
INFORMATICA, 2010, Vol. 21, No. 2, 229–246 229
© 2010 Institute of Mathematics and Informatics, Vilnius

Extended Software Architecture Based
on Security Patterns

Dušan SAVIĆ, Dejan SIMIĆ, Siniša VLAJIĆ
Faculty of Organizational Sciences, University in Belgrade
Jove Ilica 154, 11000 Belgrade, Serbia
e-mail: {dules, dsimic, vlajic}@fon.rs

Received: September 2008; accepted: May 2009

Abstract. One of the major activities in software design is defining software architecture. Before
designing software structure and software behavior we have to define its architecture. In this paper
we have proposed three-tiered software architecture. This software architecture extends application
logic tier with security. We have implemented two important security issues: authentication and
authorization processes. These processes are implemented through software patterns. The software
patterns have the particular place in the Proposed Software Architecture (PSA). In this paper, we
have presented these software patterns and explained why they are important in PSA.

Keywords: software architecture, software patterns, authentication and authorization processes,
software development process.

1. Introduction

In application development, especially the enterprise ones, some resources must be avail-
able only to a certain number of users. Such resourses must be protected. Therefore, there
is a need to ensure access to protected resources only to authorized users (Tseng et al.,
2008).

Identification, authentication, authorization and access control are central to computer
security (Choo, 2006). Identification states that client is the user is and authentication
proves the identification claim. The identification can be proved by: applying a password
which only the user knows, digital certificate (a key, usually kept in some of the folders),
smart card injection in a special reader or biometric measuring such as finger prints. Once
authenticated, access control rules decide what the user is authorized to do and what he
is not.

Before the user approaches protected resource, the user directly approaches some of
the services that execute authentication. These services use specific authentication mech-
anisms (e.g., Single-Sign-on) and implement some of the authentication models. Some
of these modes are explained in the Anderson (2003) works:

• plain-text password,
• encrypted password,
• password forwarding,
• X509 certificates.



230 D. Savić et al.

Fig. 1. General model of authentication process.

The Fig. 1 shows general model of authentication process.
A good part of application security design is about deciding what technologies to use

for identification and authentication, how to specify access control, and how to manage
authorizations (Kumar, 2003). In software development two major security issues are
most important: authentication process and authorization process. As emphasized in the
previous definition, application security design needs to give answers to two key ques-
tions. The first one is what technologies to use for identification and authentication and
the second one is how to manage authorizations. We have started with the hypothesis that
we can describe authentication and authorization processes with software patterns and
that we can propose software architecture which will support different security solutions
for authentication and authorization processes. Design software patterns are idependent
of the programming languages so, they stand as general design practices for common
classes of software problems including security. Also, we have assumed that we can use
design patterns to describe these processes because they provide a way to solve issues
related to software development using proved solution.

In this paper we have described Proposed Software Architecture (PSA). PSA presents
an extended version of the software architecture that Larman presented in the book Ap-
plying UML and Patterns (Larman, 2001). Larman has not considered security problems.
Therefore, the main aim of this paper is to extend this software architecture with the secu-
rity component. This security component implements two major security issues: authen-
tication and authorization process. We have implemented security component through
software pattern, so the authentication and the authorization processes are independent
of any security solutions (SpringSecurity; JavaSESec) which implement authentication
and authorization models. The aim of this paper is to propose software architecture that
can support different security solution. This software architecture can also support user
implementation of the authentication and authorization models (for example, Plain-text
password) in a particular way.



Extended Software Architecture Based on Security Patterns 231

This paper covers topics such as software architecture, security and software patterns.
Therefore, a context of this paper is software architecture (Larman’s software architec-
ture; Larman, 2001) and security, while software patterns are part of the solution. The
problem we have considered is how to extend Larman’s software architecture with secu-
rity. The solution is Proposed Software Architecure.

In the Section 2 we have presented short overview on software patterns. Section 3 con-
tains some definitions of the software architecture, metamodel of the software architec-
ture that we suggested and short overview software architecture that Larman (2001) pro-
posed. The following section describes PSA. PSA contains security component. We have
explained the role that security component has in PSA. The PSA is presented through
software patterns so in the next section we have described software patterns and explained
the importance that they have in PSA. The special place in implementation security pro-
cesses is given to the GoF design software patterns (Gamma et al., 1995). At the end of
this paper we have presented an example of application for candidates enrollment on the
faculty.

2. Software Patterns

Pattern originated as an architecture concept by Christopher Alexander (1979) but gained
popularity in computer science after the book Design Patterns: Elements of Reusable
Object-Oriented Software was published in Gamma et al. (1995). Alexander tells:

Each pattern is a three-part rule, which expresses a relation between a certain context, a prob-
lem, and a solution. The pattern is, in short, at the same time a thing, which happens in the
world, and the rule which tells us how to create that thing, and when we must create it. It is
both a process and a thing; both a description of a thing which is alive, and a description of the
process which will generate that thing (Alexander, 1979).

As emphasized in the previous definition, each pattern is a three-part rule: problem
and solution in a certain context. According to the Alexander’s definition of the pattern,
we can present the aim of this paper as a pattern. The context of this paper is software
architecture and security. The problem is in two important security issues (authentication
and authorization processes) that not are considered in Larman’s software architecture.
The solution is PSA which extends Larman’s software architecture with security com-
ponent. This security component implements authentication and authorization processes
through software patterns. The following Fig. 2 presents problem, solution and context
of this paper. Coplien says:

Patterns usually describe software abstractions used by advanced designers and programmers
in their software. As abstractions, patterns commonly cut a cross other common software ab-
stractions like procedures and objects, or combine more common abstractions in powerful ways
(Coplien, 2000).

In this paper we have used GoF design patterns (Gamma et al., 1995) to define the
software architecture and to describe authentication and authorization processes. We have
used the following design patterns to define the software architecture: Facade, Template
method, Bridg and Command. Also, we have used Chain of Responsibility, Singleton,
Factory method and Strategy to describe and implement authentication and authorization



232 D. Savić et al.

Fig. 2. The problem, solution and context of the paper.

processes. More details about these patterns and role that they have in PSA are presented
in the Section 5.

3. Software Architecture and Security

One definition of software architecture is:

An architecture is the set of significant decisions about the organization of a software system,
the selection of the structural elements and their interfaces by which the system is composed,
together with their behavior as specified in the collaborations among those elements, the com-
position of these structural and behavioral elements into progressively larger subsystems, and
the architectural style that guides this organization – these elements and their interfaces, their
collaborations, and their composition (Booch et al., 1998).

According to this definition, is the definition provided by Bass et al. (2003):

The software architecture of a program or computing system is the structure or structures of the
system, which comprise: software components, the externally visible properties of those compo-
nents and their relation among them.

On one hand software architecture must abstract some information from the system
but, on the other hand, it must present enough information to make the software sys-
tem understandable (Heiberg, Matskin and Pedersen, 2002; Bajec and Vavpotic, 2008).
If there is no abstraction, then there is no architecture. Software architecture shows and
describes structure, behavior and constraint of the software. The Fig. 3 shows our meta-
model of the software architecture. This metamodel is in accordance with the recom-
mendations that are proposed in Guide to the Software Engineering Body of Knowledge
(Abran et al., 2005).



Extended Software Architecture Based on Security Patterns 233

Fig. 3. Software architecture metamodel.

The software behavior is described through intefaces and operations. Each operation
is abstraction that contains the name of the operation, parameters and return value. Soft-
ware components contain the methods that implement operations of the interface. The
operations on the interface are public so they are visible to the users.

In his book Applying UML and Patterns, Larman (2001) explains three-tiered soft-
ware architecture. That software architecture we call Larman’s Software Architecture
(LSA). He emphasizes that one common software includes presentation tier, aplication
logic tier and storage tier. Also Larman divides the application logic tier into two layers:
domain layer and services layer. The first one is used to define the structure of a system,
and the other one is for defining its behaviour. He introduces the concept of partitions and
mentions that layers of an architecture represents the vertical tiers, while partitions rep-
resent a horizontal division of relatively parallel subsystems of a layer. These partitions
present functional entities responsible for reporting, security, business logic or commu-
nication. The Fig. 4 shows all parts of this LSA architecture.

In this paper we have used a Simplified LSA (SLSA). In SLSA we have paid special
attention to the service layer. Within this service layer we have created business logic
partition. These partition is implemented through the following software components:
Controller, Business logic and Broker. The Fig. 5 shows this SLSA architecture.

Controller component is responsible to accept the request from the client, forward that
request to the Bussines logic component and turn back response to the client. Bussines
logic component is responsible to perform client request. It accepts request from the
Controller component, performs it and turns back the response to the Controller com-
ponent while Broker component presents one of the possibilities to implement persistent
framework. This framework is responsible for the materialization, dematerialization and
caching objects in the operating memory. It is established on the Hollywood’s principle:
“Don’t call us, we’ll call you” which means that the user-defined classes accept messages
only from the predefined classes of the persistent framework (Larman, 2001). This con-
cept is also known as Dependency Injection (Fowler, 2004) and callback concept (Mey-
ers, 2001). Therefore, the main idea of this paper is to extend these SLSA with the security
component. This security component implements two major security issues: authentica-
tion and authorization process. In the next section we have proposed software architecture



234 D. Savić et al.

Fig. 4. Larman’s Software Architecute (LSA).

Fig. 5. Simplified Larman’s Software Architecute (SLSA).



Extended Software Architecture Based on Security Patterns 235

that contains this security component. We have implemented security component through
software pattern, so the authentication and the authorization processes are independent of
any security solutions that implement authentication and authorization models. The aim
of this paper is to propose software architecture that can support different security so-
lutions that implement different authentication and authorization models. This software
achitecure can also support user’s implementation of the authentication and authorization
models (for example, Plain-text password) in a particular way.

The whole Java platform gives a solid basis for writing reliable and secure Java ap-
plications. Beside standard libraries there are additional ones, that can be applied to
solve some specific problems in security domain (JavaSESec). Some of these libraries
are listed below:

• Java Cryptography Architecture (JCA),
• Java Cryptographic Extension (JCE),
• Java Certification Path API (CertPath),
• Java Secure Socket Extension (JSSE),
• Java Authentication and Authorization Service (JAAS),
• Java Generic Secure Services (JGSS).

Security problem in the enterprise application development (Hatebur et al., 2007;
Hafiz et al., 2007; Meland and Jensen, 2008) is also supported by certain specifications
such as Java Platform Enterprise Edition (JEE) servlet specification (JavaServlet] and En-
terprise JavaBeans (EJB) specification (EJB] which are surely some of the most important
ones. In enterprise Java applications development Spring security gives a complete secu-
rity solution (SpringSecurity].

4. Proposed Software Architecture

As we have described in Section 3, Larman emphasizes that application logic tier con-
sists of a domain and services layers pointing out that a service layer consists of several
partitions, for example, a report and security partitions. In the same section we have de-
scribed SLSA. We have extended service layer of the SLSA with security partition. This
security partition contains security component. The Fig. 6 shows application logic tier
with security partition.

The security in PSA covers two important issues: the authentication and the autho-
rization processes. This processes are implemented through several activities. We have
distinguished activities such as: creating the security context, verifying user’s authenti-
cation, verifying user’s authorization, calling the execution of the system operation. For
each of these activities we created a class responsible for its execution. These classes
are low coupled between them, on one hand, and with high cohesion on the other hand.
This is very important because our authentication process remains independent even if we
change the authentication model. So, we have described authentication and authorization
processes as a chain which consists of nodes, where each node represents an activity. In
order to successfully execute the authentication and/or authorization processes, we need



236 D. Savić et al.

Fig. 6. Extended Larman’s software architecute.

to execute all the activities of these processes. We have used GoF Chain of Responsibility
design pattern to implement this security chain. The Fig. 7 shows the classes that create
this security chain.

Class ContextNode is the first one in the security chain and it is responsible for creat-
ing security context. The security context is presented as a container which contains some
important protection attributes such as user data, user group, and access level.

Class AuthenticationNode is responsible for user authentication. This class executes
the user’s authentication. As we have emphasized in the Section 1 there are several au-
thentication models and AuthenticationNode class is responsible to choose one of them
to implement authentication process. As the result of authentication process an object is
created which represents the authenticated user (object of the Auth1 class) and is saved
into security context so the other classes in the chain could read a relevant data that this
object contains. The main difference between our security component and Spring security
solution is in this object.

Class SecurityChainExceptionNode is responsible for generating an error in case that
the authentication or authorization processes fail.

Class AuthorizationNode is responsible for user’s authorization. For the authenticated
user whose data are in the security context, AuthorizationNode class is responsible to
verify if the user can perform action (system operation) that he wants. If the authenticated
user is authorized to perform the system operation, the last class in the chain CallSONode
will be called.

Class CallSONode is the last in the chain and it is responsible to call a specific system
operation. For each system operation there is a class responsible for its execution (GRASP

1Class Auth is described in Section 5.



Extended Software Architecture Based on Security Patterns 237

Fig. 7. Class diagram of security chain.

pattern of the high cohesivity) (Larman, 2001). Class CallSONode calls the particular
class responsible for performing some bussines logic dynamically based on its name.
The Fig. 8 shows PSA.

In PSA, the controller component (Controller) accepts the request to perform opera-
tion from the client. It forwards this request to the security component which determines
whether the user is authenticated and authorized to perform operation. The security com-
ponent through security chain verifyes if the user is authenticated and authorized to per-
form operation. If the user data are in the security context and if AuthenticationNode class
authorizes the user to perform the requested operation, the last class in the secutity chain
(CallSONode) calls the class responsible for performing the operation (SaveSO).

Software patterns are used to implement all components of the software architecture.
Access to the service layer is enabled through the implementation of the Single Access
Point pattern (Schumacher et al., 2006). We have used the GoF Façade structure pattern
(Controller component) to implement Single Access Point pattern.

The following section describes the patterns we have used in implementation security
component.



238 D. Savić et al.

Fig. 8. Proposed Software Architecture (PSA).

5. Applying Patterns in Authentication and Authorization Processes

In authentication and authorization processes of PSA Auth class holds the central position.
The relation of this class to the other classes is shown in Fig. 9.

This class presents a changed structure of ROLE-BASED ACCESS CONTROL pat-
tern (Steel et al., 2005; Schumacher et al., 2006). Class SOperation presents a system
operation and corresponds to a ProtectionDomain class of the ROLE-BASED ACCESS



Extended Software Architecture Based on Security Patterns 239

Fig. 9. The sructure of a changed ROLE-BASED ACCESS CONTROL pattern.

CONTROL pattern (Muhammad et al., 2008). Several user rights (Right) can be related to
one system operation (SOperation), while each system operation can be performed only
by the user (UserDetails and Auth) with exactly corresponding role (AuthorizationRole).

The authentication and authorization processes are implemented through the GoF be-
having pattern Chain of Responsibility. The chain consists of several classes and each
class is responsible to perform specific activities such as: creating the security context,
verifying user authentication, verifying user authorization, calling the execution of the
system operation.

GoF Singleton pattern is used to create the security context activity. The security
context is presented by SecurityContext class and contains an Auth class. This class saves
the information about the authenticated user and his rights. Class SecurityContextCreator
has only one instance and it is implemented as a Singleton pattern. Class diagram in
Fig. 10 shows the classes that take part in the creating security context activity.

Activities such as verifying user authentication and verifying user authorization are
represented by the Check Point security pattern (Steel et al., 2005; Schumacher et al.,
2006). Also, we have used the GoF pattern: Strategy and Factory Method to implement
verifying user authentication activity and the Factory Method pattern to implement veri-
fying user authorization activity. Class diagram in Fig. 11 shows the classes that take part
in verifying user authentication activity, while Fig. 12 shows the classes that take part in
verifying user authorization activity.

As described in the introduction, authentication process preforms services that use
specific mechanisms of authentication and implement some of the authentication mod-
els. We have created classes that are responsible to perform different strategies of the
authentication proces via GoF Strategy design pattern.

Class AuthorizationNode performs verifying user authorization activity. This class
via AuthorizationManager class, which creates the corresponding AuthorizationProvider
class (depending on the type of the storage where data for determining user right for ac-
cessing system operation are kept, the appropriate AuthorizationProvider class is created)
is responsible for determining user’s right to access the system operation. For an authen-
ticated user whose data are in the security context, verification is performed to find out



240 D. Savić et al.

Fig. 10. The classes taking part in security context creating activity.

if the required system operation can be performed. The method isAuthorized of the Au-
thorizationProvider class executes the user authorization. If the user is authenticated and
authorized to perform a specific system operation, then the last class in the chain (Call-
SONode) will be called. The class CallSONode calls the class responsible for performing
the requested system operation.

Class CallSONode calls a specific class, that is responsible to perform a requested
system operation, dynamically based on its name. We have used GoF Command pattern
to implement this activity. The class that represent the requested system operation, is
implemented as a Receiver class. Class diagram in Fig. 13 shows the classes that take
part in this activity. The Fig. 14 shows software patterns we have used in PSA.

6. Case Study

The system under development is Candidates Enrollment at the Faculty System (CEFS).
We have a brief description of the system we have developed. Candidates submit a request
for enrollment at the faculty (submitted the required documents), take a entry test, and
enroll in the faculty. Administrative workers accept the required documents from the
candidates and register them into system. The commissions put the entries of the test
results into database. It is necessary to enter each test three times in order to reduce the
possibility of errors. The central commission corrects the errors that make commissions
to enter the test results. The central commission prepare rank list of candidates.

In this brief description of CEFS we can see that user can be administrative workers,
member of commission to enter the test results or/and member of central commission.



Extended Software Architecture Based on Security Patterns 241

Fig. 11. The classes taking part in the authorization process activity.

Fig. 12. The classes which take part in the authorization process activity.



242 D. Savić et al.

Fig. 13. The casses taking part in system operation calling activity.

Fig. 14. Software patterns used in the PSA.



Extended Software Architecture Based on Security Patterns 243

Fig. 15. UML sequence diagram of createRangList() system operation.

Use case Create Rank List can perform only the user who is the member of central
commission. The UML sequence diagram (Fig. 15) describes execution of the operation
that create rang list.

The user performs operation createRangList() on the Controller. Controller accepts
request and forward it to the SecurityChain. The executeAction() method of the Con-
textNode class will be performed the first. This method creates security context and calls
executeAction() method the following class in the chain. The executeAction() method
of the AuthenticationNode class via AuthenticationManager class create Authentication-
Provider class. This class is responsible to save user data in the security context. The
method getAuthenticatedUser() of the SecurityContext class returns object (Auth) that
represents authenticated user. Method isAuthorized() of the AuthorizationProvider class
is responsible to determine is the user authorized to perform this operation. If the user is
authorized to perform createRangList()operation the last class in the chain will be called.
The method executeAction() of this class (CallSONode), calls system operation Creat-
eRangList().

7. Conclusion

In application development, especially the enterprise ones, some resources must be avail-
able only to a certain number of users. Such resourses must be protected. Therefore, there
is a need to ensure access to protected resources only to authorized users. Accordingly,
an application security design has to give answers to two key questions. The first one
is what technologies to use for identification and authentication and the second one is
how to manage authorizations. Also, in software development process, the main artifact
in software design is its architecture. These topics, software architecture and security, are
covered in this paper.

The aim of this paper we are presented as a pattern. The context of this paper is
software architecture and security. The problem covers two important security issues (au-
thentication and authorization processes) that are not considered in Larman’s software



244 D. Savić et al.

Fig. 16. The aim and solution of the paper.

architecture. The solution is PSA which extends Larman’s software architecture with se-
curity component. This security component implements authentication and authorization
processes throught software patterns. The Fig. 16 shows the aim and solution of this pa-
per.

At the end we can conclude, that we can extend Larman’s software architecture with
security component. So, the main contribution of this paper is PSA. Also, we have con-
firmed the assumption that we can use design pattern to describe and implement authen-
tication and authorization processes independent of any security solutions. We have used
the following design patterns: Chain of Responsibility to describe authentication and au-
thorization processes, Strategy to support different authentication models, Singleton to
create security context, Factory Method to support creating objects without specifying
the exact class of the object that will be created in authentication and authorization pro-
cesses, and security pattern Role-based access control which presents authenticated and
authorized user.

Also, in this paper we have presented a general model of authentication process and
metamodel of the software architecture.



Extended Software Architecture Based on Security Patterns 245

References

Abran, A., Moore, J., Bourque, P., Dupuis, R., Tripp, L. (2005). Guide to the Software Engineering Body of
Knowledge – 2004 Version – SWEBOK. IEEE-Computer Society Press, Institute of Electrical and Electronics
Engineers. http://www.swebok.org/htmlformat.html

Alexander, C. (1979), The Timeless Way of Building. Oxford University Press, New York.
Anderson, P. (2003). Authentication Models Explained: A Background Tosingle-sign-on Issues for the Univer-

sity of Edinburgh. School of Informatics University of Edinburgh, University of Edinburgh.
http://www.ucs.ed.ac.uk/ucsinfo/cttees/citc/work/authdirwg/explain.pdf

Bajevac, M., Vapotic, D. (2008). A framework and tool-support for reengineering software development me-
thods. Informatica, 19(3), 321–344.

Bass, L., Clements, P., Kazman, R. (2003). Software Architecture in Practice. Addison-Wesley.
Booch, G., Rumbaugh, J., Jacobson, I. (1998). The Unified Modeling Language User Guide. Addison-Wesley.
Choo, K.-K.R. (2006). On the security analysis of Lee, Hwang & Lee (2004) and Song & Kim (2000) key

exchange/agreement protocols. Informatica, 17(4), 467–480.
Coplien, J.O. (2000). Software patterns. In: Bell Labs. The Hillside Group, pp. 7–12.
Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995). Design Patterns: Elements of Reusable Object-Oriented

Software. Addison Wesley/Longman Inc.
Fowler, M. (2004). Dependency Injection.

http://martinfowler.com/articles/injection.html
Hafiz, M., Adamczyk, P., Johnson, R. (2007). Organizing security patterns. In: IEEE Software, pp. 52–60.
Hatebur, D., Heisel, M., Schmidt, H. (2007). A security engineering process based on patterns. In: Database

and Expert Systems Applications, DEXA ’07: 18th International Conference. Regensburg, pp. 734–738.
Heiberg, T., Matskin, M., Pedersen, J. (2002). An agent-based architecture for customer services management

and product search. Informatica, 13(4), 441–454.
Java SE security.

http://java.sun.com/javase/6/docs/technotes/guides/security/index.html
(accessed on July, 2008).

JSR-000154 JavaTM

http://jcp.org/aboutJava/communityprocess/final/jsr154/index.html
JSR 220:Enterprise JavaBeansTM

http://jcp.org/aboutJava/communityprocess/edr/jsr220/
Larman, C. (2001). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design, 2nd

ed. Prentice Hall.
Kumar, P. (2003). J2EE Security for Servlets, EJBs and Web Services: Applying Theory and Standards to Prac-

tice. Prentice Hall PTR.
Mayers, S. (2001). Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library,

Addison-Wesley Professional Computing Series. Addison-Wesley.
Meland, P., Jensen, J. (2008). Security software design in practice. In: 2008 Third International Conference on

Availability, Reliability and Security, pp. 1164–1171.
Muhammad, A., Hafner, M., Breu, R. (2008). Constraint based role based access control in the SECTET-

frameworkA model-driven approach. Journal of Computer Security, 16(2), 223–260.
Schumacher, M., Fernandez-Buglioni, E., Hybertson, D., Buschmann, F., Sommerlad, P. (2006). Security Pat-

terns, Integration Security and System Engineering. Wiley.
Spring security.

http://www.acegisecurity.org/guide/springsecurity.html (accessed on July, 2008).
Steel, C., Nagappan, R., Lai, R. (2005). Core Security Patterns: Best Practices and Strategies for J2EETM, Web

Services, and Identity Management. Prentice Hall.
Tseng, Y., Wu, T., Wu, J. (2008). A pairing-based user authentication scheme for wireless clients with smart

cards. Informatica, 19(2), 285–302.



246 D. Savić et al.

D. Savić received the BSc degree in information system and technologies from the Fac-
ulty of Organization Sciences, University of Belgrade, in 2004. He is currently postgrad-
uate student and teaching assistant on Faculty of Organizational Sciences at the Depart-
ment of Information System and Technologies. His main research interests include: soft-
ware development process, software design, software pattern, meta-modeling and soft-
ware requirements engineering.

D. Simić, PhD, is an associate professor at the Faculty of Organizational Sciences, Uni-
versity of Belgrade. He received the BS in electrical engineering and the MS and the
PhD degrees in computer science from the University of Belgrade. His main research
interests include: applied information technologies and security of computer systems and
networks.

S. Vlajić, PhD, is an assistant professor of software engineering at University of Bel-
grade – Faculty of Organizational Sciences – Department of Information Systems and
Technologies – Software Engineering Laboratory, in Belgrade, Serbia. He has taught
undergraduate and graduate level courses: introduction to programming, introduction to
information system, software design, software patterns, programming methodology and
Java programming language. He wrote many books, scripts and publications about C++,
Java, software design, software patterns, database and information systems. His main re-
search interests include: software process, software design, software maintenance, soft-
ware pattern formalisation and programming methodology.

Tipiniais apsaugos projektavimo sprendimais grindžiama išplėstinė
program ↪u sistem ↪u architektūra

Dušan SAVIĆ, Dejan SIMIĆ, Siniša VLAJIĆ

Program ↪u sistemos architektūros parinkimas yra viena iš svarbiausi ↪u programinės ↪irangos pro-
jektavimo veikl ↪u. Prieš pradedant projektuoti konkreči ↪a sistemos struktūr ↪a ir jos elgsen ↪a, reikia
nuspr ↪esti kokia bus jos architektūra. Straipsnyje pasiūlyta trij ↪u lygmen ↪u architektūra. Šioje ar-
chitektūroje dalykinės srities logik ↪a aprašantis lygmuo yra išplėstas apsaugos mechanizmais.
Siūlomoje architektūroje realizuoti du svarbūs apsaugos procesai – autentifikavimas ir autoriza-
vimas. Šie procesai realizuoti panaudojant tipinius projektavimo sprendimus. Siūloma program ↪u
sistem ↪u architektūra apskritai yra grindžiama tipini ↪u projektavimo sprendim ↪u panaudojimu. Straip-
snyje aprašyti siūlomi tipiniai apsaugos projektavimo sprendimai ir parodyta ši ↪u sprendim ↪u panau-
dojimo svarba aprašomajai architektūrai.


