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Abstract. In this paper new semilogarithmic quantizer for Laplacian distribution is presented. It is
simpler than classic A-law semilogarithmic quantizer since it has unit gain around zero. Also, it
gives for 2.97 dB higher signal-to-quantization noise-ratio (SQNR) for referent variance in relation
to A-law, and therefore it is more suitable for adaptation. Forward adaptation of this quantizer is
done on frame-by-frame basis. In this way G.712 standard is satisfied with 7 bits/sample, which
is not possible with classic A-law. Inside each frame subframes are formed and lossless encoder
is applied on subframes. In that way, double adaptation is done: adaptation on variance within
frames and adaptation on amplitude within subframes. Joined design of quantizer and lossless en-
coder is done, which gives better performances. As a result, standard G.712 is satisfied with only
6.43 bits/sample. Experimental results, obtained by applying this model on speech signal, are pre-
sented. It is shown that experimental and theoretical results are matched very well (difference is
less than 1.5%). Models presented in this paper can be applied for speech signal and any other
signal with Laplacian distribution.
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1. Introduction

Quantizers play an important role in theory and practice of modern day signal process-
ing. Quantizers are mainly design for one variance of input signal and for in advance
known distribution. We use Lloyd’s–Max’s quantizer or optimal companding quantizer
(Jayant and Noll, 1984; Peric and Nikolic, 2007; Peric et al., 2009) for constant input
variance or very narrow range of variance. Lloyd–Max’s quantizer has negligible better
performance in relation to optimal companding quantizer (Peric et al., 2009; Sakran et al.,
2009). Companding technique is simpler than Loyd–Max’s quantization and therefore it
has wider application (Peric et al., 2009; Sakran et al., 2009). Logarithmic quantizers are
designed for wide range of input signal variance (Jayant and Noll, 1984). Due to its ro-
bustness and simplicity, logarithmic quantizers have a wide application (Jayant and Noll,
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1984; Aldajani, 2008; Peric et al., 2008; Lyon, 2008; Zavadskas, 2008). European ITU-T
G.711 standard (ITU-T, Recommendation G.711, 1972; Sakran et al., 2009) is based upon
semilogarithmic compression law. In the early applications, nonadaptive quantizers were
dominant, due to simplicity. Today, adaptive quantizers are wide used, since they have
higher average SQNR, which is almost constant in wide range of variance (Nikolic and
Peric, 2008). Forward adaptive quantizers have higher SQNR for about 1 dB in relation
to backward adaptive quantizers (Nikolic and Peric, 2008; Chu, 2003; Kondoz, 2004). In
many modern applications, combination of quantizer and lossless coder is used. The most
often, quantizer and lossless coder are design separately, due to simplicity, but obtained
performances are not optimal. Optimal performances can be obtained only with joined de-
sign of quantizer and lossless coder, which is done in this paper. There are many coders
with higher complexity and higher coding delay. These coders can use linear prediction.
For example, linear prediction can be used for speech recognition, as it was described in
Bastys et al. (2010). But, we do not use linear prediction since our aim is to design simple
coder based on logarithmic compression law.

The first aim of this paper is introduction of novel semilogarithmic compression law.
As distinct from the classic semilogarithmic A-law, new semilogarithmic law has unit
gain in area around zero, and therefore it is simpler for realization. Expressions for dis-
tortion for this new law for Laplacian distribution are given in closed form. Optimization
of parameters xmin (border between uniform and logarithmic part), and xmax (maximal
amplitude of quantizer) is done with a view to maximizing SQNR for referent variance.
Also, optimization of N1 (number of levels in uniform region) for fixed total number of
levels N is done. It is shown that for N = 128 (i.e., for bit-rate of 7 bits/sample), new
semilogarithmic law gives for 2.97 dB higher SQNR for referent variance, in relation to
A-law. On the other hand, A-law has constant SQNR in wide range of input variance.
Therefore, for nonadaptive quantizers, A-law is better. But, for adaptive quantizers, new
semilogarithmic law is much more suitable. To prove that, forward adaptation of new
semilogarithmic quantizer is done on frame-by-frame basis. It is shown that standard
G.712 can be satisfied with 7 bits/sample. On the other hand, classic A-law for N = 128
levels has maximal SQNR of 32.142 dB (recall that G.712 standard requires SQNR of
minimum 34 dB), and therefore A-law quantizer cannot satisfy standard G.712 with bit-
rate of 7 bits/sample, neither in nonadaptive case nor with adaptation. Beside simplicity,
this is the second big advantage of novel semilogarithmic law in relation to A-law.

With a view to further decreasing of bit-rate, model which consists of forward adap-
tive new semilogarithmic quantizer and lossless encoder is used. Lossless encoder is
modification of lossless coder presented in Peric et al. (2009). On the output of adap-
tive quantizer indexes are obtained, whereby each index corresponds to one of N = 2r

representation levels. First N1 = 2r1 indexes correspond to levels in uniform region. To
apply lossless encoder, subframes of M1 indexes are formed. Lossless encoder works
on the following way: (i) if all indexes inside subframe are less or equal to N1, then all
indexes in that subframe are coded with r1 bits; (ii) if at least one index in subframe
is greater than N1, then all indexes in that subframe are coded with r bits. In that way,
double adaptation is done: on variance within frame and on amplitude within subframe.
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One of the main contributions of this paper is joined design of forward adaptive quan-
tizer and lossless coder, which gives optimal performances. Optimal values of parameters
xmin and xmax are obtained by minimization of average bit-rate Rav, with condition that
SQNR stays beyond 34 dB. Also, optimizations of parameters N1 and M1 are done. It is
shown that this model can satisfy G.712 standard with bit-rate of only 6.43 bits/sample,
which is significant result. Experiment on speech signal is done, using models presented
above. Obtained experimental results for Rav and SQNR match with theoretical results
very well (the difference is less than 1.5%).

Based on facts presented above, we can say that models presented in this paper can
be very successfully applied for compression of speech and other signals with Laplacian
distribution.

This paper is organized in the following way. In Section 2, A-law is described, novel
semilogarithmic law is presented and their comparison is done. In Section 3, adaptation
of new semilogarithmic quantizer is done and after that model with adaptive quantizer
and lossless encoder is presented. Experimental results are given in Section 4. Section 5
concludes the paper.

2. Novel Semilogarithmic Companding Law

In this section, classic semilogarithmic A-law will be described first, and after that novel
semilogarithmic law will be presented.

2.1. A-Law Companding

Assume that an input signal is characterized by continuous random variable X with prob-
ability density function (pdf) denoted by p(x). In the rest of the paper we assume that
information source is Laplacian source with memoryless property and zero mean value.
The pdf of Laplacian source is given by

p(x, σ) =
1√
2σ

e−
√

2
σ |x|. (1)

A scalar quantizer with N levels is characterized by the set of real numbers
t1, t2, . . . , tN −1, called decision thresholds, satisfying −∞ = t0 < t1 < · · · <

tN −1 < tN = +∞ and set of numbers y1, . . . , yN , called representation levels, sat-
isfying yj ∈ αj = [tj−1, tj) for j = 1, . . . , N . Sets α1, α2, . . . , αN form the partition
of the set of real numbers R and are called quantization cells. The quantizer is defined as
many-to-one mapping Q: R → {y1, y2, . . . , yN } defined by Q(x) = yj where x ∈ αj .
Cells α2, . . . , αN −1 are called inner (or granular) cells while α1 and αN are called outer
(or overload) cells. In such way, cells α2, . . . , αN −1 form granular while cells α1 and
αN form an overload region. Quantizers can be uniform or nonuniform. Nonuniform
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quantizers can be designed using iterative Lloyd–Max algorithm or companding tech-
nique. Companding technique consists of the following steps: (i) compress the input sig-
nal x by applying the compressor function c(x); (ii) apply the uniform quantizer on the
compressed signal; (iii) expand the quantized version of the compressed signal using an
inverse compressor function c−1(x). The most often used compressor functions are op-
timal and logarithmic. Optimal compressor function gives maximal SQNR for referent
variance and it is used when input variance is constant or in very narrow range around
referent variance. Logarithmic compressor function is robust which means that it gives
almost constant SQNR in wide range of variance and it is used when input variance
changes with time in wide range. There are two widely used logarithmic functions: A-law
and μ-law. In this paper A-law is considered.

Compressor function for A-law is given with:

c1(x) =

⎧⎪⎪⎨
⎪⎪⎩

Ax

1 + log A
, for |x| � xmin,

xmax(1 + log A|x|
xmax

)
1 + log A

sgnx, for xmin < |x| � xmax.

(2)

It consists of two parts: linear and logarithmic. xmin is border between those
two parts where xmax is maximal amplitude of quantizer. Parameter A denotes ratio
A = xmax/xmin. A-law is used in many systems, especially in PCM telephone systems
in Europe, where value A = 87.6 is used. With N1 and N2 are denoted numbers of lev-
els in linear and logarithmic part, respectively. N1 and N2 can be expressed over total
number of levels N as

N : 2xmax = N1 :
2xmax

1 + log A
⇒ N1 =

N

1 + log A
;

N2 = N − N1 =
N log A

1 + log A
. (3)

During quantization an irreversible error is made, which is expressed by distortion.
Distortion is most commonly defined as mean-squared difference between original and
quantized signal. Total distortion Dt consists of granular distortion Dg in granular region
and overload distortion Do in overload region, i.e,.

Dt = Dg + Do. (4)

Granular distortion Dg consists of two parts: distortion in linear part Dg1 and distortion
in logarithmic part Dg2 · Dg1 is calculated as

Dg1 =
Δ2

1

12
P1, (5)
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where Δ1 = 2xmin
N1

and P1 =
∫ xmin

−xmin
p(x) dx is probability that input signal belongs

to linear part. For Laplacian distribution P1 = 1 − e−
√

2xmin
σ . Dg2 can be calculated using

Bennett integral as

Dg2 =
Δ2

2

6

xmax∫
xmin

p(x)
[c′

1(x)]2
dx, (6)

where Δ2 = 2(xmax − xmax
1+log A )/N2.

Lemma 1. For semilogarithmic A-law it is valid that Δ2 is equal to Δ = 2xmax/N .

Proof.

Δ2 =
2(xmax − xmax

1+log A )

N2
=

2xmax log A

(1 + log A)N2
. (7)

Using expression for N2, given with (3), we obtain

Δ2 =
2xmax log A

(1 + log A) N log A
(1+log A)

=
2xmax

N
= Δ. (8)

This concludes the proof. Using Lemma 1, expression (6) becomes

Dg2 =
Δ2

6

xmax∫
xmin

p(x)
[c′

1(x)]2
dx. (9)

Overload distortion is defined as

Do = 2

∞∫
xmax

(x − yN )2p(x) dx. (10)

For Laplacian distribution, applying simple mathematic calculation, we can obtain the
following expressions:

Dg1 =
x2

min

3N2
1

(
1 − e−

√
2xmin

σ

)
, (11)

Dg2 =
(1 + log A)2

3N2

[
e−

√
2

σ xmin
(
(xmin)2 +

√
2σxmin + σ2

)

− e−
√

2
σ xmax

(
x2

max +
√

2σxmax + σ2
)]

, (12)

Do = e−
√

2
σ xmax

(
x2

max − 2
(

xmax +
σ√
2

)(
yN − σ√

2

)
+ y2

N

)
. (13)
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Signal-to-quantization noise ratio (SQNR) is given with:

SQNR[dB] = 10 log10

σ2

Dt
(14)

2.2. New Semilogarithm Compression Function

In this section we propose new semilogarithm quantizer which consists of uniform and
logarithmic part and which is defined with compression function:

c2(x) =

⎧⎨
⎩

x, for |x| � xmin,
xmax

B

(
1 + log

(
B

xmax
|x|

))
sgnx, for xmin < |x| � xmax. (15)

xmin separates uniform and logarithmic part. One very important fact is that c2(x) and
its first derivation c′

2(x) are continuous in point xmin · xmax is maximal input amplitude
of quantizer. With parameter B is denoted ratio B = xmax/xmin. N = N1 + N2 is total
number of levels, whereas N1 and N2 are numbers of levels in uniform and logarithmic
part, respectively. It is valid that

N : 2xmin(1 + log B) = N1 : 2xmin ⇒ N1 =
N

1 + log B
;

N2 = N − N1 =
N log B

1 + log B
. (16)

Similarlly to classic A-law, with Dg1, Dg2 and Do are denoted distortions in uni-
form, logarithmic and overload region. Similarly to Lemma 1, using expression for
N2 in (16), we can prove that Δ2 = 2xmin(1+log B)−2xmin

N2
= 2xmin log B

N2
is equal to

Δ = 2xmin(1+log B)
N . Starting from (5), (9) and (10), using, putting c′

2(x) instead c′
1(x) in

(9) and approximating yN with xmax, following expressions are obtained:

Dg1 =
x2

min

3N2
1

(1 − e−
√

2xmin
σ ), (17)

Dg2 =
(log B)2

3N2
2

(
e−

√
2

σ xmin
(
x2

min +
√

2σxmin + σ2
)

− e−
√

2
σ xmax

(
x2

max +
√

2σxmax + σ2
))

, (18)

Do = σ2e
−

√
2

σ xmax . (19)

Total distortion and SQNR are calculated using expressions (4) and (14).
N and N1 are chosen to be power of 2, i.e., N = 2r and N1 = 2r1 , r and r1 are

integers. In this paper we consider only the case with N = 128 = 27, because we
want that average bit-rate be Rav � 7bits/sample. In Fig. 1 dependences of SQNR
on input variance for different combinations (N1, N2) are given. For all combinations,
maximization of SQNR is done and optimal values for xmin and xmax are calculated
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Fig. 1. Comparation of SQNR for novel semilogarithmic law, for different values of N1andN2.

such that SQNR has maximal value for referent variance σ2
0 . From this figure we can

see that the highest SQNR is achieved for combination (N1, N2) = (32, 96). Also, the
curve for this combination is widest which is very important for adaptation. Therefore,
we can conclude that this combination is optimal. For this combination, optimal values
of parameters are xmin = 0.6σ0 and xmax = 7.8σ0, and maximal SQNR is 35.116 dB.

In the Fig. 2 dependences of SQNR on input variance are given for A-law quantizer
with N = 128 levels, and for new semilogarithm quantizer given with c2(x) for combi-
nation (N1, N2) = (32, 96). We can conclude that:

(i) A-law has constant SQNR for wide range of input variance and it is very suitable
for nonadaptive quantizers. But, maximal SQNR for A-law for N = 128 levels is
32.142 dB, which means that A-law cannot satisfy G.712 standard (which requires
34 dB) with bit-rate of 7 bits/sample, neither with nor without adaptation.

(ii) New semilogarithmic law has maximal SQNR (for referent variance) 35.116 dB,
which is over 2.97 dB higher than maximal SQNR for A-law. Therefore, new
semilogarithmic law is very suitable for adaptation. This is its main advantage.
Since maximal SQNR is higher than 34 dB, this means that if adaptation is
applied on this semilogarithmic quantizer, G.712 standard will be satisfied with
7 bits/sample. We will show this in the next section.

3. Forward Adaptation of Novel Semiogarithmic Quantizer and Lossless Encoder

3.1. Forward Adaptation

In this section forward adaptation on novel semilogarithm quantizer, given with c2(x) is
done. Given analysis is similar to analysis in Chu (2003), Kondoz (2004), Hersent et al.
(2005), Nikolic and Peric (2008).
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Fig. 2. Comparation of SQNR between A-law and novel semilogarithmic law, in wide range of input variance.

Forward adaptive lossy encoder consists of: buffer with M samples, gain estima-
tor, log-uniform scalar quantizer with K levels for gain quantization, divider and fixed
semilogarithm quantizer given with c2(x), designed for referent variance σ2

0 . M input
samples are loaded into input buffer and average variance of these samples, denoted with
σ2, is calculated in ‘variance estimator’. σ2 is quantized in log-uniform scalar quantizer
which is designed so that logarithmic variance (10 log(σ2/σ2

0)), in range (−20 dB, 20 dB)
in relation to referent variance σ2

0 , is divided on K uniform intervals. In logarithmic do-
main, thresholds are

αi[dB] = −20 + iΔ, i = 0, 1, . . . , K (20)

and representation levels are

α̂i[dB] = −20 +
(
i − 1

2

)
Δ, i = 1, . . . , K, (21)

where Δ[dB] = (20 − (−20))/K = 40/K. In linear domain, thresholds are

σi = 10αi/20, i = 0, . . . , K (22)

and representation levels are

si = 10α̂ i/20, i = 1, . . . , K. (23)

So, if σ ∈ (σi−1, σi) then σ is quantized to si. Gain is defined as

gi =
si

σ0
, i = 1, . . . , K. (24)
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Therefore, we have K discrete levels of gain. Input samples from buffer are divided
with gi and guided to fixed semilogarithm quantizer with N levels, designed for σ2

0 . If
thresholds for fixed quantizer are denoted with tfj , j = 0, . . . , N and representation

levels with yf
j , j = 1, . . . , N , then thresholds for adaptive quantizer, for σ ∈ (σi−1, σi),

are taj = git
f
j , j = 0, . . . , N and representation levels are ya

j = giy
f
j , j = 1, . . . , N .

If border between uniform and logarithmic part of fixed semilogarithmic quantizer is
denoted with xf

min and maximal amplitude of this fixed quantizer is denoted with xf
max,

then border between uniform and logarithmic part, and maximal amplitude of adaptive
quantizer, for σ ∈ (σi−1, σi), are xa

min = gix
f
min and xa

max = gix
f
max.

Additional (side) information that determine which gain level (from K levels) is used,
should be sent to receiver. Therefore, we need log2 K extra bits for every frame of M

samples. Hence, bit-rate for forward adaptive quantizer is

R = log2 N +
log2 K

M
. (25)

Dependence of SQNR on input variance is presented in Fig. 6, for M = 200, K = 32,
N1 = 32, N2 = 96 and xf

min = 0.6σ0. For large values of K(K � 32), SQNR is
almost constant and average SQNR is very close to maximal SQNR, which is 35.116 dB.
This proves that G.712 standard can be satisfied, with bit-rate of 7.025 bits/sample, by
adaptation of novel semilogarithmic quantizer. This is not possible with A-law.

3.2. Lossless Coder

With a view to further decreasing of bit-rate, in this section we consider model which
consists of forward adaptive new semilogarithmic quantizer and lossless encoder. Models
of encoder and decoder are presented in Fig. 3. Lossless encoder is very simple, and it is
modification of lossless encoder given in Peric et al. (2009).

On the output of the forward adaptive encoder, indexes are obtained. There are N

different indexes I = {1, . . . , N }, whereby each index corresponds to one of N = 2r

representation levels of quantizer. First N1 = 2r1 indexes, I1 = {1, . . . , N1}, correspond

Fig. 3. Models of encoder and decoder (D – bitstream of encoded input samples; S 1 – additional bit in every
subframe, for lossless encoder; S 2 – additional information in frame, for forward adaptation).
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to representation levels in uniform part. Lossless encoder works in the following way.
Firstly, subframes of M1 indexes are formed. If all indexes in subframe belong to I1, then
each index in that subframe is coded with r1 bits. If at least one index in subframe is
higher than N1, then all indexes in that subframe are coded with r bits. One additional bit
for each subframe should be sent to receiver, to determine whether r1 or r bits are used
for indexes in that subframe. This additional bit increases bit-rate for 1/M1 bits/sample.
In this model two adaptations are applied: on variance inside frame and on maximal
amplitude inside subframe.

Index belongs to I1 if input sample belongs to uniform part. For input standard
deviation σ ∈ (σi−1, σi), input sample belongs to uniform part if it is smaller than
xa

min = gix
f
min. Probability that input sample is smaller than xa

min, denoted with p1,
for Laplacian distribution is:

p1(σ, si) = 1 − e
−

√
2xa

min(σi)

σ = 1 − e−
√

2gix
f
min

σ = 1 − e−
√

2six
f
min

σσ0 ;

σ ∈ (σi−1, σi). (26)

Probability that M1 samples belong to uniform part is pM1
1 . For σ ∈ (σi−1, σi), bit-rate

R(σ, si) is

R(σ) =
(
p1

(
σ, si

))M1
r1 +

(
1 −

(
p1

(
σ, si

))M1
)
r +

1
M1

+
log2 K

M
. (27)

Average bit-rate in the range (σi−1, σi), denoted with R
(i)
av , is

R(i)
av =

1
σi − σi−1

σi∫
σi−1

R(σ, si) dσ. (28)

Average bit-rate is

Rav =
1
K

K∑
i=1

R(i)
av . (29)

Integral in (28) cannot be solved in closed form. But, for large K (K � 32), interval
(σi−1, σi) is vary narrow and therefore σ from (σi−1, σi) can be approximated with si,
i.e., σ ≈ si. Using this approximation, expression (26) becomes

p1 ≡ p1(σ, si)
∣∣
σ=si

= 1 − e−
√

2x
f
min

σ0 . (30)

In that way, R(σ) for σ in (σi−1, σi) is approximated with R(si), which is constant and
therefore integral in (28) can be solved very easily. Since R

(i)
av , i = 1, . . . , K, are equal

to each other, there is no need for averaging in (29). Therefore, average bit-rate, Rav, is
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given with

Rav =
(
1 − e−

√
2x

f
min

σ0

)M1

r1 +
(
1 −

(
1 − e−

√
2x

f
min

σ0

)M1
)
r

+
1

M1
+

log2 K

M
. (31)

We take that frame for adaptation has length of M = 200 samples. Also, we take that
N = 128 and K = 32. Now, we should find optimal values for xf

min, xf
max, N1 and M1.

Dependence of average bit-rate Rav on M1 is given in Fig. 4. (This figure is drown for
xf

min = 0.95σ0, but dependence is very similar for all other values of interest). We can
see that optimal integer value is M1 = 2, and this value will be used in further analysis.

SQNR depends on both xf
min and xf

max whereas Rav depends only on xf
min. Firstly,

we consider one fixed value for xf
max, and for that value we find value for xf

min, denoted
with xf

min(xf
max), in the following way. Since Rav is decreasing function of xf

min, we
should find maximal value of xf

min so that SQNR � 34 dB, and this value is xf
min(xf

max).
Now, changing xf

max in some narrow range, we should find xf
min(xf

max) for each xf
max in

that range. Optimal xf
max is one that gives the highest xf

min(xf
max). This highest value is

optimal value of xf
min.

We consider three combinations for (N1, N2): (16, 112), (32, 96) and (64, 64). For
each of these combinations, parameters xf

min and xf
max are obtained in the way described

above, and dependences of average bit-rate Rav on SQNR are given in Fig. 5. We can see
that for required SQNR of 34 dB, combination (N1, N2) = (32, 96) gives the smallest
Rav = 6.432 bits/sample. Therefore, this is optimal combination. For this combination,
optimal values of parameters are: xf

min = 0.95σ0 and xf
max = 8σ0.

Fig. 4. Dependence of average bit-rate Rav on subframe length M1.
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Fig. 5. Dependence of average bit-rate Rav on SQNR for different values of N1 and N2.

Fig. 6. Comparation of SQNR for models described in Sections 3.1. and 3.2., for K = 32.

As it can be seen from the above procedure, Rav (this is parameter of lossless en-
coder) has influence on xf

min (this is parameter of quantizer). The fact that parameters of
lossless encoder have influence on parameters of quantizer, and reverse, represents joined
design of quantizer and lossless encoder. Joined design gives optimal values of parame-
ters, as opposed to separate design of quantizer and lossless encoder. Therefore, joined
design gives better performances in relation to separate design. Using this joined design,
standard G.712 is satisfied with average bit-rate Rav of only 6.432 bits/sample.

In the Fig. 6, SQNR in dependence on input variance for K = 32 is given, for two
cases. One case is forward adaptive quantizer (described in Section 3.1) and the second
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Fig. 7. Bit-rate R in dependence on input variance.

case is model with forward adaptive quantizer and lossless encoder (described in this
section). For the second case joined design is done. Optimal values of parameters for
both cases are given in the figure.

Dependence of bit-rate R on input variance (given with (27)) is presented in Fig. 7,
for K = 32. We can see that inside one interval σ ∈ (σi−1, σi), bit-rate R changes
slightly, from minimal value Rmin = R(σi−1) = 6.358 bits/sample, to maximal value
Rmax = R(σi) = 6.507 bits/sample. This means that small error will be done if R(σ),
for σ ∈ (σi−1, σi), approximates with R(si) = 6.432 bits/sample. For larger K, this
error will be even smaller. For example, for K = 64 we have that Rmin = R(σi−1) =
6.40 bits/sample, Rmax = R(σi) = 6.475 bits/sample and R(si) = 6.438 bits/sample.
In this way, validity of approximation, given with (30), is proved.

4. Experimental Results for Speech Coding

In this section we present experimental results, obtained by applying models from Sec-
tion 3 on speech signal. In our experiment we consider F frames with M speech samples.
In order to provide the experimental values of the average signal to quantization noise ra-
tio within the each of F frames we define the following relation:

SQNRex
p = 10 log10

(σex
p )2

Dex
p

, p = 1, . . . , F, (32)
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where (σex
p )2 denotes the variance of the input speech samples within the pth frame,

p = 1, . . . , F :

(
σex

p

)2 =
1
M

M∑
q=1

x2
pq, p = 1, . . . , F (33)

and Dex
p denotes the average distortion for the pth frame, p = 1, . . . , F :

Dex
p =

1
M

M∑
q=1

(
xpq − ya

pq

)2
, p = 1, . . . , F. (34)

With xpq and ya
pq are denoted the input speech samples and the outputs of the adaptive

semilogarithmic quantizer, respectively. By averaging the signal to quantization noise
ratios within the each of F frames (32), we can obtain experimental results (average
values of SQNR, denoted with SQNRex

a ).

SQNRex
a =

1
F

F∑
p=1

SQNRex
p . (35)

Experiments are done for two cases. In the first case, forward adaptive semilogarith-
mic quantizer (described in Section 3.1) is used. Experimental value of average SQNR
is 35.45 dB. Theoretical value, obtained in Section 3.1, is 35.116 dB. We can see that
matching of theoretical and experimental results is very good, since difference is less
than 1.5%.

In the second case, experiment is done with model described in Section 3.2, which
consists of forward adaptive quantizer and lossless encoder. Experimental value for aver-
age bit-rate Rav is 6.33 bits/sample, whereas theoretical value (from Section 3.2) is 6.432
bits/sample. The difference is less than 1.5%. Therefore, for this case we also have very
well matching between theoretical and experimental results.

Experimental results for both described cases are presented in Fig. 8.

5. Conclusion

In this paper the novel semilogarithmic quantizer was presented. It was shown that it
is much more suitable for adaptation than A-law quantizer. Forward adaptation of that
novel quantizer was done, and it was shown that G.712 standard can be satisfied with
bit-rate of 7.02 bits/sample, which is not possible with A-law. After that, lossless encoder
was applied, with a view to further decreasing bit-rate, and G.712 standard was satisfied
with bit-rate of 6.43 bits/sample. Joined design of adaptive quantizer and lossless en-
coder was done, and therefore optimal performances were obtained. Theoretical results
were verified by experiment on speech signal. It was shown that matching of theoretical
and experimental results was very well, since the difference was less than 1.5%. We can
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Fig. 8. Experimental results for SQNR for models described in Sections 3.1 and 3.2.

conclude that models presented in this paper are good solution for compression of speech
signal and other signals with Laplacian distribution. Future work and further improve-
ments of this model can be done using perceptual measures and voice detection, at it was
done in Kajackas and Anskaitis (2009).
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Originalaus logaritminio tipo kvantuoklio ir koderio be nuostoli ↪u
tiesioginė adaptacija kalbos signal ↪u suglaudinimui

Zoran H. PERIC, Milan S. SAVIC, Milan R. DINCIC, Dragan B. DENIC,
Momir R. PRASCEVIC

Šiame straipsnyje yra pateiktas naujas logaritminio tipo kvantuoklis Laplaso skirstiniui. Jis
yra paprastesnis negu klasikinis A-dėsnio logaritminio tipo kvantuoklis, kadangi jis turi vienetin↪i
stiprinim ↪a nulio aplinkoje. Taip pat juo gaunamas 2.97 dB aukštesnis signalo/kvantavimo triukšmo
santykis (SQNR) etaloninei dispersijai atžvilgiu A-dėsnio kvantuoklio, todėl jis labiau tinkamas
adaptacijai. Kvantuoklio tiesioginė adaptacija yra atliekama kalbos signalo kadrams. Šiuo būdu
G.712 standartas yra išpildomas naudojant 7 bitus/imčiai, kas yra ne↪imanoma klasikiniam A-dėsnio
kvantuokliui. Kiekvieno kadro viduje yra formuojami pokadriai ir jiems naudojamas koderis be
nuostoli ↪u. Tokiu atveju yra atliekama dviguba adaptacija: adaptacija pagal dispersij ↪a kadr ↪u viduje
ir adaptacija pagal amplitud ↪e pokadri ↪u viduje. Yra atliekamas koderio be nuostoli ↪u ir kvantuoklio
sujungimas, kuris užtikrina geresn↪i darbingum ↪a. Naudojant pasiūlyt ↪a kvantuokl↪i G.712 standartas
yra patenkinamas su tiktai 6.43 bit ↪u/imčiai. Pateikti eksperiment ↪u rezultatai, gauti pritaikant š↪i
model↪i kalbos signalui. Parodyta, kad eksperimentiniai ir teoriniai rezultatai sutampa labai gerai
(skirtumas yra mažesnis nei 1.5%). Šiame straipsnyje pateikti modeliai gali būti pritaikyti kalbos
signalui ir bet kokiam kitam signalui, turinčiam Laplaso skirstin↪i.




