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Abstract. A Group-Oriented Cryptosystem (GOC) allows a sender to encrypt a message sent to
a group of users so only the specified sets of users in that group can cooperatively decrypt the
message. Recently, Li et al. pointed out unauthorized sets in the receiving group can recover the
encrypted messages in Yang et al.’s GOC; and they further repaired this security flaw. However,
the improved GOC contains inexact security analysis. Further, conversion of the scheme into a
threshold cryptosystem results in inefficiency. This study enhances Li et al.’s GOC, both in that
it achieves the requirements of GOC but also that it can be efficiently converted into a threshold
cryptosystem. Under the decisional Diffie–Hellman problem assumption, the proposed scheme is
demonstrated to be provably secure against chosen plaintext attacks.
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1. Introduction

Rapid advances in computer technology and the growth of the Internet are changing the
way we conduct our daily and business lives. Secrecy is an important issue with respect
to sensitive data transferred over insecure public channels. In traditional public-key cryp-
tosystems such as RSA (Rivest et al., 1978) and ElGamal (1985), any sender can use
a recipient’s public key to encrypt messages, and only the recipient who has the cor-
responding secret key is allowed to recover the message. However, some applications
require several users be able to cooperatively decrypt messages for distributing the power
of decrypting. For example, a sender may want to send a confidential contract for business
to a group so only the managers can cooperatively recover the message. Unfortunately,
traditional public-key cryptosystems cannot satisfy the requirements of the above situa-
tion.

To satisfy the necessary requirements of our daily lives including business activi-
ties, Desmedt (1987) proposed the concept of Group-Oriented Cryptosystems (GOC). In
GOCs, a sender first determines an access structure suitable to a receiving group of users,
and then sends an encrypted message to the group so only the authorized subsets of users
in the group can cooperatively recover the message. An authorized subset of the receiving
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group is denoted an access instance f , and access instances are collectively known as the
access structure F , which can be represented by the Disjunctive Normal Form (DNF),
that is, F = f1 + f2 + · · · + fk. Let U1, U2, . . . , Un be all users in the receiving group,
and the access instances f1 = U1U2U3, f2 = U2U3U4, f3 = U1U4. The access structure
can be represented as F = f1 + f2 + f3 = U1U2U3 + U2U3U4 + U1U4. Only U1, U2,
and U3; or U2, U3, and U4; or U1 and U4 can cooperatively recover the message.

Yang et al. (2003) proposed a GOC based on the ElGamal cryptosystem, which is
more efficient than previously proposed GOCs (Chang and Lee, 1992, 1993; Lin and
Chang, 1994; Tsai et al., 1999) in terms of the sender’s computational complexity and
the ciphertext size. Simultaneously, they also presented the elliptic curve version (Koblitz
et al., 2000) of the proposed GOC which provides smaller key sizes, increased bandwidth
savings, and faster implementations. Recently, Li et al. (2007) pointed out an unautho-
rized set of users can recover messages sent using Yang et al.’s GOC, and proposed an
improved method to withstand such attacks.

Li et al.’s improved GOC maintained the efficiency of Yang et al.’s GOC without any
computational efforts or ciphertext sizes. The sender encrypts the message for each access
instance by only multiplying the users’ public keys in that instance. However, Li et al.
did not provide an exact security analysis for the improved GOC. Another special concept
of group-oriented cryptosystems is the (t, n) threshold cryptosystem, which allows any
t users in the group of n users to have the ability to cooperatively recover the message
and is also applied in many kinds of digital signature (Gao et al., 2009; Liu and Huang,
2010). However, Li et al.’s GOC should require huge computational efforts and additional
ciphertexts needed for conversion into a threshold cryptosystem. Thus, it is impractical
in real-world applications.

In this study, a computation-efficient Generalized Group-Oriented Cryptosystem
(GGOC) based on Pedersen’s threshold cryptosystem (Pedersen, 1991a) is presented
which is more general than Li et al.’s GOC. Though the proposed GGOC is based on
the threshold cryptosystem, it still satisfies the requirements of GOC and is more effi-
cient than Li et al.’s GOC converted into a threshold cryptosystem. Further, a sender will
have no idea who cooperatively recovers messages in the threshold version; the proposed
scheme can easily insert supervisors into the access structure to prevent any users with
the threshold value from unscrupulously recovering the message. Compared to previ-
ously proposed GOCs, with respect to being converted into a threshold cryptosystem, the
proposed GGOC requires a number of modular exponentiations for the sender and the
ciphertext size for the group to be fixed as constants.

We also provide a concrete analysis of the reduction from Decisional Diffie–Hellman
(DDH) to the proposed scheme for proving its security. Under the DDH problem assump-
tion, the proposed GGOC is demonstrated to be provably secure against chosen plaintext
attacks. As we all know, in public-key cryptosystems, the adversary can obtain the cipher-
text of any plaintext chosen by him or her. This is a basic security demand for public-key
cryptosystems (Bellare et al., 1998, 2004).

The rest of this paper is organized as follows. In Section 2, Li et al.’s GOC is briefly
reviewed and then some comments on the scheme are presented. Section 3 presents the
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GGOC and shows its accuracy. Section 4 defines the security notations for the GGOC, and
analyzes its security. Then, we compare the computational complexity and the ciphertext
size of our scheme with those of Li et al.’s scheme. Finally, conclusions are specified in
Section 5.

2. Comments on Li et al.’s Group-Oriented Cryptosystem

To state our results clearly and precisely, we begin with a review of Li et al.’s GOC.
Assume U is the sender and U1, U2, . . . , Un are all users in the receiving group. Let p be
a large prime so p = 2q + 1, and a generator g with order for the subgroup G, where G
is a subgroup of quadratic residues in Z

∗
p. The scheme is comprised of three phases: (1)

Key Generation Phase, (2) Encryption Phase, and (3) Decryption Phase.

Key Generation Phase. The key distribution center chooses a random number xi ∈R Z
∗
q

as a secret key for user Ui; and yi = gxi mod p as the corresponding public key for i = 1
to n in the receiving group. Anyone can via Ui’s identity idi to get his/her public key yi

from the X.509 directory authentication service (ITU, 2005).

Encryption Phase. To encrypt the message M (M < p) for the group, the sender U

firstly determines the access structure F = f1 + f2 + · · · + fk for M , and then performs
the following steps.

Step 1. Choose a random number r ∈R Z
∗
q and compute B = gr mod p.

Step 2. Compute Cj = M ⊕ ((
∏

Ui ∈fj
yi)r mod p) for j = 1 to k, where ⊕ denotes the

bit-wise exclusive-or operation. Then send {F, B, C1, C2, . . . , Ck } to the receiving
group.

Decryption Phase. After receiving {F, B, C1, C2, . . . , Ck }, the users Uis for i = j1 to jv

in the access instance fj use their secret keys to cooperatively recover the message M as
follows.

Step 1. Compute Ti = bxi mod p for i = j1 to jv .
Step 2. Recover M = Cj ⊕ (

∏
Ui ∈fj

Ti mod p).
The sender encrypts a message for each access instance by multiplying the users’

public keys in Li et al.’s GOC. There is no security proof to demonstrate what the cryp-
tographic assumptions in Li et al.’s GOC are. Unfortunately, such a heuristic security
analysis for evaluating the security results in several proposed schemes that were as-
sumed to be secure but were later found to have been flawed (Choo et al., 2005, 2006;
Choo, 2008).

On the other hand, for practical applications using GOC, the receiving group is rep-
resented by the company, the access instances f1, f2, . . . , fk by the departments, and the
users U1, U2, . . . , Un by the employees. Li et al.’s GOC allows senders to assign the
employees by determining the access structure and to allow the users to cooperatively
recover the message.

However, if the sender wants any t (t � n) employees to collectively have the
ability on behalf of the company or department to recover the message, the computa-
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tional complexity of the sender will dramatically increase. Modifying the access struc-
ture F allows the GOC to be easily converted into the (t, n) threshold cryptosys-
tem. That is, the access structure with the threshold value t can be represented as
F = U1U2 . . . Ut + U1U2 . . . Ut−1Ut+1 + · · · + Un−t+1Un−t+2 . . . Un. The number
of access instances is k = n!/t!(n − t)!. Since the times of encryption a message M

is according to the number of access instances k, Li et al.’s GOC requires enormous
computational efforts and additional ciphertexts needed for conversion into a threshold
cryptosystem. Indeed, the sender only uses the group’s public key to encrypt the mes-
sage M in Step 2 of the encryption phase in the threshold cryptosystems, only requiring
1 modular exponentiation. Compared with proper threshold cryptosystems, the sender’s
computation requires (n!/t!(n−t)!) modular exponentiations in the original GOC, which
are extremely inefficient. Of course, the ciphertext size is larger than that in a threshold
cryptosystem.

Further, in the original GOC, the sender can utilize the identities to produce the ac-
cess structure F and thus be aware of who is able to obtain the message. However,
when the GOC is converted into the threshold cryptosystem, the sender has no knowl-
edge of who will obtain the message. In order to prevent any t employees from un-
scrupulously recovering the confidential message, sometimes the threshold cryptosys-
tem requires one or more supervisors to help in the process of decrypting. The ac-
cess structure with the threshold value t and a supervisor S can be represented as
F = U1U2 . . . UtS + U1U2 . . . Ut−1Ut+1S + · · · + Un−t+1Un−t+2 . . . UnS. For the
same reason, when the GOC is converted into the threshold cryptosystem with one or
more supervisors, the process remains inefficient.

To solve the above problems, a computation-efficient generalized group-oriented
cryptosystem is proposed in the next section.

3. The Proposed Generalized Group-Oriented Cryptosystem

The parameters p, q, and g are the same as those in Li et al.’s scheme. Pedersen’s
distributed key generation scheme (Pedersen, 1991a) based on verifiable secret sharing
(Chang et al., 2005; Pedersen, 1991b) is performed in the key generation phase. Details
of three phases are stated as follows.

Key Generation Phase. Let S1, S2, . . . , Sl denote l supervisors, xsi ∈R Z
∗
q the secret

key, and ysi = gxsi mod p the corresponding public key. Each Ui for i = 1 to n in the
receiving group performs the following steps:

Step 1. Choose a random number di ∈R Z
∗
q .

Step 2. Choose a random (t − 1)th degree polynomial Pi(z) over Z
∗
q such that Pi(z) =

pi,0 + pi,1z + pi,2z
2 . . . pi,t−1z

t−1, where ∀j pi,j ∈ Z
∗
q and Pi(0) = pi,0 =

di. Then, send Pi(idj) to Uj via a secret channel and broadcast the check values
gpi,l mod p for l = 0 to t − 1.
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After receiving Pi(idj) from Ui, each Uj checks its validity by the equation

gPi(idj) ?=
t−1∏
l=0

gpi,l ·idl
j mod p. (1)

If Eq. (1) holds, proceed to the next step; else, Pi(idj) is requested to be sent again.
Step 3. Compute his/her secret key

xi =
n∑

j=1

Pj(idi) mod p, (2)

the corresponding public key yi = gxi mod p, and

y =
n∏

j=1

gpj,0 mod p (3)

is the public key for the group.

Encryption Phase. The sender U wants to send the message M to the group-oriented
access structure F , the threshold value t of access structure Ft, or the threshold value
t of access structure with supervisors F s

t ; and then performs the following steps in the
individual cases.

Case I: For the access structure F = f1 + f2 + · · · + fk

Step 1. Choose a random number r ∈R Z
∗
q and compute B = gr mod p.

Step 2. Compute Cj = M ⊕ ((
∏

Ui ∈fj
yi)r mod p) for j = 1 to k, and then send

{F, B, C1, C2, . . . , Ck } to the group.

Case II: For the access structure Ft = ft, where ft denotes a threshold instance
Step 1. Choose a random number r ∈R Z

∗
q and compute B = gr mod p.

Step 2. Compute C = M ⊕ (yr mod p) and send {Ft, B, C} to the group.

Case III: For the access structure F s
t = ftS1S2 . . . Sl with l supervisors

Step 1. Choose a random number r ∈R Z
∗
q and compute

B = gr mod p. (4)

Step 2. Compute

C = M ⊕
((

y ·
l∏

i=1

ysi

)r

mod p

)
, (5)

and then send {F, B, C} to the group.

Decryption Phase. According to the access structures F , Ft, or F s
t , the users Uis for

i = j1 to jv in the access instance fj , or any t users in the group (with/without supervi-
sors) can cooperatively recover the message M in the following three cases.
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Case I: For the access structure F

Step 1. Compute Ti = Bxi mod p for i = j1 to jv .
Step 2. Recover

M = Cj ⊕
( ∏

Ui ∈fj

Ti mod p

)
. (6)

Case II: For the access structure Ft

Without loss of generality, assume that U1, U2, . . . , Ut want to recover the mes-
sage M .

Step 1. Compute Ti = B

xi

n∏
j=1,j �=i

idj

idj − idi
mod p, for i = 1 to t.

Step 2. Recover

M = C ⊕
( t∏

i=1

Ti mod p

)
. (7)

Case III: For the access structure F s
t

Each Ui for i = 1 to t and Sj for j = 1 to l performs the following steps, respec-
tively.

Step 1. Compute

Ti = B

xi

n∏
j=1,j �=i

idj

idj − idi
mod p, for i = 1 to t. (8)

Step 2. Compute

Tsj = Bxsj mod p, for j = 1 to l. (9)

Step 3. Recover

M = C ⊕
( t∏

i=1

Ti ·
l∏

j=1

Tsj mod p

)
. (10)

Pedersen’s distributed key generation scheme is employed during the key generation
phase, and thus is unrelated to the functions of Li et al.’s GOC. Any user Uj in the group
can verify that Pi(idj) is distributed by Ui in Eq. (1) (Pedersen, 1991b). Obviously, Case I
is Li et al.’s GOC and Case II is Pedersen’s threshold cryptosystem. The sender encrypts
the message by multiplying the group’s public key and the supervisors’ public keys in
Case III. One can see that Case III includes Case I and Case II. The correctness of Eq. (6)
and Eq. (7) can be shown by Eq. (10). Here, the correctness of Eq. (10) is shown as
follows. From Eq. (5), we have
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C = M ⊕
((

y ·
l∏

i=1

ysi

)r

mod p

)

= M ⊕
((

g

∑n

j=1
pj,0 · g

∑l

i=1
xsi

)r mod p
)

by Eq. (3)

= M ⊕
(
B

∑n

j=1
pj,0 · B

∑l

i=1
xsi mod p

)
by Eq. (4).

The above equation can be further rewritten as

M = C ⊕
(
B

∑n

j=1
pj,0 · B

∑l

i=1
xsi mod p

)

= C ⊕
(
B

∑t

i=1
xi

∏n

j=1,j �=i

idj
idj −idi · B

∑l

i=1
xsi mod p

)
by the Lagrange formula

= C ⊕
(

t∏
i=1

Ti ·
l∏

j=1

Tsj mod p

)

which lead to Eq. (10).

4. Security Analysis and Performance Evaluation

In this section, several security notations used in the generalized group-oriented cryp-
tosystem are defined, and then the security and performance of the proposed scheme are
analyzed. Since Case III in the proposed scheme includes Case I and Case II, the follow-
ing narrations are aimed at Case III.

4.1. Security Notations

In order to prove the GGOC scheme is secure against chosen-plaintext attacks under the
DDH problem, a variation of the DDH problem is introduced. Since the sender encrypts
a message by multiplying both the group’s public key and the supervisors’ public keys,
this problem is called the Multiply Decisional Diffie–Hellman (MDDH) problem. Sub-
sequently, we shall prove a polynomial-time reduction from the DDH problem to the
MDDH problem.

DEFINITION 1 [Decisional Diffie–Hellman Problem]. There are several domain param-
eters, primes p and q such that q|p − 1, and a generator g with order for the subgroup G,
where G is a subgroup of quadratic residues in Z

∗
p. Consider the following two distribu-

tions with α, β ∈R Z
∗
q and Z ∈R G:

• the distribution R of (gα, gβ , Z) ∈ G3;
• the distribution D of (gα, gβ , gαβ) ∈ G3.
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The DDH problem is hard if there is no polynomial-time algorithm A that satisfies

|Pr[A(D) = true] − Pr[A(R) = true]| >
1

P (|q|) ,

for any polynomial P , where the probability concerns the random choices α, β and Z.

ASSUMPTION 1 [Multiply Decisional Diffie–Hellman Problem]. There are several do-
main parameters p, q, g, and G identical to those in Definition 1. Consider the following
two distributions with xsis ∈R Z

∗
q for i = 1 to l, x, r ∈R Z

∗
q , and N ∈R G:

• the distribution R′ of (gxs1 , gxs2 , . . . , gxsl , gx, gr, N) ∈ G l+3;
• the distribution D′ of (gxs1 , gxs2 , . . . , gxsl , gx, gr, g(xs1+xs2+···+xsl+x)r) ∈ G l+3.

The MDDH problem is hard if there is no polynomial-time algorithm A that satisfies

|Pr[A(D′) = true] − Pr[A(R′) = true]| >
1

P (|q|) ,

for any polynomial P , where the probability concerns the random choices xsis, x, r,
and N .

The security of message confidentiality is defined as indistinguishability under cho-
sen plaintext attacks in the following security model (Bellare et al., 1998). In this security
model, the adversary attempts to compromise a target ciphertext of the designated recip-
ients (the group and supervisors).

DEFINITION 2 [Indistinguishability under Chosen Plaintext Attacks]. A generalized
group-oriented cryptosystem is semantically secure against chosen plaintext attacks if
there exists no polynomial-time adversary A with a non-negligible advantage in the fol-
lowing game.

SETUP: First, the GGOC’s key generation algorithm is run by a challenger C with a
security parameter as input. C gives the system parameters, the group’s public key y, and
the supervisors’ public keys ysis for i = 1 to l to the adversary A. Note that A has no
knowledge of the corresponding secret keys.

CHALLENGE: The adversary A chooses two equal length messages, M0, M1, and
then sends these to the challenger C. C chooses a bit b ∈R {0, 1} which is not in A’s view,
and encrypts Mb. The corresponding ciphertext (B∗, C∗) is given to A as a challenge.

GUESS: At the end of the game, the adversary A outputs a bit b′ ∈ {0, 1}, which is
supposed to be A’s guess of the value b. A wins this game if b′ = b and the advantage of
A is defined as Adv(A) = Pr[b′ = b] − 1

2 .

4.2. Security Analysis

The security of the proposed GGOC is based on Pedersen’s threshold cryptosystem and
the MDDH problem. In the following theorem, we surmise that Pedersen’s threshold
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cryptosystem is secure and prove that the proposed GGOC satisfies the security require-
ments in Definition 2.

Theorem 1. The proposed generalized group-oriented cryptosystem is (t, ε)-secure
against chosen plaintext attacks if there is no polynomial-time algorithm that solves the
MDDH problem with (t′, ε′).

Proof. Proof by the reduction to contradiction: assume that there exists an (t, ε)-
adversary A who can break the GGOC in the game concerning Definition 2, where t

is the running time and ε is the advantage that A succeeds. We demonstrate how to con-
struct an (t′, ε′)-algorithm B that solves the MDDH problem with running time t′ and
advantage ε′. Given the distribution either from R′ or D′ in Assumption 1, B simulates
the joint distribution consisting of A’s view in its attack on the proposed scheme and the
hidden bit b. The details of the simulation are as follows.

SETUP: With the distribution either from R′ or D′, B starts to simulate A’s challenger
and outputs the system parameters p, q, g, the group’s public key y as (l + 1)th element
of the distribution; and the supervisors’ public keys ysis as ith element of the distribution
for i = 1 to l to the adversary A.

CHALLENGE: The adversary A chooses two equal length messages, M0, M1, and
then sends these to the challenger C. C chooses a bit b ∈R {0, 1}. B treats B∗ as
(l + 2)th element of the distribution, and uses the last element σ (σ = N or σ =
g(xs1+xs2+···+xsl+x)r) of the distribution to compute C∗ = Mb ⊕ σ. The ciphertext
(B∗, C∗) is sent to A as a challenge. If σ is derived from D′, then (B∗, C∗) is indeed
a ciphertext of Mb. If σ is derived from R′, then C∗ is a random element, and hence
(B∗, C∗) is independent of b.

GUESS: At the end of the game, A outputs a bit b′ ∈ {0, 1}.

Analysis: If the input comes from D′ (α = g(xs1+xs2+···+xsl+x)r), the simulation of B
will be nearly perfect, and A will have a non-negligible advantage ε in guessing the hid-
den bit b. Hence, Pr[B(D′) = true] = Pr[b = b′]. If the input comes from R′ (α = N),
then A’s view is essentially independent of b, and hence the probability of it outputting
b = b′ is at most 1

2 . Therefore, B’s advantage Adv(B) = ε′ � Pr[b = b′] − 1
2 � ε. From

the specification of B, the running time t′ counts can be in a polynomial-time.

Theorem 1 has shown that an adversary wanting to break the security of the proposed
generalized group-oriented cryptosystem would face the MDDH problem. However, fur-
ther evidence of the trustworthiness of the MDDH problem in Assumption 1 should be
provided. The following lemma shows that the MDDH problem is at least as hard as the
DDH problem.

Lemma 1. The MDDH problem is at least as hard as the DDH problem.

Proof. Proof by contradiction: assume that there exists an algorithm A that can efficiently
distinguish the distributions D′ and R′, where x, xsis, r ∈R Z

∗
q , and N ∈R G. We
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demonstrate that an algorithm B can be constructed by using the algorithm A to efficiently
distinguish the distributions D and R, where α, β ∈R Z

∗
q , and Z ∈R G. First, either D

or R is the input of algorithm B. Assume that the input of B is E and (E)i denotes ith
element of the distribution E. B chooses xsi ∈R Z

∗
q for i = 1 to l and produces the

following distribution for A:

(
gxs1 , gxs2 , . . . , gxsl , (E)1, (E)2, (E)3 ·

( l∏
i=1

(E)xsi
2

)
mod p

)
∈ G l+3

Analysis: If the input comes from D, the last element would be:

(E)3 ·
( l∏

i=1

(E)xsi
2

)
= gαβ ·

( l∏
i=1

gβ·xsi

)
mod p

= gαβ · gβxs1+βxs2+···+βxsl mod p

= g(xs1+xs2+···+xsl+α)β mod p.

A will have a non-negligible advantage in the probability of Pr[A(D′) = true].
Hence, Pr[B(D) = true] = Pr[A(D′) = true]. If the input comes from R, the last
element would be:

(E)3 ·
( l∏

i=1

(E)xsi
2

)
= Z ·

( l∏
i=1

gβ·xsi

)
mod p.

Since Z is a random number in G, the last element of the distribution from A’s view is
a random element; in other words, Pr[B(R) = true] = Pr[A(R′) = true] is negligible.
Therefore, B can use A to efficiently distinguish the distributions R and D, which is a
contradiction of Assumption 1. Obviously, the reduction is in a polynomial-time.

In summary, the proposed GGOC is demonstrated to be secure against chosen
plaintext attacks under the MDDH problem assumption in Theorem 1, and there is a
polynomial-time reduction from the DDH problem to the MDDH problem as stated in
Lemma 1. Any adversary wanting to break the security of proposed GGOC under chosen
plaintext attacks will face the DDH problem.

4.3. Performance Evaluation

The proposed GGOC is efficient in that the scheme is converted into a threshold cryp-
tosystem. For the access structure F in Case I, our GGOC is equal to Li et al.’s GOC. In
this section, we compare the sender’s computational complexity and the ciphertext size of
our GGOC with those of Li et al.’s GOC in cases where schemes are extended to a (t, n)
threshold cryptosystem with l supervisors. To facilitate the performance evaluations, we
first define the following notations:
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Table 1

Performance evaluations of the proposed GGOC and Li et al.’s GOC

Sender’s computational complexity Ciphertext size

Our GGOC 2 × TEXP + (1 + l) × TMUL 2×1024-bit

1 × TXOR

Li et al.’s GOC (1 + n!
t!(n−t)!

) × TEXP + (t + l)× (1 + n!
t!(n−t)!

)×1024-bit

TMUL + ( n!
t!(n−t)!

) × TXOR

TEXP: the time for computing a modular exponentiation computation,
TMUL: the time for computing a modular multiplication computation,
TXOR: the time for computing a bit-wise exclusive-or operation.

According to Table 1, it is obvious that the sender’s computations in our scheme are
fewer than in Li et al.’s scheme. Since TEXP is much larger than TMUL and TXOR, the
following descriptions only compare the number of TEXP. The numbers of TEXP in the
sender’s computations of Li et al.’s scheme increase by n!

t!(n−t)! whereas our scheme is
fixed by a constant 2. The ciphertexts of our scheme are (B, C) and Li et al.’s scheme
are (B, C1, C2, . . . , C n!

t!(n−t)!
). Assume that the modulus p is around 1024-bit in both

schemes. The ciphertext sizes of our scheme and Li et al.’s scheme are 2×1024-bit and
(1 + n!

t!(n−t)! )×1024-bit, respectively. Thus it can be seen that the communication over-
head for transferring the ciphertexts in our scheme is less than that in Li et al.’s scheme.

5. Conclusions

In this paper, we proposed a generalized group-oriented cryptosystem, which is more
generalized than Li et al.’s scheme. The proposed GGOC allows senders to send the en-
crypted message to a group of n users, and only the specific recipients, or any t recipients
(with or without supervisors) in the group can cooperatively recover the message accord-
ing to the sender’s determined access structures. In addition, the sender’s computational
complexity and the ciphertext size produce superior results to those of Li et al.’s scheme,
as they are a threshold cryptosystem. Thus, our scheme is suitable for organizational op-
erations in real-world applications.

Under the decisional Diffie–Hellman problem assumption, this study has demon-
strated the proposed GGOC is provably secure against chosen plaintext attacks. It also
implies Li et al.’s GOC is secure against chosen plaintext attacks under the same as-
sumption.
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Efektyvi apibendrintoji grupinė orientuotoji kriptosistema

Ting-Yi CHANG

Grupinė orientuotoji kriptosistema (GOK) suteikia siuntėjui galimyb ↪e užšifruoti pranešim ↪a
siunčiam ↪a vartotoj ↪u grupei taip, kad tik tam tikri grupės vartotojai gali bendradarbiaudami š↪i
pranešim ↪a iššifruoti. Li ir kt. pastebėjo, kad kai kurie neautorizuoti grupės vartotojai gali iššifruoti
Yang ir kt. GOK pranešimus, todėl jie š↪i metod ↪a patobulino. Tačiau nėra atlikta šios schemos saugos
analizė, o jos transformavimas ↪i slenkstin ↪e kriptosistem ↪a yra neefektyvus.

Straipsnyje pateikta patobulinta Li ir kt. GOK ne tik tenkina GOK reikalavimus, bet ir
gali būti transformuota ↪i slenkstin ↪e kriptosistem ↪a. Jei tenkinamos Diffie–Hellman’o uždavinio
s ↪alygos, tuomet pasiūlytas šifravimo algoritmas yra saugus atakoms, kai ↪isilaužėlis gali pasirinkti
neužšifruotus tekstus.




