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Abstract. In the presented paper, some issues of the fundamental classical mechanics theory in the
sense of Ising physics are introduced into the applied neural network area. The expansion of the
neural networks theory is based primarily on introducing Hebb postulate into the mean field theory
as an instrument of analysis of complex systems. Appropriate propositions and a theorem with
proofs were proposed. In addition, some computational background is presented and discussed.
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1. Introduction

The statistical physics of particles can be elucidated from the point of view of the classical
mechanics as well as a quantum-mechanics approach. The quantum-mechanics included
itself the classical one in the sense of a limit case. In the quantum-mechanics, moving of
an electron is described by a wave function, while in the classical mechanics, the electron
is considered as a material particle moving along the trajectory defined by the equations
of a motion (Landau and Lifschitz, 1989). The particle of the system is given by the
moment and its projection and in the quantum-mechanics the moment acquires a special
sense, i.e., a quantum number, that defines states of the system under their transformation
properties relative to cycling of the system coordinates. Any particle possesses a spin
moment or simply a spin and an orbital moment for characterizing a particle motion in
the space.

In literature, most cases are demonstrated by diluted magnetic alloys, such as AuFe
or CuMn, with a magnetic impurity concentration. The main condition seems to be a
locally random competition between ferromagnetic and antiferromagnetic forces. These
physical examples with surprising properties – sharp cusp in the susceptibility and oth-
ers are studied regarding theoretical positions (Edwards and Anderson, 1975; Fischer,
1975; Kirkpatrick and Sherrington, 1978; Sherrington and Kirkpatrick, 1975; Sherring-
ton and Southern, 1975) as well as experimentally (Canella and Mydosh, 1972). In or-
der to show the existence of a spinglass phase Edwards and Anderson (EA) (Edwards
and Anderson, 1975) have introduced a simple model in which a classical Heisenberg
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model with random Gaussian distribution of exchange interactions centered at zero is
considered. Fisher (1975), Sherrington and Southern (1975) have investigated a quantum
extension of the EA model. A class of infinite-ranged random models has been widely
investigated by Sherrington and Kirkpatrick (1975, 1978) by the mean field theory, order
parameters and phase diagrams. For this model, the extended mean field theory of Thou-
less et al. (1977) is discussed under physically sensible low temperature prediction. The
issues of investigation of finite-ranged random models are characterized by Katzgraber
et al. (2001, 2005), and the survey article of Garliauskas (2005).

The mean field spin-glass models with ferromagnetic couplings depending on two
random variables are discussed by Hemmen (1982) and an extended case with random
p-vectors and an ergodicity hypothesis is examined by Provost and Vallee (1983). Here
the spins of ferromagnet are taken on a regular lattice and the interactions are as random
(Fischer, 1975). Some other problems such as the influence of indirect couplings, random
embedded patterns and other ordering parameters for neural networks are discussed by
Garliauskas (2009).

In this article, the main attention is paid to the collective behavior of neural networks
(NN) the theoretical background of which is like a statistical behavior of ferromagnet or,
in general, like the statistical mechanics founded by infinite-ranged Ising Hamiltonians.
Configurations of the neurons like the spin system are defined as random elements and
memories with the help of couplings in the thermodynamic limit (Amari and Maginu,
1988; Amit et al., 1985; Katzgraber and Young, 2005; Sompolinsky, 1986 and many
others).

In this work, an attention is also paid to the mathematical foundation of an artificial
neural network that is tightly connected with storing information, extends the ideas of
the article (Garliauskas, 2006). The possible advantages and benefits of the theory are
an including more realistic presentation of the Hebb postulate providing the accumulated
effect of the learning on the synaptic connections ad simplifying the solution of free
energy function as a conventional surface instead of saddle-like point one.

In Section 2, the Hamiltonian functional as the fundamental statistical mechanic the-
ory is discussed. A specific Hamiltonian is considered here for neural network systems. In
Section 3.1, different definitions, propositions, and notions, necessary for more accurate
proofs of the methodology proposed , are considered. Section 3.2 is aimed at the deter-
mination theorem and its proof. The additional computational background is presented in
Section 4.

2. Hamiltonian Functionals

The main characteristic of the statistical physics as well as the neural network theory
is the total energy function of a spin system expressed by a spin Hamiltonian. In the
quantum-mechanical case, the spin Hamiltonian for a regular system is presented as

H = − 1
2

∑
(i,j)∈N

Jij

[
Sz

i Sz
j + γ

(
Sx

i Sx
j + Sy

i Sy
j

)]
− μh

∑
i∈N

Sz
i (i �= j), (1)
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where Jij is a coupling of the spin system, �Si. �Sj are quantum-mechanical spin operators
with the components x, y, z on the ith and jth sites, μ is a magnetic moment, and h

is the external magnetic field. The x component Sx
i and Sx

j of vectors �Si and �Sj have
eigenvalues S, S − 1, S − 2, . . . , −S, and the y and z components are similar. γ is a
constant; for γ = 0, it is coincident to the Ising model and, for γ = 1, to the Heisenberg
model (Griffits and Lebowitz, 1968).

The surface of Hamiltonian (1) is very complicated under an the influence of non-
linearities of the couplings Jij and the products of vectors �Si and �Sj . There are such
as valleys, barriers, multiple local minima, complex boundary conditions. Another case
of Hamiltonian form is accepted as a more complicated one under the influence random
anisotropy of the mixed-spin Ising model (Vieira et al., 2001). According to Vieira et
al. (2001) the mixed-spin Ising model is represented by a two-sublattice system with the
variables σ = ±1 and S = 0, ±1 on sublattices A and B, respectively. The most general
spin Hamiltonian is described as

HAB = −J
∑

i∈A,j∈B

σiSj + D
∑
j∈B

S2
j , (2)

where J is a parameter of ferromagnetic coupling, the second member of (2) determines
the spin field with the parameter D > 0, A and B are the sets of sublattices.

The competition between ferromagnetic exchange and anisotropy leads to the appear-
ance of critical lines and a tricritical point location (Vieira et al., 2001).

To be specific, for the neural system we shall consider a system with the Hamiltonian

H0 = − 1
2

∑
(i,j)∈N

JijSiSj − h
∑
i∈N

Si (i �= j), (3)

where Si = 2Sz
i = ±1. Here instead σ of (2) we return to Si, Sj with new appropriate

sense. The first sums are over the nearest – neighbor pairs of sites. The coupling constant
Jij between two neighboring neurons depends on the actual pair of the states Si and Sj

considered. The constant Jij can be either positive (ferromagnetic interaction or neuron
excitation) or negative (antiferromagnetic interaction or neuron inhibition).

Furthermore, Hamiltonians (1), (3) will be used in simplified form for the case where
is no the external magnetic field.

The behavior of spins, when the coupling strength is random, is considered by the
Boltzmann distribution

PJ (S) =
1

ZJ
e−βH(J,S), (4)

where

ZJ =
∑

{S}
e−βH(J,S) (5)



342 A. Garliauskas

is a partition function. Then the free energy density

f = − 1
βN

ln(ZJ) (6)

is self-averaging in the thermodynamic limit. The β = 1/T , i.e., the inverse of temper-
ature. In dynamics, starting from an arbitrary initial configuration, the system evolves
monotonically decreasing the value of H and leads to the limit of a steady state, which is
the local extremum.

3. The Mathematical Background of the Generalized NN Model

The physiological background of the neuro-spin behavior is briefly reviewed. In the Hop-
field model (Hopfield, 1982) and others, each neuron is presented as an Ising spin with
two possible states: “up” and “down” positions, i.e., the neuron fires an electrochemical
signal in case its potential exceeds the threshold value. The neurons are interconnected
by synaptic couplings of strength Jij , which define the synaptic potential of a signal fired
by the jth neuron to the postsynaptic potential of the ith neuron. The potential can be
either positive (excitation) or negative (inhibition). Do not paying an attention that the
neural network is presented by weekly realistic condition that every neuron is connected
to every other one and the neurons will interacted indirectly, the theoretical background
made under these suggestions do not diminish the practical importance.

3.1. Notions, Propositions and Definitions

The interactions between postsynaptic potentials and presynaptic ones are described by
the Hebb rule or postulate (Hebb, 1949). The Hebb postulate is formulated as the follow-
ing notation.

Notion. The Hebb postulate reads: “When an axon of cell A is near enough to excitate
a cell B and repeatedly or persistently takes part in firing it, some growth process of
metabolic change takes place in one or both cells such that A’s efficiency as one of the
cells firing B is enhanced” (Hebb, 1949). This definition is not strict. It is established by
practical neurophysiological experiments and was further formalized as follows.

PROPOSITION 1. Based on Notion the next simple formula

ΔJij = kSiSj (7)

follows.
Here ΔJij is a change of the synaptic weight Jij between the ith and jth neurons,

which depends on the conjunctive presence of the presynaptic potential Sj and the post-
synaptic one Si, and k is the learning rate.
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PROPOSITION 2. This proposition expresses the Hebb postulate through an accumulated
effect as follows

Jij =
1
p

p∑
μ=1

ξμ
i ξμ

j , (8)

where p is the number of patterns {ξi}, {ξj } as the embedded images, besides, the pat-
terns are random with equal probability for ξμ

i , ξμ
j = ±1.

The authors of papers (Amit et al., 1985; Sompolinsky, 1986), and others use for-
mula (8) divided by N (number of neurons) instead of the number of patterns p, which,
to my mind, leads to extremal reduction of coupling strengths Jij when N is increased.
This correction will be in the lead of ideas in this issue.

DEFINITION 1. The memory capacity α in the neural network as an Ising spin system is
a relation

α = p/N. (9)

Supposedly, one is mind, that the memory capacity depends on an increase of the
number of synapses rather than an increase the number of neurons with the same per-
centage (Little and Shaw, 1978).

DEFINITION 2. The function S: R → [−1, 1] is a squashing function if it is non-
decreasing and satisfies

limS(u)u→+∞ = 1, limS(u)u→ − ∞ = −1. (10)

The squashing functions include the signum function defined by

sgn S(u) =
{

1, if u � 1,
−1, if u < −1

(11)

or the signum function with a threshold h

sgn S(u − h) =
{

1, if u � h,
−1, if u < h.

(12)

Other squashing functions are known: the sigmoidal function, the ramp or saturating
function, the sigmoidal cosine squashing function.

Lemma 1. If Si, ξμ
i are squashing signum functions (11) there exists a relation

p∑
μ=1

N∑
ij

ξμ
i Siξ

μ
j Sj =

p∑
μ=1

[( N∑
i=1

ξμ
i Si

)2

− pN

]
(i �= j). (13)
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The proof of the lemma is obvious. We can easily verify that, given different values
of p and N .

DEFINITION 3. The overlap function the mμ of μ component of the vector �m is an av-
erage of the product of the pattern ξμ

i and state variable Si , i.e.,

mμ =
1
N

N∑
i=1

ξμ
i Si. (14)

3.2. The Free Energy Density Solution

The free energy density function including its complex Hamiltonian can form a compli-
cated surface with valleys and barriers. We give below some mathematical background
with computational experiments in the next section. Let us formulate the following theo-
rem.

Theorem. Let Ω be a set of N , N ∈ Ω, and Θ a set of p, p ∈ Θ, then the free energy
density (6) with the partition function of type (5)

Z = exp
(

β

2p

∑
(i,j)∈N

ξμ
i Siξ

μ
j Sj

)
, (i �= j) (15)

and corresponding to the Proposition 2, Definitions 2 and 3, and the lemma has a local
optimal solution

�m =
1
N

N∑
i=1

�ξi tanh
(βN

p
�m�ξi

)
. (16)

Proof. Let us represent Hamiltonian (3) without the external field

H0 = − 1
2

∑
(i,j)∈N

JijSiSj , (i �= j).

Then in view of Proposition 2, Definitions 2 and 3, Lemma and the multiplicative sum∑
±1 ·

∑
±1 · · ·

∑
±1 passing to

∑N
i=1 cosh(βN

p �m�ξi), the partition function Z (15) be-
comes

Z = exp
(βN

2

)
exp

(
− βN2

2p
�m2 +

N∑
i=1

ln 2 cosh
(

βN

p
�m�ξi

))
.

According to (5) the free energy function

f = − 1
Nβ

ln Z = − 1
2

+
N

2p
�m2 − 1

Nβ

N∑
i=1

ln 2 cosh
(

βN

p
�m�ξi

)
. (17)
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Then the extremum (minimum) of the free energy function is obtained after differentiat-
ing the overlap parameter and equating it to zero:

�m = 1/N
N∑

i=1

�ξi tanh
(

βN

p
�m�ξi

)
. (18)

This is the necessary condition of the minimum free energy function. The computation
results in next section show that the minimum is global.

To corroborate the sufficient condition, we take one component of the vector �m. Then
the second derivative is found

d2f

d(mμ)2
=

N

p
− βN

p2

N∑
i=1

(
ξμ
i

)2
(

1 − tanh2

(
βN

p
mμξμ

i

))

and it is positive, because the derivative over tanh(·) is positive and is equal to or is
smaller than one. The β and p are always positive and β < p. The (ξμ

i )2 is always equal
to one because the vector projections ξμ

i = ±1. The proof of the theorem is complete.

4. Computational Background

A computational analysis is necessary because, if we consider different ranges of param-
eters, there are some doubts, always or not always, for example, whether the necessary or
sufficient conditions of the theorem (Section 3) will be completely fulfilled. Besides, it
is of interest how individual parameters influence the main output functions. To this end,
let us introduce the parameter α (9), memory capacity in NN, into the free energy density
equation (17) written for one component of vectors �m and �ξi. Then we obtain

f = − 1
2

+
1
2α

(
mμ

)2 − 1
βN

N∑
i=1

ln 2 cosh
(

β

α
mμξμ

i

)
, (19)

and write down the second derivative over mμ

d2f

d(mμ)2
=

1
α

[
1 − β

Nα

N∑
i=1

(ξμ
i )2

(
1 − tanh2

(
β

α
mμξμ

i

))]
. (20)

Note that (ξμ
i )2 always equals one.The change of the sign of its components does not

influence 1 − tanh2(·), as the derivative of tanh(·) is always positive and smaller or
equal to one.

We have performed some calculations using Maple 4 of the free energy function (19)
and of the second derivative to check their behavior depending on the parameters α and
m in their work ranges.
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Fig. 1. The free energy density versus overlapping and memory capacity parameters.

Fig. 2. The second derivative dependent on overlapping and memory capacity parameters.

The free energy surface is shown in Fig. 1 and its second derivative in Fig. 2. The free
energy function in these ranges of parameters possesses a clearly expressed minimum
which is a global one. The minimum values are limited to the boundary of parameters.
Fig. 2 confirms the positiveness of the second derivative and corroborates the sufficient
proof of the theorem (Section 3).

Further, let us additionally analyze the influence of temperature on the memory capac-
ity in neural networks. The influence of nonlinearities and other factors has been studied
in the articles (Amit et al., 1985; Garliauskas, 2006). Taking into account that tanh(x)
can be simply approximated as a linear one, i.e., tanh(x) = x + 0(x3), the expression of
overlapping function (18) can be written as follows

mμ = mμ β

α

1
N

N∑
i=1

∣∣ξμ
i

∣∣

in the narrow area of zero for one component of the vector �m. After mμ reducing and
expressing α we obtain

α =
1

T/Tc

∣∣ξμ
∣∣,
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Fig. 3. The memory capacity versus temperature.

where |ξμ| = 1
N |

∑N
i=1 ξμ

i | is an absolute average of patterns, β = Tc/T , where Tc is the
critical temperature.

The implies that the memory capacity is decreased nearing to the critical temperature
and is increased when the temperature is lower than critical (Fig. 3).

5. Conclusions

1. The inclusion of more realistic theoretical presentation of the Hebb postulate and
an indirect couplings among neurons allows to reduce neural network theory and
to do it closer to practical requirements of learning processes in the recognition
theory.

2. In spite of literature sources, where mountain that the saddle point of the free en-
ergy function exists, we prove that after introducing proper Hebb postulate the en-
ergy function surface is simplified, and it is providing an existence of the minimum
solution invoking the appropriate theorem.

3. Some modeling results confirm the theoretical findings into work ranges of pa-
rameters and an existence of global solution as well as a dependence of applied
memory capacity of neural networks versus temperature.

REMARK. Certainly we understand, that only a small range of problems of theoretical
neural network system has been studied here. The main investigations in future may be
designated to search for global minimum of the free energy function with stochastic initial
data, stability in dynamics, and chaos phenomenon.

References

Amari, S.I., Maginu, K. (1988). Statistical neurodynamics of associative memory. Neural Netw., 1(1), 63–73.
Amit, D.J., Gutfreund, H., Sompolinsky, H. (1985). Spin-glass model of neural networks. Phys. Rev. Lett.,

32(2), 1007–1018.



348 A. Garliauskas

Canella, V., Mydosh, J.A., (1972). Magnetic ordering in gold–iron alloys. Phys. Rev. B, 6, 4220–4237.
Edwards, S.F., Anderson, P.W. (1975). Theory of spin glasses. J. Phys. F: Metal. Phys., 5, 965–974.
Fischer, K.H. (1975). Static properties of spin glasses. Phys. Rev. Lett., 34(23), 1438–1441.
Garliauskas, A. (2005). An influence of nonlinearities to storage capacity of neural networks. Informatica,

16(2), 159–174.
Garliauskas, A. (2006). Nonlinearities in artificial neural systems interpreted as an application of Ising physics.

Nonlinear Anal.: Model. Control, 11(4), 367–383.
Garliauskas, A. (2009). Embedded patterns, indirect couplings with randomness, and memory capacity in neural

networks. Informatica, 20(4), 1–10.
Griffits, R.B., Lebowitz, J.L. (1968). Random spin systems: some rigorous results. J. Math. Phys., 9(8), 1284–

1292.
Hebb, D.O. (1949). The Organization of Behavior, Wiley, New York.
Hemmen, J.L. (1982). Classical spin-glass model. Phys. Rev. Lett., 49(6), 409–412.
Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities.

Proc. Natl. Acad. Sci. USA, 79, 2445–2558.
Katzgraber, H.G., Young, A.P. (2005). Probing the Almeida–Thouless line from the mean-field model. Cond-

mat., 0507138 v3, 1–6.
Katzgraber, H.G., Palassini, M., Young, A.P. (2001). Monte-Carlo simulations of spin-glasses at low tempera-

tures. Phys. Rev. B, 63, 184422.
Kirkpatrick, S., Sherrington, D. (1978). Infinite ranged models of spin-glasses. Phys. Rev. Lett. B, 17(11), 4381–

4403.
Landau, L.D., Lifschitz, E.M. (1989). Theoretical Physics: Quantum Mechanics (Non-Relative Theory), III,

Nauka Press, Moscow (in Russian).
Little, W.A., Shaw, G.L. (1978). Analytic study of the memory storage capacity of a neural network. Math.

Biosci., 39, 281–290.
Provost, J.P., Vallee, G. (1983). Ergodicity of the coupling constants and the symmetric n-replicas trick for a

class of mean-field spin-glass models. Phys. Rev. Lett., 50(8), 598–600.
Sherrington, D., Kirkpatrick, S. (1975). Solvable model of a spin glasses. Phys. Rev. Lett., 35, 1792–1795.
Sherrington, D., Southern, B.W. (1975). Spin glass versus ferromagnet. J. Phys. F: Metal. Phys., 5, L49–L53.
Sompolinsky, H. (1986). Neural networks with nonlinear synapses and static noise. Phys. Rev. A, 4(3), 2571–

2574.
Thouless, S.J., Anderson, P.W., Palmer, R.G. (1977). Solution of solable model of a spin glass. Philos. Mag.,

35(3), 593–601.
Vieira, A.P., de Carvallio, J.K., Salinas, S.R. (2001). Phase-diagram of a random-anisotropy mixed-spin Ising

model. Phys. Rev. D, 63, 184415.

A. Garliauskas received his habil. dr. degree of technical sciences from the Computer
Center, the Department of the USSR Academy of Sciences, Novosibirsk, USSR, in 1977.
He is a senior researher of the Institute of Mathematics and Informatics, a chairman of
the Informatics Department of the Lithuanian Sience Society and a member of its coun-
cil. His research interest includes neuroinformatics methodology, control problems and
development of neural networks algorithms, recognition, chaos processes.

Neurotinkl ↪u teorijos išplėtimas ↪ivedant Hebo postulat ↪a

Algis GARLIAUSKAS

Straipsnyje fundamentinės klasikinės mechanikos teorijos, Izingo fizikos prasme, pagrindai
perkeliami ↪i taikom ↪aj ↪a neurotinkl ↪u srit↪i. Atliktas neurotinkl ↪u teorijos išplėtimas ↪ivedant Hebo pos-
tulat ↪a ir formuluojant bei ↪irodant atitinkam ↪a teorem ↪a. Duotas skaitmeninis teorijos pagrindimas.


