peaks which are referred as estimates of formant frequencies.
The formant feature extraction based on the calculation of the singular prediction polyno-
mials from the standard LPC polynomials, the magnitude spectrum calculation, and the
spectral peaking was implemented into a dynamic time warping based recognition sys-
tem (Tamulevicius and Lipeika, 2004) and used for dynamic time warping based isolated
word recognition experiments.

The speech recognition performance depends on whether symmetric or antisymmetric
singular prediction polynomials are used for recognition (Lipeika and Lipeikienė, 2008)
and even or odd order of these polynomials is chosen (Kabal and Ramachandran, 1986).
Also, it is important to investigate how informative separate formants are and how speech
recognition results depend on other parameters of the recognition system such as: anal-
ysis frame length, number the of formants used in recognition, frequency scale used for
representation of formant features, and preemphasis filter parameters.

The aim of our current investigation is to optimize the formant feature based isolated
word recognition performance by varying the above mentioned processing parameters of
the recognition system and to find improvements of the recognition system which can
make the recognition system more robust to white noise.

In the following section, the optimization experiments of formant feature based
speech recognition are described. Section 3 concludes the paper.

2. Optimization Experiments of Formant Feature Based Speech Recognition

In Lipeika and Lipeikienė (2008) isolated word recognition experiments were done using
the records of 111 Lithuanian words. The sessions were recorded in the conventional
room environment (SNR = 30 dB). Then the white noise was generated at a predefined
level (65 dB, 60 dB and 55 dB) and added to the test utterances. To make the results,
obtained in (Lipeika and Lipeikienė, 2008), comparable with the current research, we
used the same speech data in our experiments.

In Lipeika and Lipeikienė (2008), the recognition performance of the formant fea-
tures, based on the singular symmetric prediction polynomials, was compared to that of
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Table 1

Recognition errors (%) of 111 words using different single formants. The formant frequencies calculated from
the 10th order symmetric singular prediction polynomials (9th order linear prediction polynomials)

Formants SNR = 30 dB +65 dB white noise

First formant 19.8 30.6

Second formant 1.8 28.8

Third formant 17.1 63.9

Fourth formant 17.1 87.3

the linear prediction coding, and the linear prediction coding derived cepstral features.
The recognition results have shown that the performance of the formant features is sim-
ilar to that of the LPC and the LPCC features in the conventional room environment.
In the white noise environment, the results were different. Better results have been ob-
tained using the formant features at all noise levels, but the number of recognition errors
drastically increased when additional white noise was added to the test utterances. Our
current investigation was to optimize the formant feature based isolated word recognition
performance and to find improvements of the recognition system which can make the
recognition system more robust to white noise.

2.1. Recognition Performance Using Separate Formants

Contribution of separate formants to the speech recognition performance is different.
One can guess that lower formants contribute more the to speech recognition accuracy
than the higher ones. Also, higher formants are more sensitive to noise. We estimated
formant frequencies using the 10th order symmetric singular polynomials, and compared
the recognition results, using different single formants. In this investigation, we used
the test utterances recorded in the conventional room environment (SNR = 30 dB) and
with additional 65 dB white noise. Here and in the following experiments the reference
utterances were recorded in the conventional room environment (SNR = 30 dB). The
recognition results are summarized in Table 1.

As we see from Table 1, the most informative is the second formant. The recogni-
tion performance of other formants is similar in the conventional room environment, but
the third and especially the fourth formants are very sensitive to white noise. It is sur-
prising that, using the second formant in the conventional room environment, only 1.8%
recognition error was obtained.

2.2. Recognition Performance Using Different Number of Formants

The speech recognition performance depends on the number of formants used for recog-
nition, order of singular prediction polynomials (even or odd) and on the fact which
singular prediction polynomial is used – symmetric or antisymmetric. We investigated
this dependence using the 8th, 9th and 10th order singular prediction polynomials. The
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Table 2

Recognition errors (%) of 111 words using different number of formants. The formant frequencies calculated
from the 8th order singular prediction polynomials (7th order linear prediction polynomials)

Polynomial, number of formants SNR = 30 dB + 65 dB white noise

Symmetric, first 2 formants 0.9 16.2

Symmetric, first 3 formants 0 21.6

Antisymmetric, first 2 formants 2.7 23.4

Antisymmetric, first 3 formants 2.7 33.3

Table 3

Recognition errors (%) of 111 words using different number of formants. The formant frequencies calculated
from the 9th order singular prediction polynomials (8th order linear prediction polynomials)

Polynomial, number of formants SNR = 30 dB +65 dB white noise

Symmetric, first 2 formants 0 13.5

Symmetric, first 3 formants 0.9 10.8

Symmetric, first 4 formants 1.8 28.8

Antisymmetric, first 2 formants 3.6 33.3

Antisymmetric, first 3 formants 1.8 32.4

Antisymmetric, first 4 formants 4.5 64.8

Table 4

Recognition errors (%) of 111 words using different number of formants. The formant frequencies calculated
from the 10th order singular prediction polynomials (9th order linear prediction polynomials)

Polynomial, number of formants SNR = 30 dB +65 dB white noise

Symmetric, first 2 formants 2.7 11.7

Symmetric, first 3 formants 0 11.2

Symmetric, first 4 formants 0 19.8

Antisymmetric, first 2 formants 1.8 25.2

Antisymmetric, first 3 formants 0 19.8

Antisymmetric, first 4 formants 0.9 42.3

recognition results of the experiment for the 8th order are displayed in Table 2, for the
9th order – in Table 3, and for the 10th order – in Table 4.

From Table 2 one can see that for the 8th order of singular prediction polynomials
(7th order linear prediction polynomials), the common best result (for SNR = 30 dB and
when 65 dB white noise is added) is obtained when the symmetric singular prediction
polynomials and the first 2 formants are used for recognition. For the 9th (Table 3) and
10th (Table 4) order singular prediction polynomials (8th and 9th order linear prediction
polynomials) the common best result is obtained when the symmetric singular prediction
polynomials and the first 3 formants are used for recognition. The common best result
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Table 5

Recognition errors (%) of 111 words using different frame length. The formant frequencies calculated from the
10th order symmetric singular prediction polynomials (9th order linear prediction polynomials)

Frame length SNR = 30 dB +65 dB +60 dB +55 dB

white noise white noise white noise

N = 250 0 11.2 29.7 63.9

N = 400 0 10.8 27.0 55.8

N = 500 0 8.1 27.9 51.3

N = 600 0.9 9.0 27.0 51.3

(recognition error 11.2%) is obtained when formant frequencies are calculated from 10th
order symmetric singular polynomials (9th order linear prediction polynomials) and the
first 3 formants are used for recognition.

When two formants are used for recognition, the common best result (recognition
error 13.5% for SNR = 30 dB and when 65 dB white noise is added) is obtained when
formant frequencies are calculated from 9th order symmetric singular polynomials (8th
order linear prediction polynomials). Concerning model complexity, when we use two
formants in recognition instead of three, we simply do not include the third formant into
the feature vector. It helps to save memory consumed for reference patterns.

2.3. Recognition Performance Using Different Analysis Frame Length

In the dynamic time warping speech recognition system (Tamulevicius and Lipeika,
2004), using the linear prediction (LPC) or LPC derived cepstral features, traditionally
the frame length of 250 data points (22 ms) was used for the analysis at 11025 Hz sam-
pling frequency. However, when formant features were implemented in this system, we
have noticed that formant tracks are not always smooth enough, especially when noise
is added. We tried to increase the analysis frame length. For the 10th order symmetric
singular prediction polynomials, we investigated the recognition performance at different
analysis frame length. The first three formants were used for recognition. The results of
the experiment are displayed in Table 5.

From Table 5 we can notice that in the formant frequency based recognition it is better
to increase the frame length up to N = 500.

2.4. Recognition Performance Calculating Formant Frequencies in the Mel-Scale

We noticed that formant tracks of higher formants were more scattered than that of lower
formants. So we tried to represent formant tracks in the Mel-scale which corresponds
to the auditory sensation of tone height (Furui, 2001). The relationship between the fre-
quency f in kilohertz and the Mel-scale is approximated by the equation

Mel = 1000 log2(1 + f). (6)
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Table 6

Recognition errors (%) of 111 words using formant frequency representation in the Mel frequency scale. The
formant frequencies calculated from the 9th and 10th order symmetric singular prediction polynomials (9th
order linear prediction polynomials). Frame length N = 250 and N = 500.

Frame length N SNR = 30 dB +65 dB +60 dB +55 dB

Order of the polynomial M white noise white noise white noise

N = 250, M = 9 0 7.2 24.3 56.7

N = 250, M = 10 0 6.3 23.4 47.7

N = 250, M = 10 0 11.2 29.7 63.9

Linear scale

N = 500, M = 9 0 9.9 21.6 52.2

N = 500, M = 10 0 5.4 22.5 45.0

N = 500, M = 10 0 8.1 27.9 51.3

Linear scale

We represented formant frequencies in the Mel-scale and investigated the recognition
performance for the 9th and 10th order symmetric singular prediction polynomials and
for different frame lengths N = 250 and N = 500. The first three formants were used
for recognition. The performance was investigated at different noise levels and compared
with the results obtained in the linear frequency scale. The results of experiments are
displayed in Table 6.

Comparing the recognition results we can notice that with frame length N = 250,
in all cases the recognition results for the Mel-scale representation are better. With
N = 500, the results are better than that of the linear scale only for the 10th order sin-
gular prediction polynomials at all noise levels. For frame length N = 500 and the 9th
order singular prediction polynomials at higher noise levels, the recognition results are
worse than that of the linear frequency scale.

2.5. Impact of Preemphasis on the Recognition Performance

The preemphasis filter is usually used in speech recognition to flatten the speech signal
spectrum and to make a speech signal less sensitive to finite precision effects later in the
speech signal processing. In our speech recognition system (Tamulevicius and Lipeika,
2004), a first order finite impulse response filter with the system function

H(z) = 1 − p1z
−1 = 1 − 0.95z−1 (7)

was used for preemphasis. Amplitude response and the pole/zero plot of the filter are
shown in Fig. 1.

We used the 9th order symmetric singular prediction polynomials and 3 formants for
the recognition experiment. The analysis frame length was N = 500. These conditions
were kept in all the following experiments. The recognition results are displayed in Ta-
ble 7.
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Fig. 1. Amplitude response and the pole/zero plot of the preemphasis filter (7).

Fig. 2. Amplitude response and the pole/zero plot of the preemphasis filter (8).

Next, to reduce the impact of white noise on recognition errors, we included additional
real zero p2 = −0.95 in to the system function of the preemphasis filter getting the system
function

H(z) = (1 − p1z
−1)(1 − p2z

−1) = (1 − 0.95z−1)(1 + 0.95z−1). (8)

Amplitude response and the pole/zero plot of the filter are shown in Fig. 2.
The recognition results are displayed in Table 7. From the recognition results we

can notice that the recognition performance has improved at all noise levels but slightly
decreased at SNR = 30 dB.
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Encouraged by the results, we have placed two additional complex conjugate zeroes
near the unit circle at frequencies close to −π getting the filter below (Fig. 3)

H(z) = (1 + 1.959998z−1+ 0.067506z−2 − 1.769247z−3 − 0.876533z−4). (9)

The recognition results are displayed in Table 7. They illustrate that the recognition
performance has improved under additional white noise with SNR = 60 and 55 dB.

Fig. 3. Amplitude response and the pole/zero plot of the preemphasis filter (9).

Fig. 4. Amplitude response and the pole/zero plot of the preemphasis filter (10).
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Fig. 5. Illustration of the formant feature based dynamic time warping process using the traditional preemphasis
filter (7). Two utterances of the Lithuanian word “devyni” are compared. The additional 55 dB white noise was
added to the test utterance. The average distance between the test and reference templates is 57.2. Black lines
are formants of the reference templates and grey lines of the test templates. The word was not recognized.

Finally, we shifted complex conjugate zeroes farther from −π getting the filter (Fig. 4)

H(z) = (1 + 1.799998z−1+ 0.072006z−2 − 1.618268z−3 − 0.886789z−4) (10)

and repeated the experiment. The recognition results (Table 7) have showed a further
improvement at additional white noise with SNR = 60 and 55 dB. The best result was
obtained using the preemphasis filter (10).

To illustrate the difference between the traditional preemphasis filter (7) and the pre-
emphasis filter (10), two utterances of the Lithuanian word “devyni” are compared using
the traditional preemphasis filter (7) (Fig. 5) and preemphasis filter (10) (Fig. 6). The
additional 55 dB white noise was added to the test utterance. For preemphasis filter (7),
the average distance between the test and reference templates is 57.2. The word was not
recognized. Using preemphasis filter (10) the word was recognized. The average distance
is 25.5. The global path constraints, a linear time alignment path, a dynamic time warping
path, and the formant trajectories (black – trajectories of the reference templates, grey –
of the test templates) are displayed in the picture. This constitutes the dynamic time warp-
ing (DTW) picture. Below the DTW picture, local distances on the optimal DTW path
and both the reference and the test utterances are displayed.

In Fig. 5, the estimates of formant trajectories of the test templates are shifted from
true values due to the impact of additional white noise. In Fig. 6, the preemphasis filter
(10) compensates the impact of white noise and formant trajectories of the test template
are close to that of the reference template.
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Fig. 6. Illustration of the formant feature based dynamic time warping process using preemphasis filter (10).
Two utterances of the Lithuanian word “devyni” are compared. The additional 55 dB white noise was added
to the test utterance. The average distance between the test and reference templates is 25.5. Black lines are
formants of the reference templates and grey lines of the test templates. The word was recognized.

Table 7

Recognition errors (%) of 111 words using different preemphasis filters. Formant frequencies calculated from
the 9th order symmetric singular prediction polynomials (8th order linear prediction polynomials). Frame
length N = 500. Three formants used for recognition

Preemphasis filter SNR = 30 dB +65 dB +60 dB +55 dB
noise noise noise

(7)H(z) = 1 − p1z−1 = 1 − 0.95z−1 0 11.7 26.1 56.7

(8)H(z) = (1 − 0.95z−1)(1 + 0.95z−1) 0.9 4.5 18.0 37.8

(9)H(z) = (1 + 1.959998z−1+ 0.067506z−2 0 4.5 12.6 29.7

− 1.769247z−3− 0.876533z−4)

(10)H(z) = (1 + 1.799998z−1+ 0.072006z−2 0 4.5 11.7 27.0

− 1.618268z−3− 0.886789z−4)

LPC features (10th order) 0 42.3 63.0 85.5

LPC derived cepstral features (15th order) 0 38.7 62.1 81.9

LPC derived cepstral features 0 7.2 13.5 35.1

with cepstral mean subtraction (15th order)

We repeated the same experiments using traditional features: LPC, LPC derived cep-
stral features and LPC derived cepstral features with cepstral mean subtraction. The re-
sults are also displayed in Table 7.

Basing on the results of the recognition experiments (Table 7), we can conclude that,
using the preemphasis filter (10), we have obtained the best result at all noise levels.
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When a speech signal is corrupted with white noise, the recognition performance at all
noise levels is higher using formant features and preemphasis filter (10) than the best
result for the traditional feature set – LPC derived cepstral features with cepstral mean
subtraction.

3. Conclusions and Future Work

A possibility to optimize the formant feature based isolated word recognition has been in-
vestigated. The singular prediction polynomials were used for formant feature extraction.
However, the speech recognition performance depends on order of singular prediction
polynomials, whether symmetric or antisymmetric singular prediction polynomials are
used for recognition as well as on the fact even or odd order of these polynomials is cho-
sen. Also, it is important to investigate how informative separate formants are, how the
speech recognition results depend on other parameters of the recognition system, such as
analysis frame length, number of the formants used in recognition, frequency scale used
to represent the formant features and the preemphasis filter parameters.

The optimization experiments were carried out using speech records of 111 Lithua-
nian words. The speech signals were recorded in the conventional room environment
(SNR = 30 dB). Then the white noise was generated at a predefined level (65 dB, 60 dB
and 55 dB) and added to the test utterances. The recognition performance was evaluated
at various noise levels. The optimization experiments have shown that:

1. Most informative is the second formant. The recognition performance of other for-
mants is similar in the conventional room environment, but the third and, especially,
fourth formants are very sensitive to the white noise.

2. Recognition performance was investigated for the 10th, 9th and 8th order of sin-
gular prediction polynomials. The common best result (recognition error 11.2%) is
obtained when formant frequencies are calculated from 10th order symmetric sin-
gular polynomials (9th order linear prediction polynomials) and the first 3 formants
are used for recognition. The similar result is obtained for the 9th order of symmet-
ric singular prediction polynomials (8th order linear prediction polynomials).
When two formants are used for recognition, the common best result (recognition
error 13.5% for SNR = 30 dB and when 65 dB white noise is added) is obtained
when formant frequencies are calculated from 9th order symmetric singular poly-
nomials (8th order linear prediction polynomials).

3. In the formant frequency based recognition, it is better to increase the frame length
up to N = 500.

4. Calculating the formant frequencies in the Mel frequency scale with frame length
N = 250, in all cases (of the 10th and 9th order of the singular prediction polyno-
mials) the recognition results are better. At frame length N = 500, the recognition
results are better than that of the linear scale only for the 10th order singular pre-
diction polynomials at all noise levels.

5. The recognition results highly depend on the parameters of the preemphasis filter.
Four different preemphasis filters were used in the recognition experiments. The
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best recognition results were obtained using the preemphasis filter (10) at all noise
levels.

6. The recognition results using formant features were compared with that obtained
using the traditional features: LPC, LPC derived cepstral features, and LPC derived
cepstral features with cepstral mean subtraction. Using the preemphasis filter (10)
for formant features, the recognition results are better even than that obtained for
the LPC derived cepstral features with cepstral mean subtraction for the traditional
features.

The optimization experiments enabled us to considerably improve the performance of
the formant feature based speech recognition system.

Future work should be concentrated on including pitch information in the feature set,
since voiced/unvoiced discrimination can also improve the recognition performance.
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Formantiniais požymiais gr ↪isto kalbos atpažinimo optimizavimas

Antanas LIPEIKA

Darbe yra nagrinėjamas formantini ↪u požymi ↪u naudojimas dinaminiu laiko skalės kraipymu
gr↪istame kalbos atpažinime. Šie požymiai yra lengvai vizualizuojami ir suteikia nauj ↪u žini ↪u sten-
giantis suvokti kalbos atpažinimo klaid ↪u priežastis. Izoliuot ↪u žodži ↪u atpažinimui buvo pritaikytas
išsigimusiais prognozės polinomais gr↪istas formantini ↪u požymi ↪u išskyrimo metodas. Tačiau, kalbos
atpažinimo tikslumas priklauso nuo to, ar atpažinimui naudojami išsigim ↪e prognozės polinomai yra
simetriniai ar antisimetriniai ir ar jie yra lyginės ar nelyginės eilės. Taip pat svarbu ištirti, kiek infor-
matyvios yra atskiros formantės, kaip kalbos atpažinimo rezultatai priklauso nuo kit ↪u atpažinimo
sistemos parametr ↪u: analizės kadro ilgio, atpažinimui naudojam ↪u formanči ↪u skaičiaus, formantini ↪u
požymi ↪u atvaizdavimui naudojamos dažni ↪u skalės, pradinės filtracijos filtro parametr ↪u. Tinkamai
parinkus šiuos atpažinimo sistemos parametrus galima pagerinti sistemos atpažinimo tikslum ↪a.

Šio tyrimo tikslas yra keičiant atpažinimo sistemos parametrus optimizuoti formantiniais
požymiais gr↪isto izoliuot ↪u žodži ↪u atpažinimo tikslum ↪a ir surasti atpažinimo sistemos patobulinimo
būdus, kurie padidint ↪u sistemos atsparum ↪a balto triukšmo poveikiui. Optimizavimo eksperimentai
buvo atliekami naudojant 111 lietuvi ↪u kalbos žodži ↪u kalbos signalo ↪irašus. Kalbos signalai buvo

↪irašyti ↪iprastinėje kambario aplinkoje esant 30 dB signalo/triukšmo santykiui. Tada buvo generuo-
jamas 65 dB, 60 dB ir 55 dB baltas triukšmas ir pridedamas prie testini ↪u ištarim ↪u balso ↪iraš ↪u.
Atpažinimo tikslumas buvo vertinamas esant ↪ivairiems užtriukšminimo lygiams.

Atlikti optimizavimo eksperimentai padėjo žymiai pagerinti formantiniais požymiais gr↪istos
kalbos atpažinimo sistemos tikslum ↪a ir padaryti j ↪a atsparesn ↪e balto triukšmo poveikiui.


