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Abstract. This paper presents an improved differential evolution (IDE) method for the solution of
large-scale unit commitment (UC) problems. The objective of the proposed scheme is to determine
the generation schedule which minimizes the total operating cost over a given time horizon subject
to a variety of constraints. Through its use of enhanced acceleration and migration processes, the
IDE method limits the population size required in the search procedure and is therefore an ideal
candidate for the solution of large-scale combinatorial optimization problems. The effectiveness of
the proposed approach is verified by performing a series of simulations based upon the practical
Tai-Power System (TPS) and various other power systems presented in the literature. In general,
the results show that the IDE scheme outperforms existing deterministic and stochastic optimiza-
tion methods both in terms of the quality of the solutions obtained and the computational cost.
Furthermore, it is found that the magnitude of the cost savings achieved by the IDE scheme com-
pared to that obtained by the other optimization techniques increases as the number of generating
units within the power system increases. Therefore, the proposed scheme represents a particularly
effective technique for the solution of large-scale UC problems.

Keywords: unit commitment, differential evolution, improved differential evolution.

1. Introduction

As the start-up and operating costs of power stations continue to soar, energy planners
are placing an increasing emphasis upon the need to optimize the operating costs of ex-
isting plants. Essentially, this requires power provider enterprises (PPEs) to limit their
fuel costs by deliberately restricting the time for which each generating unit within the
power system is on-line. However, while seeking to minimize production costs, PPEs
must nevertheless ensure that the power system is capable of satisfying the time-varying
energy demands imposed upon it at all times. In practice, therefore, PPEs must achieve
a satisfactory compromise between production costs, which are directly related to the
number of generating units on-line at any time, and the risk of unplanned power outages.
The resulting unit commitment (UC) problem, in which the aim is to identify suitable
on/off states of each generating unit at each time index over the specified time horizon
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such that the overall operating cost is minimized subject to certain constraints, is a com-
plex optimization problem (Wood and Wollenberg, 1996). The optimal solution of the
UC problem can only be obtained by performing a complete enumeration of all the fea-
sible combinations of generating units within the network. In practice, this is a massive
task since modern power systems typically comprise many different generating units of
different types. As a result, the UC problem is most commonly formulated as a nonlinear,
large-scale, mixed-integer combinational optimization problem.

Several solution techniques have been applied to solve the UC problem. These include
deterministic, meta-heuristic, and hybrid approaches. Deterministic approaches include
priority list (Sheble, 1990), mixed-integer programming (MIP; Mohan et al., 1992), dy-
namic programming (DP; Padhy, 2000), branch-and-bound (BB; Chen and Wang, 1993)
and Lagrangian relaxation (LR; Ngundam et al., 2002). Although these methods are sim-
ple and fast, they suffer from numerical convergence and solution quality problems. They
are hard to solve the real-sized problem because of computational efficient and/or solution
accuracy. Recently, meta-heuristic approaches became popular in the application to over-
come shortcomings of traditional optimization techniques (Misevičius and Rubliauskas,
2009). Techniques such as simulated annealing (SA; Zhuang and Galiana, 1990), genetic
algorithms (GA; Kazarlis et al., 1996; Padhy, 2000), evolutionary programming (EP;
Yang et al., 1996), Tabu search (TS; Mantawy et al., 1998), ant colony optimization (Sis-
worahardjo and El-Kaib, 2002) and particle swarm optimization (Ting et al., 2003) have
been widely applied to solve the UC problem. These methods can accommodate more
complicated constraints and are claimed to produce solutions of improved quality. Of the
two optimization approaches presented above, the latter group appears to have the great-
est potential for the solution of UC problems. The GA, EP, TS and swarm intelligence
(SI) optimization algorithms are based on natural biological mechanisms (Dzemyda and
Sakalauskas, 2009), whereas SA is derived from the principles of material science. How-
ever, regardless of their respective origins, these methods all provide a suitable means
of solving combinatorial-type problems in a variety of decision-making arenas. Further-
more, these methods are subject to constant review and improvement with the aim of
further enhancing their performance and applicability.

The differential evolution (DE) scheme developed by Stron and Price (1996, 1997,
1999) has emerged as one of the most powerful evolution algorithms (EAs). DE is a
simple method based on stochastic search routines, in which the optimization function
parameters are encoded as floating-point variables. However, although DE provides a
convenient means of solving real-valued optimization problems, it has a tendency to con-
verge prematurely to a local, sub-optimal solution. While this problem can be overcome
to a certain extent by increasing the size of the searched population, this inevitably in-
creases the computational time and expense. To resolve this problem, Chiou and Wang
(1998) proposed a hybrid version of DE (designated as HDE), in which two additional op-
erations, namely acceleration and migration, were introduced to improve both the speed
and the thoroughness with which the solution space was searched. It was shown that
these operations increased the likelihood of the scheme finding a global optimal solution.
However, it was also found that the fitness characteristics of the best solutions in each
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generation did not converge smoothly from one generation to the next. Accordingly, Lin
et al. (1999) proposed an enhanced acceleration operation designed specifically to im-
prove the fitness evolution of the best candidates during the iterative solution of mixed-
integer nonlinear optimization problems. The DE family of optimization schemes has
been successfully applied to the solution of many real-world problems and has a proven
ability to determine global optimal solutions. However, the UC problem considered in
the present study includes both continuous and discrete variables and has the form of
a joint combinatorial optimization and nonlinear optimization problem. Accordingly, an
improved differential evolution (IDE) method is proposed to solve the problem in a rapid
and efficient manner.

The remainder of this paper is organized as follows. Section 2 reviews the general UC
problem and develops its mathematical formulation. Section 3 introduces the IDE scheme
developed in this study to solve the UC problem. Section 4 verifies the performance of the
proposed scheme by performing a series of numerical simulations based upon a variety
of power systems of different scales and benchmarking the results against those obtained
from conventional deterministic and stochastic optimization schemes. Finally, Section 5
provides some brief concluding remarks.

2. Problem Description and Formulation

The principal objective of the unit commitment (UC) of power systems is to schedule
the generation units in order to serve the load demand at the minimum operating cost
while meeting all system constraints (Wood and Wollenberg, 1996). Generation schedul-
ing involves the determination of the start up-time and shut down-time points and the
generation levels for each unit over a given scheduling period. The schedule is subject to
a number of system and unit constraints. And some major constraints that must be taken
into account include: (1) The total power output must meet the load demand plus system
losses. (2) There must be enough spinning reserve to cover any shortfall in generation.
(3) The generation of each unit must be within its minimum and maximum allowable
power output range. (4) The minimum up- and down-times of thermal generation units
must be considered. (5) Ramp rates limits for thermal generation units must not be vio-
lated.

In this study, the objective of the UC problem is to establish the generating unit sche-
dule which minimizes the total operating cost over a specified time horizon subject to
various constraints. In a power system, the operating cost consists primarily of the fuel
costs incurred by the committed units (thermal or nuclear) and can be expressed in the
following quadratic form:

FCi(Pih) = aiP
2
ih + biPih + ci, (1)

where ai, bi, ci cost function coefficients of unit i ($/MW2h, $/MWh, $/h); FCi(Pih)
production cost of unit i at time h ($/h); Pih output power from unit i at time h (MW).
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2.1. Objective Function

As stated above, the objective of the UC problem is to minimize the total production cost
over the scheduling horizon. Therefore, the objective function can be expressed as the
sum of the fuel costs and the start-up costs of the individual generating units in the power
system, i.e.,

Φ(X, P ) =
N∑

i=1

H∑
h=1

[FCi(Pih) + STCi(1 − Xi(h−1))] ∗ Xih, (2)

where Φ(· ) function of total production costs; N number of generating units; H number
of hours; Pih generation output of unit i at time h; Xih ON/OFF status of unit i at time
h; where Xih = 1(0) when unit is ON (OFF); P generation matrix with elements Pih,
i = 1, . . . , N ; h = 1, . . . , H; X schedule matrix with elements Xih, i = 1, . . . , N ;
h = 1, . . . , H; STCi start-up cost of unit i.

2.2. Constraints

Depending on the nature of the power system under review, the UC optimization problem
is subject to various constraints, the main being those relating to the load balance and
the spinning reserve, respectively, and the remainder relating to thermal constraints, fuel
constraints, security constraints, and so forth (Wood and Wollenberg, 1996).

1) Load balance constraint. The total generated power must be sufficient to meet the
load demand at all times, i.e.,

N∑
i=1

PihXih � Dh, (3)

where Dh is the load demand at time h.
2) Spinning reserve constraint. The spinning reserve is defined as the total amount

of power generated by all of the synchronized units minus the present load plus any
losses. In solving the UC problem, the value of the spinning reserve is either assigned
a pre-determined value or is defined as a given percentage of the forecast peak demand.
Clearly, the reserve must be sufficient to cover the loss of the most heavily loaded unit in
the system. In other words, the spinning reserve constraint can be formulated as

N∑
i=1

Xih ∗ P i(max) � Dh + Rh, (4)

where Pi(max) maximum generation limit of unit i; Rh spinning reserve at time h.
3) Generation limit constraint. The generation of each unit must satisfy the following

condition:

Pi(min) � Pih � Pi(max), (5)
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where Pi(min) minimum generation limit of unit i.
4) Thermal constraints. The temperature and pressure conditions of the different ther-

mal units vary slightly and therefore the units must be synchronized before they are
brought online. The thermal constraints are related primarily to the minimum uptime
of each generating unit, the minimum downtime of each unit, and maintenance crew
availability, respectively.

a) Minimum uptime. Once the unit is commissioned there is a minimum time before
it can be decommissioned (i.e., a unit must be ON for a certain number of hours
before it can be shut off).

b) Minimum downtime. Once the unit is de-committed there is a minimum time before
it can be re-commissioned (i.e., a unit must be OFF for a certain number of hours
before it can be brought online).

c) Maintenance crew availability. Since power plants have only limited maintenance
crew resources, the simultaneous start-up and/or shutdown of two or more units
is generally not possible. In solving the UC optimization problem, the effect of
this resource constraint is modeled by specifying appropriate values for the times
required to bring each unit online and to shut it down, respectively.

3. Improved Differential Evolution (IDE) Method for Unit Commitment Problem

In solving the UC problem, two types of variables must be considered, namely the units’
status variables X , which are integer variables, and the units’ output power variables P ,
which are continuous variables. The problem can therefore be decomposed into two sepa-
rate sub-problems, i.e., a combinatorial problem in X and a nonlinear optimization prob-
lem in P . In previous studies, the DE scheme was successfully applied to solve opti-
mization problems (e.g., Storn and Price, 1996; Price, 1997), while the HDE method was
used to solve both optimal control problems (e.g., Chiou and Wang, 1998) and nonlinear
optimization problems (e.g., Lin et al., 1999). The current study develops an improved
differential evolution (IDE) method in which the migration and acceleration operations
of the original DE and HDE schemes are enhanced in order to restrict the size of the
searched population. As a result, the proposed IDE scheme is particularly suited to the
solution of large-scale combinatorial optimization problems such as that considered in the
present study. The basic operations of the DE, HDE and IDE schemes are summarized in
Table 1.

The details of the IDE method are presented in the sections below.

3.1. Representation of Individual

When applying the IDE method to solve a combinatorial optimization problem, the first
step is to generate an initial population of candidate solutions, in which each candidate
is defined in terms of the decision variables of the problem. The most simple and direct
method for generating the initial population of solutions is to employ the UC reservation
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Table 1

Basic operations of DE, HDE and IDE schemes

DE HDE IDE

1. Initialization 1. Initialization 1. Initialization

2. Mutation 2. Migration operation (if necessary) 2. Mutation

3. Crossover 3. Mutation 3. Crossover

4. Estimation and selection 4. Crossover 4. Estimation and selection

5. Repeat Steps 2 to 4 5. Estimation and selection 5. Accelerated operation (if necessary)

6. Repeat Steps 2 to 5 6. Migration operation (if necessary)

7. Repeat Steps 2 to 6

decision matrix shown in Fig. 1. As shown, the elements of this matrix represent the
status variables of the various units, i.e., Xih, where Xih = 1 indicates that unit i is
ON at time h, while Xih = 0 indicates that unit i is OFF at time h. Furthermore, N

corresponds to the total number of generating units in the system, while H indicates the
total number of hours in the scheduling time frame. However, as described in Section 2,
each generating unit is subject to certain minimum uptime and downtime constraints,
i.e., T up

i and T down
i , respectively, and clearly these constraints must be satisfied when

populating the initial search space. Consequently, the candidate solutions are defined in
the form of the UC decision matrix presented in Fig. 2.

In Fig. 2, each row describes the status transitions of a particular generating unit and
indicates the number of hours for which the unit remains in each state. As shown, the
entries in each row are divided into a series of sub-strings, i.e., Yi1, Yi2, Yi3, Yi4, and so
forth. Each sub-string defines the ON or OFF status of a unit for a particular number of
hours in the scheduling horizon. Therefore, taken sequentially, the sub-strings describe
the alternation of the unit between the ON and OFF states over the entire scheduling time
frame. As shown, each sub-string comprises four bits. The first bit represents the ON/OFF
status of the unit (where 1 is ON and 0 is OFF), while the following three bits indicate
the duration in hours for which the unit remains in the state specified by the leading

Fig. 1. Unit commitment reservation decision matrix.
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Fig. 2. Unit commitment decision matrix.

bit. The total duration for which the state of the unit remains unchanged is based upon
the specified values of the minimum uptime and downtime constraints. For example, if
T up

i = 2 and T down
i = 3, the sub-string Yi2 = 1|011 indicates that unit i is continuously

ON for 5 hours, while sub-string Yi3 = 0|011 indicates that unit i is continuously OFF
for 6 hours.

3.2. Fitness Function

In the IDE method, the suitability of each UC decision matrix as a candidate solution for
the UC problem is evaluated using a fitness function of the form

fpj =
1

Φpj

∑H
h=1 λh ∗ pf

, (6)

where Φpi is the production cost function associated with pi; h is the time index; H is the
total number of hours in the UC scheduling horizon; λh is the constraint constant and has
a value of 1 if the constraints are not satisfied and a value of 0 otherwise; and pf is the
penalty factor. The penalty factor is provided for the identification of the individual pi on
the constraint is satisfied or dissatisfied.

In practice, the value of the fitness function is normalized between 0 and 1, i.e.,

Γpi =
1

1 + K
(

fmax
fpi

− 1
) , (7)

where K is a scaling coefficient and fmax is the maximum value of fpi within the current
population.

3.3. Main Operations in IDE Solution of UC Problem

The general DE algorithm is described in Storn and Price (1996), Price (1997), Storn
(1999), while the HDE scheme is well documented in Chiou and Wang (1998). Hence,
the details of these two schemes are omitted here. The IDE method proposed in
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the present study employs a population Sp of size NP composed of floating point-
encoded individuals which converge over G generations towards the optimal solution,

S
(G)
p = [P

(G)

1 , P
(G)

2 , . . . , P
(G)

NP ], in which each P i is a vector containing as many pa-
rameters as there are decision variables D in the problem, i.e., N ∗ H (see Fig. 2) and

P
(G)

i = [P (G)
1,i , P

(G)
2,i , . . . , P

(G)
D,i ]T , i = 1, 2, . . . , NP . Note that the population size pa-

rameter, NP , is specified by the user and remains constant throughout the optimization
process. As described in the following, the IDE algorithm contains seven major opera-
tions.

1) Initialization. An initial population of NP vectors is created for the algorithm stats
In order to obtain a uniform coverage of the entire parameter space, the random variables
are assumed to conform to a uniform probability distribution, i.e.,

P
(0)
j,i = Pmin

j + μ
(
Pmax

j − Pmin
j

)
, (8)

where i = 1, 2, . . . , NP and j = 1, 2, . . . , D; Pmin
j and Pmax

j are the lower and upper
bounds of the jth decision parameter; and u ∈ [0, 1] is randomly selected from a uniform
distribution and is generated afresh for each value of j.

2) Mutation. The mutation operation creates mutant vectors (Pi
M

) by perturbing a
randomly selected vector (Pα) with the difference between two other randomly selected
vectors (P β and P γ), i.e.,

Pi
M(G)

= P
(G)

α + F
(
P

(G)

β − P
(G)

γ

)
, (9)

where Pα, P β and P γ are randomly chosen vectors with α �= β �= γ �= i and are selected
afresh for each parent vector. The mutation scaling factor (F ∈ (0, 2]) is used to adjust
the perturbation size in the mutation operation in order to improve the convergence of
the search procedure. In general, the DE family of optimization schemes offers several
variants or strategies for the solution of practical optimization problems. These strategies
can be annotated as DE/x/y/z, where x refers to the vector used to generate the mutant
vectors, y is the number of difference vectors used in the mutation process, and z is the
scheme applied to perform the crossover operation. The most commonly employed DE
strategy for global optimization problems is the DE/best/2/bin variant, which perturbs
the best solution found to date with two difference vectors in accordance with a binomial
distribution crossover scheme, i.e.,

Pi
M(G)

= P best + F
(
P

(G)

a − P
(G)

b + P
(G)

c − P
(G)

d

)
, (10)

where P best is the best solution found to date in the optimization process and P a, P b, P c

and P d are randomly chosen vectors with a �= b �= c �= d �= i and are selected anew for
each parent vector.

3) Crossover. The crossover operation generates trial vectors (Pi
C

) by mixing the

parameters of the mutant vectors (Pi
M

) produced in Step 2 above with the target vec-
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tors (P i) in accordance with a specified probability distribution, i.e.,

P
C(G)

j,i =

⎧⎨
⎩

P
M(G)

j,i , if μc � Cr or j = k,

P
(G)

j,i , otherwise.
(11)

where i = 1, 2, . . . , NP and j = 1, 2, . . . , D; k is a randomly chosen index which
guarantees that the trial vector receives at least one parameter from the mutant vector;
and μc ∈ [0, 1) is a uniformly distributed random number generated afresh for each
value of j. The crossover constant, i.e., Cr ∈ [0, 1], controls the diversity of the popu-
lation and prevents the algorithm from converging prematurely to local optima. Finally,

P
(G)

j,i , P
M(G)

j,i and P
C(G)

j,i are the jth parameters of the ith target vector, the mutant vector,
and the trial vector, respectively, in the Gth generation.

4) Estimation and selection. During the IDE iterative procedure, the parents are re-
placed by their offspring if the fitness (i.e., the total production cost in the current prob-
lem) of the offspring exceeds that of its parents. Conversely, if the parents have a better
fitness than their offspring, they are retained within the next generation, and the offspring
is rejected. This procedure can be formulated as

P
(G+1)

i =

⎧⎨
⎩

P
M(G)

i , if Φ(P
M(G)

i ) � Φ(P
(G)

i ),

P
(G)

i , otherwise,
i = 1, 2, . . . , NP. (12)

5) Acceleration operation (if required). If the best fitness of the solutions in the present
generation is not improved by the mutation and crossover operations, the best of the
present individuals is artificially pushed toward a better point in accordance with

P
(G+1)

best =

⎧⎨
⎩

P
(G+1)

best , if Φ(P
(G+1)

best ) < Φ(P
(N)

best),

P
(G+1)

best − dz ∇PΦ(P )|
P

(G+1)
best

, otherwise,
(13)

where P
(G+1)

best represents the new best solution. Note that the gradient of the objective
function ∇PΦ(P ) in Eq. (13) can be calculated with finite variation. Furthermore, the
step size dz ∈ [0, 1] is determined according to the descent property. If the descent prop-

erty is satisfied, and if Φ(P
(N)

best) is less than Φ(P
(G+1)

best ), then P
(N)

best is transcribed directed
into the next generation in place of the weakest individual in the current generation..

6) Migration operation (if required). If the best fitness of the solutions in the present
generation is not improved by acceleration operations, the migration operation is per-
formed to regenerate a newly diverse population of individuals in order to enhance the
thoroughness with which the solution space is searched and therefore to make possible
the use of a smaller population size than that used in the conventional DE and HDE

schemes. The new population is based on the best individual P
(G+1)

best , with the hth gene
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of the ith individual given by

P
(G+1)
h,i =

⎧⎪⎨
⎪⎩

P
(G+1)
h,i + ρ1(Ph,min − P

(G+1)
h,best ), if ρ2 <

P
(G+1)
h,i

−Ph,min

Ph,max−Ph,min
,

P
(G+1)
h,i + ρ1(Ph,max − P

(G+1)
h,best ), otherwise,

(14)

where Ph,min and Ph,max are the minimum and maximum individuals at time h, respec-

tively; P
(G+1)
h,best is the best individual of the new generation at time h; and ρ1 and ρ2 are

randomly generated numbers uniformly distributed in the range [0,1].
7) Termination criterion. The iterative IDE solution procedure terminates if either the

number of iterations performed since the best solution last changed exceeds a specified
value or if the maximum specified number of iterations have been completed. If the termi-
nation criteria are not satisfied, the solution procedure returns to Step 2 and the processing
steps described above are repeated.

4. Performance Evaluation Results

In this study, the performance of the IDE scheme is demonstrated using the Tai-Power
System (TPS) for illustration purposes. The basic parameters of this system are summa-
rized in Table 2. Overall, TPS includes 305 buses, 506 lines, 62 generators, 151 trans-
formers, and 40 thermal generating units.

In solving the current UC problem, the scheduling horizon is assumed to be 24 h. The
minimum and maximum permissible power generation limits of each unit are summa-
rized in Table 2 together with the corresponding cost function parameters. The minimum
up-time and down-time constraints of each unit are also shown. In general, the aim of the
IDE scheme is to determine the status of each unit i at each time index h such that the to-
tal operating cost of TPS is minimized over the scheduling horizon while simultaneously
satisfying the power generation limits and up-time/down-time constraints specified in Ta-
ble 2. In the current study, the IDE scheme is implemented using C++ (Press and Teuko,
2002) and the UC solution procedure is executed on a personal computer (PCD32m-
PentiumIV-2.4G). The IDE simulation parameters are summarized in Table 3. The IDE
results for the TPS UC problem are summarized in Table 4.

4.1. Performance Tests

Having demonstrated the ability of the IDE method to solve the complex, large-scale
TPS UC problem, its potential for solving general UC-type problems was evaluated by
benchmarking its performance against that of other optimization schemes presented in
the literature, including the DP and BB deterministic approaches and the SA and GA
meta-heuristic approaches, respectively. Tables 5 and 6 present typical examples of the
benchmarking results. Table 5 shows the case where the IDE scheme and the DP scheme
are applied to solve the UC problem for a power system comprising ten generating units.
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Table 2

Unit data of Tai-Power System (TPS)

Unit Pi(max) Pi(min) Cost function coefficients STCi Tup
i Tdown

i
(MW) (MW) (h) (h)ci bi ai

($/MW2 h) ($/MW2 h) ($/h)

1 80 40 170.4 8.336 0.0307 247.396 2 3

2 120 60 309.5 7.0706 0.0202 248.107 2 3

3 190 80 369.0 8.1817 0.0094 245.837 2 3

4 42 24 135.4 6.9467 0.0848 246.244 2 3

5 42 26 135.1 6.5595 0.0969 231.796 2 3

6 140 68 222.3 8.0543 0.0114 267.588 2 3

7 300 110 28737 8.0323 0.0035 267.007 2 3

8 300 135 391.9 6.999 0.0049 326.660 2 3

9 300 135 455.7 6.602 0.0057 267.629 2 3

10 300 130 722.8 12.908 0.0060 376.284 2 3

11 375 94 635.2 12.986 0.0051 383.911 2 3

12 375 94 654.6 12.796 0.0056 384.018 2 3

13 500 125 913.4 12.501 0.0042 384.024 2 3

14 500 125 1760 8.8412 0.0075 380.379 2 3

15 500 125 1728 9.1575 0.0070 386.993 2 3

16 500 125 1728 9.1575 0.0070 380.003 2 3

17 500 125 1728 9.1575 0.0070 247.396 2 3

18 500 220 647.8 7.9691 0.0031 248.107 2 3

19 500 220 649.6 7.9550 0.0031 245.837 2 3

20 550 242 647.8 7.9691 0.0031 246.244 2 3

21 550 242 647.8 7.9691 0.0031 231.796 2 3

22 550 254 758.9 6.6313 0.0029 267.588 2 3

23 550 254 758.9 6.6313 0.0029 267.007 2 3

24 550 254 794.5 6.6611 0.0028 326.660 2 3

25 550 254 794.5 6.6611 0.0028 267.269 2 3

26 550 254 801.3 7.1032 0.0027 376.284 2 3

27 550 254 801.3 7.1032 0.0027 383.911 2 3

28 150 10 1055 3.3353 0.5212 384.018 2 3

29 150 10 1055 3.3353 0.5212 384.024 2 3

30 150 10 1055 3.3353 0.5212 380.379 2 3

31 70 20 1207 13.052 0.2509 386.993 2 3

32 70 20 810.7 21.887 0.1676 380.003 2 3

33 70 20 1247 10.244 0.2635 267.629 2 3

34 70 20 1219 8.3707 0.3057 376.284 2 3

35 60 18 641.4 26.258 0.1836 383.911 2 3

36 60 18 1112 9.6956 0.3256 384.018 2 3

37 60 20 1044 7.1633 0.3372 384.024 2 3

38 60 25 832.2 16.339 0.2391 380.379 2 3

39 60 25 834.2 16.339 0.2391 386.993 2 3

40 60 25 1035 16.339 0.2391 380.003 2 3
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Table 3

Simulation parameters used in IDE solution procedure

Parameters Symbols Value

Decision variables D(N ∗ H) 40 ∗ 24

Scaling coefficient K 1000

Population size NP 80

Mutation scaling factor F ∈ (0, 2] 1.2

Crossover constant Cr ∈ [0, 1] 0.5

Accelerated step size dz ∈ [0, 1] 0.2

Migration coefficient ρ1 ∈ [0, 1] 0.1

ρ2 ∈ [0, 1] 0.1

Maximum generations Gmax 120

It is observed that the total operating cost obtained by the IDE scheme is lower than that
obtained by the DP scheme; hence confirming the effectiveness of the proposed approach.
Table 6 presents the total costs obtained by the IDE scheme and the BB method for power
systems with 10 and 20 generating units over a scheduling horizon of 24 hours and 36
hours, respectively. In both cases, it can be seen that the IDE scheme achieves a lower
operating cost.

In meta-heuristic approaches, SA is a general-purpose stochastic optimization tech-
nique which theoretically converges asymptotically to a global optimum solution with
a probability of 1. GAs are a general-purpose stochastic, parallel search method based
on the “survival-of-the-fittest” mechanisms inherent in biological evolutionary processes
which have the ability to obtain near-global optimal solutions to complex optimization
problems with various conflicting objectives within a reasonably short processing time.
Therefore, the performance of the IDE scheme in solving the TPS UC problem was com-
pared with that of the stochastic SA and GA schemes in terms of: (1) the solution quality,
i.e., the total production cost; (2) the convergence speed, i.e., the CPU time required to
complete 120 generations; and (3) the stability, i.e., the number of best solutions from
100 test runs. The corresponding results are presented in Table 7. (Note that the same set
of random initial solutions and the same population size were used in all three schemes).

It is clear from Table 7 that the proposed IDE yields a better solution than the SA
and GA schemes in the best, average and worst costs. The computational time for the
proposed IDE is lower than the time for the SA and GA approaches, and the IDE has a
better stability than the GA. From the comparing, it is obvious that the IDE is a reliable
algorithm, resulting in a cheaper computational cost and faster speed of convergence.

4.2. Scalability of IDE Scheme

The performance of the IDE scheme was further analyzed by comparing its total cost so-
lutions for power systems comprising 10, 20, 40, 60 and 80 generating units, respectively,
over a 24 hour horizon with those computed by Kazarlis et al. (1996) using a GA. The
corresponding results are presented in Table 8.



An Improved Differential Evolution Scheme 187

Table 4

IDE solutions for TPS UC problem

Unit H

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
3 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 1 1
14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
15 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
16 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
17 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0
18 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
23 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
24 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
25 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
26 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 0 0
27 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0
28 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0
29 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0
30 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 0
31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
33 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1
34 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
35 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0
36 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0
37 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
38 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0
39 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

Table 5

Performance of IDE and DP schemes in solving UC problem for power system
presented in Snyder et al. (1987)

Method IDE DP

Total cost ($) of 10-unit system over 24 H 562,921 565,125
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Table 6

Performance of IDE and BB schemes in solving UC problem for power systems
presented in Chen and Wang (1993)

Method IDE BB

Total cost ($) of 10-unit system over 24 H 78,020 78,907

Total cost ($) of 20-unit system over 36 H 987,612 1,006,875

Table 7

Performance comparison between IDE, SA and GA schemes when applied to
TPS UC problem

Method IDE SA GA

Total cost ($) Best 2,165,082 2,266,657 2,398,513

Average 2,169,950 2,271,886 2,401,426

Worst 2,177,062 2,278,938 2,416,727

CPU time (sec) 161 237 167

Stability 0.99 0.99 0.98

Table 8

Performance of IDE and GA schemes in solving UC problem for systems presented
in Kazarlis et al. (1996)

Method IDE GA

Total cost ($) of 10-unit system over 24 H 562,921 563,825

Total cost ($) of 20-unit system over 24 H 1,125,546 1,129,555

Total cost ($) of 40-unit system over 24 H 2,247,570 2,256,501

Total cost ($) of 60-unit system over 24 H 3,365,125 3,392,065

Total cost ($) of 80-unit system over 24 H 4,486,010 4,524,011

From inspection, it is clear that the IDE scheme consistently produces lower total cost
solutions than the GA method. Furthermore, it is apparent that the cost savings achieved
by the IDE scheme increase as the size of the power system increases. In other words, the
IDE approach represents a particularly suitable technique for the solution of large-scale
UC problems.

5. Conclusion

In general, the overriding objective of PPEs is to meet the time-varying power demands
placed upon them while simultaneously minimizing their production costs. Satisfying this
objective requires the solution of a highly complex unit commitment (UC) problem. To
assist PPEs in performing this task, the current study has presented an improved differ-
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ential evolution (IDE) scheme designed to solve large-scale UC problems in a rapid and
cost-effective manner. The performance of the proposed scheme has been benchmarked
against that of other deterministic and stochastic optimization methods presented in the
literature using the practical Tai-Power System (TPS) and various power systems of dif-
ferent scales for illustration purposes. The results have indicated that despite the compar-
atively small population size used in the proposed IDE scheme, the solutions obtained for
the total operating costs of the various power systems are consistently better (i.e., lower)
than those obtained by the other methods. Furthermore, the IDE scheme also outperforms
the other schemes in terms of the CPU time required to complete the optimization proce-
dure and the stability of the solutions, respectively. Finally, the results have indicated that
the magnitude of the cost savings achieved by the IDE scheme increases as the number of
generating units within the power system increases. In other words, the proposed scheme
represents a particularly effective technique for the solution of large-scale UC problems.
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Pagerinta diferencialinės evoliucijos schema didelio matavimo blok ↪u
perjungimo problemoms spr ↪esti

Chen-Sung CHANG

Šiame straipsnyje pateikiamas pagerintas diferencialinės evoliucijos (PDE) metodas didelio
matavimo blok ↪u perjungimo problemoms spr ↪esti. Nagrinėjamoje schemoje tikslo funkcija yra
skirta sudaryti generavimo tvarkarašt↪i, minimizuojant↪i bendrus aptarnavimo kaštus per duot ↪a laik ↪a
esant duotai ribojim ↪u aibei. Pritaikant patobulintus akseleracijos ir migracijos procesus, PDE meto-
das riboja populiacijos dyd↪i, naudojam ↪a paieškos procedūroje, ir todėl idealiai tinka spr ↪esti didelio
matavimo kombinatorinėms problemoms. Sukurto metodo efektyvumas patikrintas imitavimo būdu
pasinaudojant praktinės Tai energetinės sistemos ir kit ↪u energetini ↪u sistem ↪u, žinom ↪u literatūroje,
duomenimis. Bendru atveju, gauti rezultatai leidžia tvirtinti, jog PDE schema yra pranašesnė už
žinomus deterministinio ir stochastinio optimizavimo metodus gauto sprendinio kokybės ir skaičia-
vimo s ↪anaud ↪u požiūriu. Dar daugiau, taikant ši ↪a schem ↪a kašt ↪u sumažėjimas, pasiektas dėka PDE
schemos, didėja didėjant generavimo blok ↪u, ↪ijungt ↪u ↪i energetin ↪e sistem ↪a, skaičiui. Tokiu būdu,
pasūlyta schema pateikia ypač efektyv ↪u būd ↪a didelio matavimo blok ↪u perjungimo uždaviniams
spr ↪esti.


