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Abstract. Least-squares method is the most popular method for parameter estimation. It is easy
applicable, but it has considerable drawback. Under well-known conditions in the presence of noise,
the LS method produces asymptotically biased and inconsistent estimates. One way to overcome
this drawback is the implementation of the instrumental variable method. In this paper several
modifications of this method for closed-loop system identification are considered and investigated.
The covariance matrix of the instrumental variable estimates is discussed. A simulation is carried
out in order to illustrate the obtained results.
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1. Introduction

In this paper several modifications of the instrumental variable (IV) method for closed-
loop system identification are presented on the base of a generalized IV method. The
question of the covariance matrix of the IV estimates is considered in respect to the esti-
mate accuracy. The optimal covariance matrix of the estimates and optimal IV estimator
can only be obtained if the true plant and noise models are exactly known, thus optimal
accuracy cannot be achieved in practice. Due to this fact different modifications are de-
signed for approximation of the needed information from the measured data in different
ways.

In literatures (Gilson and Van den Hof, 2001, 2003; Wada et al., 2001) the estimation
algorithms represent the ordinary mathematical relations on the base of auto and cross
correlation functions of the corresponding signals. The aim of this paper is to present
the mathematical relations in an alternative vector-matrix form (Daniusis and Vaitkus,
2008). The main advantage of the proposed form is in simpler description as well as
more convenient computer implementation.
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The paper is organized as follows. In the next section the problem statement is pre-
sented. In Section 3, the basic and generalized closed-loop IV methods are given. In Sec-
tion 4, the tailor-made IV and BELS methods are described as IV modifications. In Sec-
tion 5, the optimal covariance matrix of the estimates and its corresponding optimal IV
estimator are discussed. In Section 6, two known algorithms for approximate realizations
of the optimal IV estimator are displayed with the mathematical relations in vector-matrix
form. Section 7 presents an example and parameter estimation results. Finally, the con-
clusions are given in Section 8.

2. Problem Statement

Consider a linear, single-input single-output discrete-time system shown in Fig. 1. The
plant, controller and noise filter are denoted by G0(q), C(q) and H0(q), respectively.
Here q is time-shift operator such that q−iu(k) = u(k − i) and {e0(k)} is white noise
with variance σ2

0 . The plant input signal is described by u(k) and the system output signal
by y(k). The external signals r2(k) and r1(k) may be regarded as a set point signal and
an external excitation signal, which is assumed to be uncorrelated with the error e0(k).

For the sake of simplicity, the generalized input signal is introduced as

r(k) = r1(k) + C(q)r2(k). (1)

Thus, the mathematical description of the true closed-loop system is

{
y(k) = G0(q)u(k) + H0(q)e0(k),
u(k) = r(k) − C(q)y(k).

(2)

It is assumed that the numerator and denominator polynomials of the real plant transfer
function

G0(q) =
B0(q−1)
A0(q−1)

(3)

have degree n0.

Fig. 1. A closed-loop system to be observed.
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The controller is assumed to be known and described in the form

C(q) =
S(q−1)
P (q−1)

=
s0 + s1q

−1 + · · · + smq−m

1 + p1q−1 + · · · + pmq−m
. (4)

After substitution of expressions (3) and (4) into the system description (2) following
equations are obtained

y(k) =
G0(q)

1 + C(q)G0(q)
r(k) +

H0(q)
1 + C(q)G0(q)

e0(k), (5)

u(k) =
1

1 + C(q)G0(q)
r(k) − C(q)H0(q)

1 + C(q)G0(q)
e0(k), (6)

Equations (5) and (6) present the noise-free and noise parts of the plant output and input
signals. Equation (5) can be written in the form

y(k) =
Bcl

0

Acl
0

r(k) +
1

Acl
0

ξ(k) (7)

with ξ(k) = A0PH0e0(k). It is clear that the polynomials Bcl
0 and Acl

0 are from or-
der (n0 + m).

The plant model can be parameterized as

G(q, θ) =
B(q−1, θ)
A(q−1, θ)

=
b1q

−1 + · · · + bnq−n

1 + a1q−1 + · · · + anq−n
, (8)

with the parameter vector

θ = [a1, . . . , an, b1, . . . , bn]T ∈ R2n. (9)

Open-loop regressors fyu(k) and closed-loop fyr(k) regressors are defined as

fyu(k) = [−y(k − 1) · · · − y(k − n) u(k − 1) · · · u(k − n)]T , (10)

fyr(k) = [−y(k − 1) · · · − y(k − n − m) r(k − 1) · · · r(k − l)]T , (11)

where l is a parameter, chosen by the user.
The following notations are introduced

fr(k) =
[
r(k − 1) · · · r(k − l)

]T
, (12)

f̄yu(k) = P (q−1)fyu(k), (13)

ȳ(k) = P (q−1)y(k). (14)

The identification is based on data set

ZN =
{
r(1), . . . , r(N), u(1), . . . , u(N), y(1), . . . , y(N)

}
, (15)
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which consists of measurements of the generalized input signal {r(k)}, plant input signal
{u(k)} and system output {y(k)} for k = 1, 2, . . . , N .

Since the controller C(q) is known, the indirect approach for closed-loop system iden-
tification can be applied. According to this approach the closed-loop system (7) is identi-
fied and then the elements of vector (9) are determined (Pupeikis, 2000).

There are two conditions for identifiability for close-loop identification. The first one
is that the input-output data cannot unique determine the order of the plant model. The
second one is regarding the relationship between the orders of the plant and the controller.
In the case when additional, uncorrelated with the noise {e0(k)}, excitation input signal
is used, the second condition did not need to be fulfilled. This is the case here, because
the excitation signal r1(k) is uncorrelated with {e0(k)}, thus the generalized input signal
{r(k)} is also uncorrelated with the noise. The order of the controller (m) is preliminary
known. According to this order the order of the plant model (n) can be chosen, thus the
order of the closed loop system is also determined.

The relation between plant parameters θ and closed-loop parameters θcl is determined
by the following equation

θcl = Mθ + μ, (16)

where the vector μ consists of the coefficients of the controller denominator

μ = [p1p2 . . . pm0 . . . 0]T ∈ Rn+m+l. (17)

The full-column rank matrix M is partitioned into four blocks

M =
[
MP1 MS

0 MP2

]
∈ R(n+m+l)×2n, (18)

where its submatrices MP1 ∈ R(n+m)×n and MS ∈ R(n+m)×n are Sylvester matrices.
They contain the parameters of the controller denominator and numerator respectively

MP1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0

p1 1
. . .

...
... p1

. . . 0

pm

...
. . . 1

0 pm

... p1
...

. . .
. . .

...
0 · · · 0 pm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; MS =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s0 0 · · · 0

s1 s0
. . .

...
... s1

. . . 0

sm

...
. . . s0

0 sm

... s1
...

. . .
. . .

...
0 · · · 0 sm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

The submatrix MP2 ∈ Rl×n is given by

MP2 =
[

MP1

0(l−n−m)×n

]
. (20)
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The least-squares (LS) estimates θ̂cl
LS are obtained by the formula

θ̂cl
LS =

[ N∑
k=1

fyr(k)fT
yr(k)

]−1 N∑
k=1

fyr(k)yT (k). (21)

Equation (21) can be presented in more compact vector-matrix form (Atanasov and Pu-
peikis, 2009; Daniusis and Vaitkus, 2008)

θ̂cl
LS =

(
FT

Y RFY R

)−1
FT

Y Ry, (22)

where FY R is a block matrix

FY R = [Y R] ∈ R(N −n−m)×(n+m+l). (23)

It’s blocks Y ∈ R(N −n−m)×(n+m),R ∈ R(N −n−m)×l and the vector y ∈ RN −n−m are
formed in accordance with Eq. (11):

y =
[
y(n + m + 1) y(n + m + 2) · · · y(N)

]T ; (24)

Y =

⎡
⎢⎢⎢⎣

−y(n + m) −y(n + m − 1) · · · −y(1)
−y(n + m + 1) −y(n + m) · · · −y(2)

...
...

. . .
...

−y(N − 1) −y(N − 2) · · · −y(N − n − m)

⎤
⎥⎥⎥⎦ ; (25)

R =

⎡
⎢⎢⎢⎣

r(n + m) r(n + m − 1) · · · r(n + m − l + 1)
r(n + m + 1) r(n + m) · · · r(n + m − l + 2)

...
...

. . .
...

r(N − 1) r(N − 2) · · · r(N − l)

⎤
⎥⎥⎥⎦ . (26)

It is well known fact that the LS estimates θ̂cl
LS are consistent and unbiased only when

{ξ(k)} is white noise. One way to overcome this problem is the implementation of the
IV method.

3. Basic and Generalized Closed-Loop IV Methods

The basic closed-loop IV method utilizes 2n time-shifted values of the reference signal
as instruments. Thus, the estimates are calculated according to the relation (Soderstrom
et al., 1987)

θ̂IV =
[ N∑

k=1

z(k)fT
yu(k)

]−1 N∑
k=1

z(k)yT (k), (27)
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where z(k) = fr(k) and l = 2n.
The following vector-matrix form of Eq. (27) is very useful for computer realization

θ̂IV =
(
RT FY U

)−1
RT y. (28)

Here FY U is a block matrix

FY U = [Y U ] ∈ R(N −2n)×2n. (29)

It’s blocks Y ∈ R(N −2n)×n, U ∈ R(N −2n)×n, the vector y ∈ RN −2n and the
submatrix R ∈ R(N −2n)×2n are formed in according to Eqs. (10) and (12):

y = [y(2n + 1) y(2n + 2) . . . y(N)]T , (30)

Y =

⎡
⎢⎢⎢⎣

−y(2n) −y(2n − 1) · · · −y(n + 1)
−y(2n + 1) −y(2n) · · · −y(n + 2)

...
...

. . .
...

−y(N − 1) −y(N − 2) · · · −y(N − 2n + 1)

⎤
⎥⎥⎥⎦ , (31)

U =

⎡
⎢⎢⎢⎣

u(2n) u(2n − 1) · · · u(n + 1)
u(2n + 1) u(2n) · · · u(n + 2)

...
...

. . .
...

u(N − 1) u(N − 2) · · · u(N − 2n + 1)

⎤
⎥⎥⎥⎦ , (32)

R =

⎡
⎢⎢⎢⎣

r(2n) r(2n − 1) · · · r(1)
r(2n + 1) r(2n) · · · r(2)

...
...

. . .
...

r(N − 1) r(N − 2) · · · r(N − 2n)

⎤
⎥⎥⎥⎦ . (33)

The generalized closed-loop IV method increases the quality of the IV estimates. Its
estimates are a generalization of the basic IV ones, obtained by filtering the input-output
data and taking advantage of the augmented instrumentz(k) ∈ Rnz , where nz � 2n. The
estimates are calculated according to the formula

θ̂G
IV(N)

= arg min︸︷︷︸
θ

∥∥∥∥∥
[

1
N

N∑
k=1

z(k)L
(
q−1

)
fT
yu(k)

]
θ −

[
1
N

N∑
k=1

z(k)L(q−1)y(k)
]∥∥∥∥∥

2

Q

, (34)

where L(q−1) is a stable filter and ‖x‖2
Q is a quadratic form xT Qx with a positive

definite weighting matrix Q.
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4. Modifications of IV Method

4.1. Tailor-Made Method

The tailor-made IV method is based on the closed-loop prediction error

ε(k, θ) = Ācl
(
q−1, θ

)
y(k) − B̄cl

(
q−1, θ

)
r(k), (35)

where

B̄cl
(
q−1, θ

)
= B

(
q−1, θ

)
P

(
q−1

)
(36)

and

Ācl
(
q−1, θ

)
= A

(
q−1, θ

)
P

(
q−1

)
+ B

(
q−1, θ

)
S

(
q−1

)
. (37)

Due to the fact that the controller is known the prediction error is parameterised by the
chosen in advance plant parameters θ.

Alternatively, the prediction error is defined as (Gilson and Van den Hof, 2001)

ε(k, θ) = ȳ(k) − f̄T
yu(k)θ. (38)

The tailor-made IV estimates are obtained as solution to the system of 2n equations
(Gilson and Van den Hof, 2003)

1
N

N∑
k=1

ε
(
k, θ̂TM

IV

)
η(k) = 0, (39)

where the instrument vector is calculated by delayed samples of the reference signal

η(k) = Ffr(k), (40)

and F ∈ R2n×l is chosen by the user matrix with rank 2n.
This method provides unbiased estimates for the plant model G(q, θ) without estima-

tion of the noise model.

4.2. BELS Method

A modification of the classical least-squares method, based on the principle of bias com-
pensation is called BELS (bias-eliminated LS; Wada et al., 2001). For closed-loop identi-
fication BELS is a particular form of the tailor-made IV method. According to the relation
between the model and controller orders there are two different cases (Gilson and Van den
Hof, 2001; Gilson and Van den Hof, 2003).
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For m � n BELS is equivalent to the tailor-made IV method with l = 2n and
F = I2n. In case of non-singular matrix R̂fr f̄yu

∈ R2n×2n the estimates are given by

θ̂BELS ≡ θ̂TM
IV = R̂−1

fr f̄yu
R̂fr ȳ, (41)

where

R̂fr f̄yu
=

1
N

N∑
k=1

fr(k)f̄T
yu(k), (42)

R̂frȳ =
1
N

N∑
k=1

fr(k)ȳT (k). (43)

The matrix R̂fr f̄yu
and the vector R̂fr ȳ consist of estimates of the cross-correlation

function values of the corresponding vectors. From Eqs. (13) and (14) can be obtained
following relations (Gilson and Van den Hof, 2001)

ȳ(k) = y(k) − fT
Y R(k)μ (44)

and

f̄T
yu(k) = fT

Y R(k)M. (45)

They allow determination of the filtered data in vector-matrix form

ȳ = y − FY Rμ, (46)

F̄Y U = FY RM. (47)

Thus, the estimates (41) can be calculated according to formula

θ̂BELS ≡ θ̂TM
IV =

(
RT FY RM

)−1
RT (y − FY Rμ). (48)

For m > n BELS is equivalent to the tailor-made IV method with l = n + m and

F = MTR̂T
frfyr

[
R̂frfyrR̂

T
frfyr

]−1
, (49)

where

R̂frfyr =
1
N

N∑
k=1

fr(k)fyr(k). (50)

In this case the estimates are obtained according to

θ̂BELS ≡ θ̂TM
IV = R̂−1

Ffr f̄yu
R̂Ffr ȳ, (51)
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where R̂Ffr f̄yu
and R̂Ffr ȳ are the product of two matrices, respectively

R̂Ffr f̄yu
= FR̂fr f̄yu

and R̂Ffr ȳ = FR̂fr ȳ. (52)

Equations (23) and (44)–(47) allow Eqs. (49) and (51) to be presented respectively in
the form

F = MT
(
RT FY R

)T [(
RT FY R

)(
RT FY R

)T ]−1
, (53)

θ̂BELS ≡ θ̂TM
IV =

(
FRT FY RM

)−1
FRT (y − FY Rμ). (54)

Equations (41) and (51) and their vector-matrix equivalents (48) and (54) substi-
tute comparatively complex multi-steps computational procedures of BELS method
(Atanasov, 2007; Gilson and Van den Hof, 2001; Wada et al., 2001).

For m > n tailor-made IV estimates satisfy the relation

θ̂TM
IV = arg min︸︷︷︸

θ

∥∥R̂fr f̄yu
θ − R̂fr ȳ

∥∥2

Q
, (55)

where

Q =
[
R̂frfyrR̂

T
frfyr

]−1 ∈ R(n+m)×(n+m). (56)

These estimates are generalized IV estimates if the chosen instruments are z(k) = fr(k),
nz = l = n + m, and the filter L(q−1) is the controller denominator P (q−1).

For l = 2n and F = I2n, tailor-made IV estimates are generalized IV estimates with
z(k) = fr(k), nz = l = 2n, Q = I2n and L(q−1) = P (q−1).

5. Optimal Closed-Loop IV Estimator

The covariance matrix of the estimates contains their variances and covariances and
characterizes estimate accuracy. The choice of the instruments z(k) from dimensionnz ,
weighting matrix Qand stable filter L(q−1) has an important influence on the covariance
matrix. It is known that the Cramer-Rao inequality gives its lower bound for any unbiased
estimation process. If the closed-loop IV estimates have normal distribution, according
to Cramer-Rao inequality, the lower bound of the covariance matrix is given by Forsell
and Ljung (1999), Gilson and Van den Hof (2001)

Popt
IV = σ2

0

[
p lim f̃yu(k)f̃T

yu(k)
]−1

. (57)

Here f̃T
yu(k) is the negative gradient of the prediction error for the true plant parameters

and noise filter
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f̃T
yu(k) = −

[
d

dθ
ε(k, θ)

]T ∣∣∣∣
θ=θ0

= −
{

d

dθ

[
1

H0(q−1)
(
y(k) − G(q, θ)u(k)

)]}T ∣∣∣∣
θ=θ0

=
[
A0

(
q−1

)
H0

(
q−1

)]−1
fT
yu(k). (58)

Here f̃T
yu(k) denotes the noise-free part offyu(k). The covariance matrix Popt

IV is
obtained from the expressions

z(k) =
1
σ2

0

{[
A0

(
q−1

)
H0

(
q−1

)
]−1f̃T

yu(k)
}T

, (59)

nz = 2n, (60)

Q = I, (61)

L
(
q−1

)
=

[
A0

(
q−1

)
H0

(
q−1

)]−1
. (62)

Last equations confirm the statement that the optimal IV estimator is only feasible if the
true plant and noise models are exactly known. That’s why optimal accuracy cannot be
achieved in practice.

6. Approximate Realizations of the Optimal Closed-Loop IV Estimator

There are two main requirements for approximate realization of the optimal closed-loop
IV estimator. The first one is regarding to the choice of the noise model. This is impor-
tant for determination of the filter L(q−1) and the instruments z(k). The second one is
regarding to the choice of an initial plant model, used for computation of the noise-free
part of the regressor fyu(k).

6.1. Extension to the IV4 Method

The extension to the IV4 method for open-loop identification is an attempt for approxima-
tion of the optimal closed-loop IV method. The key point is the usage of the instruments
that are uncorrelated with the noise part of the plant input signal, but correlated with the
noise-free part.

The estimation is based on the following algorithm:

1. Present the model structure as an linear regression model

ŷ(k, θ) = fT
yu(k)θ, (63)

or

y = FY Uθ. (64)
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2. Estimate θ by LS method and obtain an initial estimate θ̂1
LS

θ̂1
LS =

[ N∑
k=1

fyu(k)fT
yu(k)

]−1 N∑
k=1

fyu(k)yT (k), (65)

or

θ̂1
LS =

(
FT

Y UFY U

)−1
FT

Y Uy, (66)

along with the corresponding transfer function Ĝ1(q) from order n.
3. Generate instruments z1(k) as estimates of the noise free part of the open-loop

regressor fyu(k) by relations

ỹ1(k) =
Ĝ1(q)

1 + C(q)Ĝ1(q)
r(k), (67)

ũ1(k) =
1

1 + C(q)Ĝ1(q)
r(k), (68)

z1(k) =
[

− ỹ1(k − 1) · · · − ỹ1(k − n)ũ1(k − 1) · · · ũ1(k − n)
]T

. (69)

4. Form the matrix F1Ỹ Ũ obtained in accordance with Eqs. (29), (31) and (32) and
determine the IV estimate of θ as

θ̂2
IV = R̂−1

z1fyu
R̂z1y, (70)

or

θ̂2
IV =

(
F1T

Ỹ Ũ
FY U

)−1
F1T

Ỹ Ũ
y. (71)

The corresponding estimated n-order transfer function is

Ĝ2(q) =
B̂2(q−1)
Â2(q−1)

. (72)

5. Generate residual vector ρ̂ as

ρ̂(k) = Â2

(
q−1

)
y(k) − B̂2

(
q−1

)
u(k), (73)

and define an AR model from order 2n for ρ̂

L(q−1)ρ̂(k) = ê(k), (74)

where {e(k)} is white noise.
6. Estimate L(q−1) by LS method and denote the result with L̂(q−1).
7. Generate instruments z2(k) as

ỹ2(k) =
Ĝ2(q)

1 + C(q)Ĝ2(q)
r(k), (75)
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ũ2(k) =
1

1 + C(q)Ĝ2(q)
r(k), (76)

z2(k) = [−ỹ2(k − 1) · · · − ỹ2(k − n)ũ2(k − 1) · · · ũ2(k − n)]T . (77)

8. Filter the input-output data

fyuF (k) = L̂
(
q−1

)
fyu(k), (78)

yF (k) = L̂(q−1)y(k).

9. Form the matrices F2Ỹ Ũ ,FYF UF
and vector yF in accordance with Eqs. (29), (31)

and (32).
10. Using instruments z2(k), determine the IV4 estimates as

θ̂IV4 = R̂−1
z2fyuF

R̂z2yF
, (79)

or

θ̂IV4 = (F2T
Ỹ Ũ

FYF UF
)−1F2T

Ỹ Ũ
yF . (80)

6.2. Closed-Loop Quasi-Optimal IV Method

Noise and plant models can be estimated by the help of high-order LS estimator (n1 > n).
The obtained result is obviously biased, but the bias is only in the first step and does not
lead to a bias in the final model (Gilson and Van den Hof, 2003).

The estimation is based on the following algorithm:

1. Present the ARX model structure as a linear regression model by Eqs. (64) or (64)
and estimate θ by a high-order LS estimator. Obtain an initial estimate θ̂1

LS along
with the plant and noise models

Ĝ1(q) =
B̂1(q−1)
Â1(q−1)

; Ĥ1(q) =
1

Â1(q−1)
. (81)

2. In this case the filter is given by

L̂(q−1) = Â1(q−1)Ĥ1(q−1) = 1. (82)

3. Compute the noise-free part f̃yu(k) of the open-loop regressors

f̃yu(k) = [−ỹ1(k − 1) · · · − ỹ1(k − n)ũ1(k − 1) · · · ũ1(k − n)]T , (83)

with ỹ1(k) and ũ1(k), computed according to Eqs. (76) and (77).
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4. Generate the instruments as

z(k) = {[A1(q−1)H1(q−1)]−1f̃T
yu(k)}T ≡ f̃yu(k) (84)

and form the matrix FỸ Ũ .
5. Using the instruments z(k) determine the quasi-optimal IV estimates of θ as

θ̂OPT
IV = R̂−1

zfyu
R̂zy, (85)

or

θ̂OPT
IV = (FT

Ỹ Ũ
FY U )−1FT

Ỹ Ũ
y. (86)

7. Example

Consider a close-loop system, described in the form of Eqs. (2), (5) and (6) with

G0(q) =
0.4134q−1

1 − 0.5866q−1
, (87)

C(q) =
0.1087q−1 + 0.0729q−2

1 − 1.1197q−1 + 0.3012q−2
, (88)

H0(q) =
1 + 0.05q−1 + 0.8q−2

1 − 1.036q−1 + 0.2636q−2
. (89)

The input – {r(k)} and the noise – {e0(k)} are random signals with normal dis-
tribution. The standard deviation of the generalized input signal {r(k)} is one. The
desired noise to signal ratio is obtained by variation of the standard deviation of the
noise {e0(k)}.

The relative mean-squared error Qθ with respect to the true parameters is used as an
accuracy criterion. The plant parameters are estimated on the basis of the data set (15)
with N = 1000. Monte Carlo simulations have been performed for three different noise
to signal ratio values – rel1 = 6%, rel2 = 10% and rel3 = 15%.

Four estimators are investigated – Tailor-made IV (54), extended IV4 (80), quasi-
optimal IV (86), and basic closed-loop IV (28). Other two estimators are used for com-
parison purposes. They are the LS (66) and standard optimal IV. The last one is obtained
according to Eqs. (34), (59)–(62) and the true plant and noise filter parameters from equa-
tions (88) and (89).

The true plant parameters are a1 = −0.5866 and b1 = 0.4134. The mean values
of the parameter estimates for 150 Monte Carlo runs, their standard deviation and the
mean values of the relative mean-squared errors Qθ with respect to the true parameters
are presented in Table 1.

Bar-diagrams of the mean values of the relative mean-squared errors Qθ with respect
to the true parameters for the three noise to signal ratios, are shown in Figs. 2, 3 and 4.
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Table 1

Parameter estimation results

No. rel1 = 6% rel2 = 10% rel3 = 15%

1 θ̂ST
IV −0.5867 0.4134 −0.5869 0.4135 −0.5865 0.4136

std 0.0024 0.0008 0.0037 0.0014 0.0056 0.0020

Qθ 0.0029 0.0044 0.0069

2 θ̂TM
IV −0.5866 0.4135 −0.5860 0.4133 −0.5871 0.4138

std 0.0033 0.0013 0.0055 0.0024 0.0076 0.0037

Qθ 0.0042 0.0073 0.0101

3 θ̂IV4 −0.5910 0.4134 −0.5859 0.4134 −0.5885 0.4135

std 0.0414 0.0034 0.0000 0.0024 0.0103 0.0032

Qθ 0.0138 0.0097 0.0126

4 θ̂OPT
IV −0.5872 0.4135 −0.5860 0.4134 −0.5876 0.4132

std 0.0047 0.0016 0.0070 0.0025 0.0091 0.0038

Qθ 0.0057 0.0085 0.0118

5 θ̂IV −0.5869 0.4135 −0.5862 0.4134 −0.5870 0.4136

std 0.0039 0.0017 0.0061 0.0026 0.0088 0.0039

Qθ 0.0049 0.0077 0.0111

6 θ̂LS −0.5965 0.4134 −0.6108 0.4123 −0.6376 0.4109

std 0.0047 0.0016 0.0066 0.0025 0.0086 0.0039

Qθ 0.0142 0.0341 0.0714

The serial number of the estimators listed in Table 1 corresponds with the serial num-
ber of the bar-diagram columns.

8. Conclusion

In this paper an alternative user-friendly representation of the ordinary mathematical IV
relations is proposed. This vector-matrix form is very convenient for computer based
application, especially for Matlab R© implementation.

Different modifications of the IV method are discussed and a comparison between
different methods for close-loop identification is performed. An experiment is carried
out, based on the Monte Carlo method. As comparison criteria for those estimators, the
accuracy of the estimation is used. It is seen that the accuracy of the estimates in the stud-
ied modifications of the IV method is much greater then the one obtained by the classical
LS method. From Table 1, Figs. 2, 3 and 4 also can be seen that the best estimator is the
standard IV estimator. Unfortunately, it cannot be implemented in practise. The second
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Fig. 2. Bar-diagram for rel1 = 6%. Fig. 3. Bar-diagram for rel2 = 10%.

Fig. 4. Bar-diagram for rel3 = 15%.

best is the Tailor-made IV estimator, which algorithm does not incorporate intermediate
LS estimates.

From the analysis of the conducted investigation it is clear that the LS method pro-
duced biased mean value of the estimate, while all IV methods provide unbiased estimates
of the system parameters. The initial LS estimates and approximate determination of the
noise free part of the open-loop repressors have negative impact on the accuracy of the
extended IV4 and quasi-optimal IV estimators. Relatively inaccurate are also the esti-
mates of the standard IV estimator, which did not incorporate approximate information
for the plant and noise models, based on the measured data.

For future investigation the authors are planning to develop recurrent versions of the
investigated algorithms in order to perform identification in real time. During the investi-
gations, different excitation signals will be used, in order to investigate the applicability
of each algorithm.
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Gr ↪ižtamojo ryšio sistemos identifikavimas, taikant instrumentini ↪u
kintam ↪uj ↪u metodo modifikacijas

Nasko ATANASOV, Alexander ICHTEV

Šiame straipsnyje pateikiama keletas apibendrinto instrumentini ↪u kintam ↪uj ↪u (IK) metodo mod-
ifikacij ↪u gr↪ižtamojo ryšio sistemos identifikavimui. Tiriama IK ↪iverči ↪u kovariacinė matrica. Nus-
tatyta, kad optimali IK ↪iverči ↪u kovariacinė matrica bei optimali IK metodo procedūra gali būti gauti
tik tuo atveju, kai tiksliai žinomi identifikuojamos sistemos ir triukšmo modeliai. Remiantis šiuo
faktu sudarytos ↪ivairios IK metodo modifikacijos, vienaip ar kitaip aproksimuojančios reikaling ↪a
informacij ↪a, kuri turėt ↪u būti gaunama iš matavim ↪u. Pagrindinis gaut ↪u išraišk ↪u privalumas, kad jos
esti nesudėtingos matematine prasme bei patogios realizuoti praktiškai. Pateiktas gr↪ižtamojo ryšio
sistemos pavyzdys ir gauti modeliavimo kompiuteriu rezultatai.


