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Abstract. A proxy signature scheme enables an original signer to delegate its signing capability
to a proxy signer and then the proxy signer can sign a message on behalf of the original signer.
Recently, in order to eliminate the use of certificates in certified public key cryptography and the
key-escrow problem in identity-based cryptography, the notion of certificateless public key cryp-
tography was introduced. In this paper, we first present a security model for certificateless proxy
signature schemes, and then propose an efficient construction based on bilinear pairings. The se-
curity of the proposed scheme can be proved to be equivalent to the computational Diffie–Hellman
problem in the random oracle with a tight reduction.
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1. Introduction

The concept of proxy signature was first introduced by Mambo et al. (1996). The proxy
signature schemes allow a proxy signer to sign messages on behalf of an original signer
within a given context (the context and limitations on proxy signing capabilities are cap-
tured by a certain warrant issued by the delegator which is associated with the delegation
act). Proxy signatures have been found numerous practical applications, particularly in
distributed computing where delegation of rights is quite common, distributed shared ob-
ject systems, global distribution networks, and mobile communications. Since Mambo
et al.’s scheme, many proxy signature schemes have been proposed (Alomair et al.,
2008; Boldyreva et al., 2003; Kim et al., 1997; Lee et al., 2001; Malkin et al., 2004).
Proxy signatures can combine other special signatures to obtain some new types of proxy
signatures. These include threshold proxy signatures (Zhang, 1997), blind proxy signa-
tures (Lin and Jan, 2000), proxy ring signatures (Li et al., 2006) and one-time proxy
signatures (Kim et al., 2001). However, the theory of proxy signature faces some prob-
lems when it comes to reality. The public key of user is usually a “random” string that
is unrelated to the identity of the user in traditional public key infrastructure (PKI), so
there is a trusted-by-all certificate authority (CA) to assure the relationship between the
cryptographic keys and the user. As a result, any verifier of a signature must obtain and
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verify the user’s certificate before checking the validity of the signature. The communi-
cation and the validation of a large number of public keys greatly affect the efficiency of
the proxy signature.

ID-based cryptography which was introduced in 1984 by Shamir solved these prob-
lems: the public key of each user is easily computable from a string corresponding to this
user’s identity (such as an email address), while the private key associated with that iden-
tity is computed and issued secretly to the user by a trusted third party called private key
generator (PKG). This property avoids the necessity of certificates, and associates an im-
plicit public key to each person over the world. So ID-based proxy signature has rapidly
emerged in recent years and been well studied as well. The first work on ID-based proxy
signature was proposed by Zhang and Kim (2003). Then, Xu et al. (2005) proposed an
ID-based proxy signature scheme from pairings. They extended Boldyreva el al.’s (2003)
security model for proxy signature schemes to the ID-based setting and proved its se-
curity in that model without using forking lemma (Pointcheval and Stern, 2000). After
that, Shim (2006) proposed another efficient ID-based proxy signature scheme with more
tighter security reduction. However, an inherent problem of ID-based cryptosystems is
key escrow, i.e., the PKG knows users’ private key. A malicious PKG can frame an
innocent user by forging the user’s signature. Due to this inherent problem, ID-based
cryptosystems are considered to be suitable only for private networks (Shamir, 1984).
Thus, eliminating key escrow in ID-based cryptosystems is essential to make them more
applicable in the real world.

To overcome the drawback of key escrow in ID-PKC, Al-Riyami and Paterson (2003)
proposed a paradigm called certificateless public key cryptography (CL-PKC) in 2003.
The concept was introduced to suppress the inherent key-escrow property of identity-
based public key cryptosystems (ID-PKC)without losing their most attractive advantage
which is the absence of digital certificates and their important management overhead.
Like ID-PKC, certificateless cryptography does not use public key certificate (Al-Riyami
and Paterson, 2003; Zhang and Wong, 2006), it also needs a third party called Key Gen-
eration Center (KGC) to help a user to generate his private key. However, the KGC does
not have access to a user’s full private key. It just generates a user’s partial private key
from the user’s identity as the PKG in ID-PKC does. A user computes his full private key
by combining his partial private key and a secret value chosen by himself. The public key
of a user is computed from the KGC’s public parameters and the secret value of the user,
and it is published by the user himself.

Recently, many researchers have been investigating secure and efficient certificateless
signature (CLS) schemes. In their original paper, Al-Riyami and Paterson (2003) pre-
sented a CLS scheme. Huang et al. (2005) pointed out a security drawback of the original
scheme and proposed a secure one. A generic construction of CLS scheme was proposed
by Yum and Lee (2004) in ACISP 2004. However, Hu et al. (2006) showed that the Yum-
Lee construction is insecure and proposed a fix in the standard model. In ACNS 2006,
Zhang and Wong (2006) presented an efficient CLS scheme from pairings. Gorantla and
Saxena (2005) introduced a new construction of CLS scheme without providing formal
proofs. Their scheme has been shown insecure by Cao et al. (2006). The survey and dis-
cussions of CLS scheme can be found in Huang et al. (2007), Hu et al. (2006), Dent and
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Comley (2006). To the best of our knowledge, Li et al. (2005) proposed the first certifi-
cateless proxy signature based on bilinear pairings. After that, Lu et al. (2007) and Yap
et al. (2007) showed that Li et al.’s scheme is insecure and proposed the fix, respectively.
Unfortunately, all of these works only provide informal security analysis, i.e., there are
no proven secure certificateless proxy signature schemes until now. Our current work is
aimed at filling this void. A security model for certificateless proxy signature is proposed
in our paper. The model captures the notion of existential unforgeability of certificateless
signature against Type I and Type II adversaries. We then propose an efficient and sim-
ple certificateless proxy signature scheme and show its security in our model, with the
assumption that Computational Diffie–Hellman problem is intractable.

The rest of this paper is organized as follows. A brief review of some basic concepts
and tools used in our scheme is described in Section 2. The proposed certificateless proxy
signature scheme is given in Section 3. The security of our scheme is analyzed in Sec-
tion 4. Finally, the conclusions are given in Section 5.

2. Preliminaries

In this section, we will review some fundamental backgrounds required in this paper,
namely bilinear pairing and the definition of certificateless proxy signature scheme.

2.1. Bilinear Pairing and Complexity Assumption

Let G1 denote an additive group of prime order q and G2 be a multiplicative group of the
same order. Let P be a generator of G1, and ê be a bilinear map such that ê : G1×G1 → G2

with the following properties:

1. Bilinearity: For all P, Q ∈ G1, and a, b ∈ Zq, ê(aP, bQ) = ê(P, Q)ab.
2. Non-degeneracy: ê(P, P ) �= 1G2 .
3. Computability: It is efficient to compute ê(P, Q) for all P, Q ∈ G1.

The security of our signature scheme will be reduced to the hardness of the Computa-
tional Diffe–Hellman (CDH) problem in the group in which the signature is constructed.
We briefly review the definition of the CDH problem:

DEFINITION 1. Given the elements P , aP and bP , for some random values a, b ∈ Zq the
Computational Diffe–Hellman (CDH) problem consists of computing the element abP .

The success probability of any probabilistic polynomial-time algorithm A in solving
CDH problem in G1 is defined to be

SuccCDH
A,G1

= Pr
[

A(P, aP, bP ) = abP : a, b ∈ Zq

]
.

The CDH assumption states that for every probabilistic polynomial-time algorithm A,
SuccCDH

A,G1
is negligible.
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2.2. Security Notions

Component of Certificateless Proxy Signature Schemes
A Certificateless Proxy Signature (CL-PS) scheme is a tuple CL-PS=(MasterKeyGen,
PartialKeyGen, UserKeyGen, (Delegation, Proxy), Sign and Verify), and the descrip-
tion of each algorithm is as follows.

1. The randomized parameters generation algorithm MasterKeyGen takes as in-
put 1k, where k is the security parameter and outputs a master public/secret key
pair (mpk, msk). The algorithm is assumed to be run by a Key Generation Center
(KGC) for the initial setup of a certificateless proxy signature scheme.

2. The randomized private key generation algorithm PartialKeyGen takes as input
msk and user’s identity ID ∈ {0, 1} ∗ and generates a key pskID called user partial
key. This algorithm is run by the KGC once for each user, and the partial private
key is assumed to be distributed securely to the corresponding user.

3. The randomized user key generation algorithm UserKeyGen takes as input mpk

and user’s identity ID and generates a user public/secret key pair (upkID , uskID).
This algorithm is supposed to be run by each user in the system.

4. (Delegation, Proxy) is a pair of interactive randomized algorithms forming the
(two-party) proxy-designation protocol. The input to each algorithm includes
two identities {ID i, IDj } with a warrant ω (the warrant made by the original
signer ID i is public and it implies that the original signer ID i delegates IDj

as a proxy singer). The order of {ID i, IDj } is important, i.e., {ID i, IDj } and
{IDj , ID i} are different inputs in the proxy signing key generation algorithms.
Delegation also takes as input the user secret key uskIDi and the user partial key
pskIDi of the original signer, and Proxy also takes as input the user secret key
uskIDj

and the user partial key pskIDj
of the proxy signer. As result of the in-

teraction, a proxy signing key σP = (Delegation(ID i, IDj , ω, uskIDi
, pskIDi

),
Proxy(ID i, IDj , ω, uskIDj , pskIDj )) for IDj is output. This algorithm is run by
the original signer and the proxy signer interactively.

5. The randomized proxy signing algorithm Sign takes as input a proxy signing key
σP corresponding to an identity IDj , a message m ∈ {0, 1}∗ and outputs a proxy
signature sig ← Sign(σP , m).

6. The randomized verification algorithm Verify takes as input mpk, a set of identities
{ID i, IDj } with a warrant ω, the corresponding user public key (upkIDi

, upkIDj
),

a message m ∈ {0, 1}∗ and a proxy signature sig of m for {ID i, IDj },
and outputs True if the signature is correct, or ⊥ otherwise, i.e., {True, ⊥}
←Verify(ω, m, mpk, ID i, IDj , upkIDi

, upkIDj
, sig).

Adversaries Model of Certificateless Proxy Signature Scheme
Combining the security notions of certificateless public key cryptography and security
models of proxy signature schemes in traditional PKC and ID-PKC, we define two types
of security for CL-PS scheme, Type-I security and Type-II security, along with two types
of adversaries, A1 and A2, respectively. Adversary A1 models a malicious adversary
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which compromises the user secret key uskID or replaces the user public key upkID ,
however, cannot compromise the master secret key msk nor get access to the user par-
tial key pskID . Adversary A2 models the malicious-but-passive KGC who controls the
generation of the master public/secret key pair, and that of any user partial key pskID .
Furthermore, we give both of adversaries the power to request proxy signing keys on any
desired identity. The following are six oracles which can be accessed by the adversaries.

1. CreateUser: On input an identity ID ∈ {0, 1}∗, if ID has already been cre-
ated, nothing is to be carried out. Otherwise, the oracle generates pskID ←
PartialKeyGen(msk, ID) and (upkID , uskID) ← UserKeyGen(mpk, ID). It then
stores (ID , pskID , upkID , uskID) into a list List. In both cases, upkID is returned.

2. RevealPartialKey: On input an identity ID , the oracle searches List for an corre-
sponding entry to ID . If it is not found, ⊥ is returned; otherwise, the corresponding
pskID is returned.

3. RevealSecretKey: On input an identity ID , the oracle searches List for an corre-
sponding entry to ID . If it is not found, ⊥ is returned; otherwise, the corresponding
uskID is returned.

4. ReplaceKey: On input an identity ID and a user public/secret key pair
(upk∗, usk∗), the oracle searches List for the entry of ID . If it is not found, noth-
ing will be carried. Otherwise, the oracle updates (ID , pskID , upkID , uskID) to
(ID , pskID , upk∗

ID , usk∗
ID).

5. RevealProxyKey: Proceeding adaptively, for a given pair of identities {ID i, IDj }
with a warrant ω, i.e., it implies that an original signer ID i designates IDj as a
proxy signers, the oracle proceeds in one of the three cases below.

(a) A valid proxy signing key σP for IDj is returned if {ID i, IDj } have both been
created but the corresponding user public/secret key pairs (upkIDi

, uskIDi
)

and (upkIDj
, uskIDj

) have not been replaced.
(b) If IDk, where k is one of i and j, has not been created, a symbol ⊥ is returned.
(c) If the user public/secret key pair of IDk, where k is one of i and j, has been

replaced with, say (upk∗
IDk

, usk∗
IDk

), then the oracle returns the result of σ∗
P .

6. Sign: On input a message m ∈ {0, 1}∗ for {ID i, IDj } with a warrant ω, the sign-
ing oracle firstly runs the RevealProxyKey oracle to obtain the proxy singing key,
then the signing oracle runs the Sign algorithm and generates the proxy signa-
ture sig.

REMARK. When querying the oracle ReplaceKey, usk∗
ID can be an empty string. In this

case, it means that the user secret key is not provided. If usk∗
ID is an empty string and the

original user secret key of an identity ID is replaced with usk∗
ID , then the empty string

will be returned if the RevealSecretKey oracle is queried on ID . Also note that even if
usk∗

ID is not an empty string, it does not mean that usk∗
ID is the corresponding secret

key of upk∗
ID . Hence as mentioned, the proxy signing key generated by the proxy key

generation oracle RevealProxyKey will be an execution of (Delegation, Proxy) using
the replaced user secret key usk∗

ID regardless of the value of upk∗
ID . In other words, the

proxy signing key and the corresponding proxy signature may not be valid.
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We define two games, one for A1 and the other one for A2.
Game I: Let S1 be the game simulator/challenger and k ∈ N be a security parameter.

1. S1 executes MasterKeyGen(1k) to get (mpk, msk).
2. S1 runs A1 on 1k and mpk. During the simulation, A1 can make queries onto

oracle CreateUser, RevealPartialKey, RevealSecretKey, ReplaceKey, Reveal-
ProxyKey and Sign.

3. S1 is to output (ω∗, m∗, ID ∗
i , ID

∗
j , sig

∗).
A1 outputs sig∗ on a message m∗ for {ID ∗

i , ID
∗
j } with a warrant ω∗ such that

• m∗ is not equal to the inputs of any query to Sign under ID ∗
j ,

• {ID ∗
i , ID

∗
j } with a warrant ω∗ is not requested to RevealProxyKey query, i.e.,

ID ∗
j was not designated by ID ∗

i as a proxy signer,
• ID ∗

k, where k is one of i and j, has not been submitted to both RevealPartialKey
oracle and, ReplaceKey oracle or RevealSecretKey oracle.

A1 wins the game if sig∗ is a valid proxy signature.

DEFINITION 2. A CL-PS scheme is said to be Type-I secure if there is no probabilistic
polynomial-time adversary A1 which wins Game I with non-negligible advantage.

Game II: Let S2 be the game challenger and k ∈ N be a security parameter. There
are two phases of interactions between S2 and A2.

1. S2 executes A2 on input 1k, which returns a master public/secret key pair
(mpk, msk) to A2. Note that A2 cannot make any query at this stage.

2. During this stage of simulation, A2 can make queries onto oracle RevealSe-
cretKey, RevealProxyKey and Sign. A2 can also make queries to CreateUser.
Note that oracle RevealPartialKey is not accessible and no longer needed as A2

has the master secret key, and when A2 issues a query to CreateUser oracle, it has
to additionally provide the user partial key pskID .

3. At the end of this phase, A2 is to output a triple (ω∗, m∗, ID ∗
i , ID

∗
j , sig

∗).
A2 outputs sig∗ on a message m∗ for {ID ∗

i , ID
∗
j } with a warrant ω∗ such that

• m∗ is not equal to the inputs of any query to Sign under ID ∗
j ,

• {ID ∗
i , ID

∗
j } with a warrant ω∗ is not requested to RevealProxyKey query, i.e.,

ID ∗
j was not designated by ID ∗

i as a proxy signer.
• A2 has never queried RevealSecretKey(ID ∗

k) to get the user secret key uskID∗
k
,

where k is one of i and j.

A2 wins the game if sig∗ is a valid proxy signature.

DEFINITION 3. A CL-PS scheme is said to be Type-II secure if there is no probabilistic
polynomial-time adversary A2 which wins Game II with non-negligible advantage.

Security Requirements of Certificateless Proxy Signature Schemes
Like the general proxy signature, a certificateless proxy ring signature scheme should
satisfy the following requirements.



A Provably Secure Proxy Signature Scheme in Certificateless Cryptography 283

1. Distinguishability: Proxy signatures are distinguishable from normal signatures
by everyone.

2. Verifiability: From the proxy signature, the verifier can be convinced of the origi-
nal signers agreement on the signed message.

3. Strong Non-Forgeability: A designated proxy signer can create a valid proxy sig-
nature for the original signer. But the original signer and other third parties who
are not designated as a proxy signer cannot create a valid proxy signature.

4. Strong Identifiability: Anyone can determine the corresponding proxy signers
from the proxy signature.

5. Strong Non-Deniability: Once a proxy signer creates a valid proxy signature of
an original signer, he/she cannot repudiate the signature creation.

6. Prevention of Misuse: The proxy signer cannot use the proxy key for other pur-
poses than generating a valid proxy signature. That is, it cannot sign messages that
have not been authorized by the original signer.

3. Construction of Our Scheme

In this section, we will give the concrete construction of a certificateless proxy signature
scheme. In our scheme, we employ some ideas of the certificateless signature scheme in
Zhang and Wong (2006), and the ID-based proxy signature scheme in Shim (2006). The
proposed certificateless proxy signature scheme comprises the following algorithms.

MasterKeyGen: Given a security parameter k ∈ Z, the algorithm works as follows:

1. Run the parameter generator on input k to generate a prime q, two groups G1, G2

of prime order q, two different generator P and Q in G1 and an admissible pairing
ê : G1 × G1 → G2.

2. Select a master-key s ∈R Z
∗
q and set Ppub = sP .

3. Choose cryptographic hash functions H1, H3 : {0, 1}∗ → G1 and H2 : {0, 1}∗ →
Z

∗
q . The security analysis will review H1, H2 and H3 as random oracles. The sys-

tem parameters is Params= {q, G1, G2, ê, P, Q, Ppub , H1, H2, H3}. The master-
key is s.

PartialKeyGen: Given a user’s identity ID ∈ {0, 1}∗, KGC first computes QID =
H1(ID). It then sets this user’s partial key pskID = sQID and transmits it to ID secretly.

It is easy to see that pskID is actually a signature (Boneh et al., 2001) on ID for
the key pair (Ppub , s), and user ID can check its correctness by checking whether
ê(pskID , P ) = ê(QID , Ppub).

UserKeyGen: The user ID selects a secret value xID ∈R Z
∗
q as his secret key uskID ,

and computes his public key as upkID = xIDP .
(Delegation, Proxy:)

1. The original signer, A prepares a warrant ω which is explicit description of the
delegation relation.

2. On inputs Params, original singer A’s identity IDA, his partial key pskIDA
and

user secret key uskIDA , the signer A randomly chooses rA ∈R Z
∗
q , computes
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UA = rAP , hA = H2(ω, IDA, upkIDA , UA) and VA = hA · pskIDA + rAQ +
xIDAH3(ω, IDA, upkIDA), where upkIDA = xIDAP . Then A sends (ω, UA, VA)
to the proxy signer B.

3. The proxy signer verifies whether ê(VA, P ) = ê(hAQIDA , Ppub)ê(UA, Q)
ê(upkIDA

, H3(ω, IDA, upkIDA
)) holds or not. If it holds, B computes hB =

H2(ω, IDB , upkIDB
, UA) and σP = VA + hB · pskIDB

+ xIDB
H3(ω, IDB ,

upkIDB
) and keeps it as a proxy signing key.

Sign: Given its proxy signing key σP , and a message m ∈ {0, 1}∗, B does:

1. Choose a random r ∈R Z
∗
q and compute U =rP and h=H2(ω, m, IDA, upkIDA ,

IDB , upkIDB , U).
2. Compute V = h · σP + rQ.
3. Output the proxy signature (ω, m, UA, U, V ).
Verify: Given Params, upkIDA

, IDA, upkIDB
, IDB , and proxy signature

(ω, m, UA, U, V ) for the original signer IDA and the proxy signer IDB , a verifier does:

1. Compute QIDA = H1(IDA), QIDB = H1(IDB), hA = H2(ω, IDA, upkIDA ,

UA), hB = H2(ω, IDB , upkIDB , UA) and h = H2(ω, m, IDA, upkIDA , IDB ,

upkIDB , U).
2. Verify whether ê(V, P ) = ê(h[hAQIDA + hBQIDB ], Ppub)ê(h(H3(ω, IDA,

upkIDA
) + H3(ω, IDB , upkIDB

)), upkIDA
+ upkIDB

)ê(Q, U + hUA) holds or
not. If it holds, accept the signature.

4. Security Analysis

4.1. Unforgeability of the Scheme

Theorem 1. In the random oracle model, our certificateless proxy signature scheme is
existentially unforgeable against adaptive chosen-message attacks under the assumption
that the CDH problem in G1 in intractable.

The theorem follows at once from Lemmas 1 and 2, according to Definitions 2 and 3.

Lemma 1. If a probabilistic polynomial-time forger A1 has an advantage ε in forg-
ing a proxy signature in an attack modelled by Game I of Definition 2 after run-
ning in time t and making qHi queries to random oracles Hi for i = 1, 2, 3, qCreU

queries to the CreateUser request oracle, qRPar queries to the RevealPartialKey ex-
traction oracle, qRSec queries to the RevealSecretKey extraction oracle, qPE queries
to the RevealProxyKey extraction oracle, and qSig queries to the Sign oracle, then the
CDH problem can be solved with probability ε′ > 1

e · qRPar+qSig

(qRPar+qSig+1)2 · ε with time
t′ < t+(qH1+qH2+qH3+qRPar+qCreU +qRSec+qPE +qSig)tm+(qPE +qSig+1)tmm,
where tm is the time to compute a scalar multiplication in G1 and tmm is the time to per-
form a multi-exponentiation in G1.
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Proof. Let (X = aP, Y = bP ) be a random instance of the CDH problem in G1. Here
P is a generator of G1, with prime order q, and the elements a, b are taken uniformly
at random in Z∗

q . By using the forgery algorithm A1, we will construct an algorithm S1

which outputs the CDH solution abP in G1.
Algorithm S1 chooses a random t ∈ Z

∗
q , and sets Ppub = X and Q = tP ,

and then starts performing oracle simulation. Without loss of generality, we assume
that, for any key extraction or signature query involving an identity, a H1(·) ora-
cle query has previously been made on that identity. And S1 maintains a list L =
{(ID , pskID , upkID , uskID)} while A1 is making queries throughout the game. S1 re-
sponds to A1’s oracle as follows. �

Queries on Oracle H1: When an identity ID is submitted to oracle H1, S1 first flips
a coin W ∈ {0, 1} that yields 0 with probability ζ and 1 with probability 1 − ζ, and picks
t1 ∈ Z

∗
q at random. If W = 0, then the hash value H1(ID) is defined as t1P ∈ G1. If

W = 1, then S1 returned t1Y ∈ G1. In both cases, S1 inserts a tuple (ID , t1, W ) in a list
L1 = {(ID , t1, W )} to keep track the way it answered the queries.

Queries on Oracle H2: Suppose (ω, ID , upkID , U) is submitted to oracle H2(·).
S1 first scans L2 = {(ω, ID , upkID , U, t2, H2)} to check whether H2 has already been
defined for that input. If so, the previously defined value is returned. Otherwise, S1 picks
at random t2 ∈ Z∗

q and returns H2 = t2 as a hash value of H2(ω, ID , upkID , U) to A1

and also stores the values in the list L2.
Queries on Oracle H3: Suppose (ω, ID , upkID) is submitted to oracle H3(·). S1 first

scans L3 = {(ω, ID , upkID , t3, H3)} to check whether H3 has already been defined for
that input. If so, the previously defined value is returned. Otherwise, S1 picks at random
t3 ∈ Z

∗
q and returns H3 = t3P ∈ G1 as a hash value of H3(ω, ID , upkID) to A1 and

also stores the values in the list L3.
RevealPartialKey Oracle: Suppose the request is on an identity ID . S1 recovers the

corresponding (ID , t1, W ) from the list L1. If W = 1, then S1 outputs “failure” and halts
because it is unable to coherently answer the query. Otherwise, S1 looks up the list L and
performs as follows.

• If the list L contains (ID , pskID , upkID , uskID), S1 checks whether pskID = ⊥.
If pskID �= ⊥, S1 returns pskID to S1. If pskID = ⊥, S1 recovers the corre-
sponding (ID , t1, W ) from the list L1. Noting W = 0 means that H1(ID) was
previously defined to be t1P ∈ G1 and pskID = t1Ppub = t1X ∈ G1 is the
partial key associated to ID . Thus S1 returns pskID to A1 and writes pskID in the
list L.

• If the list L does not contain (ID , pskID , upkID , uskID), S1 recovers the corre-
sponding (ID , t1, W ) from the list L1, sets pskID = t1Ppub = t1X and returns
pskID to A1 and adds an element (ID , pskID , upkID , uskID) to the list L.

CreateUser Oracle: Suppose the request is on an identity ID .

• If the list L contains (ID , pskID , upkID , uskID), S1 checks whether upkID = ⊥.
If upkID �= ⊥, S1 returns upkID to S1. Otherwise, S1 randomly chooses ν ∈
Z

∗
q and upkID = νP and uskID = ν. S1 returns upkID to A1 and saves

(upkID , uskID) into the list L.
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• If the list L does not contain (ID , pskID , upkID , uskID), S1 sets pskID = ⊥, and
then randomly chooses ν ∈ Z

∗
q and sets upkID = νP and uskID = ν. S1 returns

upkID to A1 and adds (ID , pskID , upkID , uskID) to the list L.

RevealSecretKey Oracle: Suppose the request is on an identity ID .

• If the list L contains (ID , pskID , upkID , uskID), S1 checks whether uskID = ⊥.
If uskID �= ⊥, S1 returns uskID to S1. Otherwise, S1 makes a CreateUser query
itself to generate (upkID = νP, uskID = ν). Then S1 saves these values in the list
L and returns uskID = ν to A1.

• If the list L does not contain (ID , pskID , upkID , uskID), S1 makes a CreateUser
query itself, and then adds (ID , pskID , upkID , uskID) to the list L and returns
uskID .

ReplaceKey Oracle: Suppose A1 makes the query with an input (ID , upk′
ID).

• If the list L contains an element (ID , pskID , upkID , uskID), S1 sets upkID =
upk′

ID and uskID = ⊥.
• If the list L does not contain an item (ID , pskID , upkID , uskID), S1 sets

pskID = ⊥, upkID = upk′
ID and uskID = ⊥, and adds an element

(ID , pskID , upkID , uskID) to L.

RevealProxyKey Oracle: Suppose A1 queries a proxy signing key with inputs
{ID i, IDj , ω} (it means that an original signer ID i designates IDj as a proxy signer).
S1 recovers the corresponding (ID i, t1i, Wi) and (IDj , t1j , Wj) from the list L1. If
Wi = 1 or Wj = 1, then S1 outputs “failure” and halts because it is unable to coherently
answer the query. Otherwise S1 looks up the list L and performs as follows.

• If the list L contains (ID i, pskIDi , upkIDi , uskIDi) and (IDj , pskIDj , upkIDj ,

uskIDj ), S1 checks whether pskIDi = ⊥, pskIDj = ⊥, upkIDi = ⊥ and
upkIDj = ⊥. If pskIDi = ⊥ or pskIDj = ⊥, S1 makes the query to Reveal-
PartialKey Oracle itself to obtain pskIDi = t1iPpub or pskIDj = t1jPpub . If
upkIDi = ⊥ or upkIDj = ⊥, S1 makes the query to CreateUser Oracle itself to
generate (uskIDi = νi, upkIDi = νiP ) or (uskIDj = νj , upkIDj = νjP ). After
that, S1 chooses ri, t2i, t2j , t3i, t3j ∈ Z

∗
q and computes Ui = riP . If the tuples

containing t2i and t2j already appear in list L2, and if the tuples containing t3i, t3j

already appear in list L3, then S1 chooses another t2i, t2j , t3i, t3j and tries again.
Then S1 computes

σP = t2i(t1iPpub) + riQ + νit3iP + t2j(t1jPpub) + νjt3jP

and stores (ω, ID i, upkIDi , Ui, t2i, H2i), (ω, IDj , upkIDj , Uj , t2j , H2j) in list L2,
and (ω, ID i, upkIDi , t3i, H3i), (ω, IDj , upkIDj , t3j , H3j) in list L3, respectively.
Finally, S1 responds to A1 with σP as IDj’s proxy signing key.

• If the list L does not contain the item (ID i, pskIDi , upkIDi , uskIDi) or (IDj ,

pskIDj , upkIDj , uskIDj ), S1 makes queries to RevealPartialKey Oracle and
CreateUser Oracle on ID i or IDj itself, and then adds (ID i, pskIDi , upkIDi ,

uskIDi) or (IDj , pskIDj , upkIDj , uskIDj ) to the list L. Finally, S1 computes σP

and returns it to A1 as before.



A Provably Secure Proxy Signature Scheme in Certificateless Cryptography 287

Sign Oracle: When A1 makes a Sign-query on m with {ID i, IDj , ω}, S1 first finds
the corresponding (ID i, t1i, Wi) and (IDj , t1j , Wj) from the list L1. If Wi = 1 or Wj =
1, then S1 outputs “failure” and halts because it is unable to coherently answer the query.
Otherwise S1 searches the list L and performs as follows.

• If the list L contains (ID i, pskIDi
, upkIDi

, uskIDi
) and (IDj , pskIDj

, upkIDj
,

uskIDj ), S1 checks whether pskIDi = ⊥, pskIDj = ⊥, upkIDi = ⊥ and
upkIDj = ⊥. If pskIDi = ⊥ or pskIDj = ⊥, S1 makes the query to Reveal-
PartialKey Oracle itself to obtain pskIDi

= t1iPpub or pskIDj
= t1jPpub . If

upkIDi
= ⊥ or upkIDj

= ⊥, S1 makes the query to CreateUser Oracle itself to
generate (uskIDi = νi, upkIDi = νiP ) or (uskIDj = νj , upkIDj = νjP ).

• Otherwise, if the list L does not contain the item (ID i, pskIDi , upkIDi , uskIDi) or
(IDj , pskIDj

, upkIDj
, uskIDj

), S1 makes queries to RevealPartialKey Oracle
and CreateUser Oracle on ID i or IDj itself, and then adds (ID i,pskIDi

, upkIDi
,

uskIDi) or (IDj , pskIDj , upkIDj , uskIDj ) to the list L.

Then, S1 chooses ri, rj ∈ Z
∗
q and computes Ui = riP, Uj = rjP . After

that S1 picks t2i, t2j , t
′
2j , t3i, t3j ∈ Z

∗
q randomly, and if the tuples containing

t2i, t2j and t′
2j already appear in list L2, or the tuples containing t3i and t3j

already appear in list L3, then S1 chooses another t2i, t2j , t
′
2j , t3i, t3j and tries

again. Then S1 computes V = t′
2j(t2i(t1iPpub) + riQ + νit3iP + t2j(t1jPpub) +

νjt3jP ) + rjQ and stores (ω, ID i, upkIDi , Ui, t2i, H2i), (ω, IDj , upkIDj , Uj , t2j , H2j)
and (ω, m, ID i, IDj , upkIDi

, upkIDj
, Uj , t

′
2j , H

′
2j) in list L2, and (ω, ID i, upkIDi

, t3i,

H3i), (ω, IDj , upkIDj
, t3j , H3j) in list L3, respectively. Finally, S1 responds to A1 with

sig = (Ui, Uj , V ).
All responses to Sign queries are valid, indeed, the output (ω, m, Ui, Uj , V ) of Sign

query is a valid proxy signature on m for {ID i, IDj , ω}, to see this,
ê(V, P ) = ê(t′

2j(t2i(t1iPpub)+riQ+νit3iP + t2j(t1jPpub)+νjt3jP )+rjQ, P ) =
ê(Ppub , H

′
2j(H2iQIDi + H2jQIDj ))ê(H

′
2j(H3i + H3j), upkIDi + upkIDj )ê(Q, H ′

2jUi

+ Uj).
If S1 does not abort as a result of A1’s Sign queries, CreateUser queries, Reveal-

PartialKey queries, RevealSecretKey queries and RevealProxyKey queries, then A1’s
view is identical to its view in the real attack.

Eventually, A1 outputs a forgery sig∗ = (U ∗
i , U ∗

j , V ∗) on a message m∗ for
{ID ∗

i , ID
∗
j , ω

∗ } with public key {upkID∗
i
, upkID∗

j
}. Now S1 recovers the correspond-

ing (ID ∗
i , t

∗
1i, W

∗
i ) and (ID ∗

j , t
∗
1j , W

∗
j ) from the list L1. If W ∗

i = 0 or W ∗
j = 0,

then S1 outputs “failure” and stops. Otherwise, it goes on and finds out the items
(ω∗, ID ∗

i , upkID∗
i
, U ∗

i , t∗
2i, H

∗
2i), (ω

∗, ID ∗
j , upkID∗

j
, U ∗

j , t∗
2j , H

∗
2j) and (ω∗, m∗, ID ∗

i , ID
∗
j ,

upkID∗
i
, upkID∗

j
, U ∗

j , t′ ∗
2j , H

′ ∗
2j) in the list L2, and the items (ω∗, ID ∗

i , upkID∗
i
, t∗

3i, H
∗
3i),

(ω∗, ID ∗
j , upkID∗

j
, t∗

3j , H
∗
3j) in list L3. Note that the list L2 and L3 must contain such

entries with overwhelming probability (otherwise, S1 stops and outputs “failure”). Note
that H∗

2i = H2(ω∗, ID ∗
i , upkID∗

i
, U ∗

i ) is t∗
2i ∈ Z

∗
q , H∗

2j = H2(ω∗, ID ∗
j , upkID∗

j
, U ∗

j ) is
t∗
2j ∈ Z

∗
q , H ′ ∗

2j = H2(ω∗, m∗, ID ∗
i , ID

∗
j , upkID∗

i
, upkID∗

j
, U ∗

j ) is t′ ∗
2j ∈ Z

∗
q and H∗

3i =
H3(ω∗, ID ∗

i , upkID∗
i
) is t∗

3iP ∈ G1, H∗
3j = H3(ω∗, ID ∗

j , upkID∗
j
) is t∗

3jP ∈ G1. If A1

succeeds in the game, then ê(V ∗, P ) = ê(X, H ′ ∗
2j(H

∗
2iQID∗

i
+ H∗

2jQID∗
j
))ê(H ′ ∗

2j(H
∗
3i +
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H∗
3j), upkID∗

i
+ upkID∗

j
)ê(Q, H ′ ∗

2jU
∗
i + U ∗

j ) with H∗
2i = t∗

2i, H∗
2j = t∗

2j , H ′ ∗
2j = t′ ∗

2j ,
H∗

3i = t∗
3iP , H∗

3j = t∗
3jP , QID∗

i
= t∗

1iY , QID∗
j

= t∗
1jY and Q = tP for

known elements t∗
2i, t

∗
2j , t

′ ∗
2j , t

∗
3i, t

∗
3j , t

∗
1i, t

∗
1j , t ∈ Z∗

q . Therefore, ê(V ∗ − t′ ∗
2j(t

∗
3i +

t∗
3j)(upkID∗

i
+ upkID∗

j
) − t(t′ ∗

2jU
∗
i + U ∗

j ), P ) = ê(X, t′ ∗
2j(t

∗
2it

∗
1i + t∗

2jt
∗
1j)Y ) and thus

(t′ ∗
2j)

−1(t∗
2it

∗
1i + t∗

2jt
∗
1j)

−1(V ∗ − t′ ∗
2j(t

∗
3i + t∗

3j)(upkID∗
i

+ upkID∗
j
) − t(t′ ∗

2jU
∗
i + U ∗

j )) is
the solution to the target CDH instance (X, Y ) ∈ G1 × G1.

Now, we evaluate S1’s probability of failure. By an analysis similar to Coron’s tech-
nique (Coron, 2000), the probability ζqRPar+qSig (1 − ζ) for S1 not to fail in key extrac-
tion queries or because A1 produces its forgery on a ‘bad’ identity ID ∗ is greater than
1
e ·(qRPar +qSig) when the optimal probability ζopt = (qRPar +qSig)/(qRPar +qSig +1)
is taken. And, the probability S1 does not abort after A1 outputs a valid and nontrivial
forgery is at least ( 1

qRPar+qSig+1 )2, since S1 succeeds only if A1 generates a forgery such

that W ∗
i = 1 and W ∗

j = 1 for (ID ∗
i , ID

∗
j ). Therefore, it results that S1’s advantage in

solving the CDH problem in G1 is at least 1
e · qRPar+qSig

(qRPar+qSig+1)2 .

Lemma 2. If a probabilistic polynomial-time forger A2 has an advantage ε in forging
a proxy signature in an attack modelled by Game II of Definition 3 after running in
time t and making qHi queries to random oracles Hi for i = 2, 3, qCreU queries to the
CreateUser request oracle, qRSec queries to the RevealSecretKey extraction oracle, qPE

queries to the RevealProxyKey extraction oracle, and qSig queries to the Sign oracle,
then the CDH problem can be solved with probability ε′ > 1

e · qRPar+qSig

(qRPar+qSig+1)2 · ε with
time t′ < t+(qH2 +qH3 +qCreU +qRSec +qPE +qSig)tm +(qPE +qSig +1)tmm, where
tm is the time to compute a scalar multiplication in G1 and tmm is the time to perform a
multi-exponentiation in G1.

Proof. Suppose A2 is a Type II adversary that (t, ε)-breaks our certificateless proxy
signature scheme. We show how to construct a t′-time algorithm S2 that solves the CDH
problem on G1 with probability at least ε′. Let (X = aP, Y = bP ) ∈ G1 × G1 be a
random instance of the CDH problem taken as input by S2.

S2 randomly chooses s ∈ Z
∗
q as the master key, and then initializes A2 with Ppub =

sP and also the master key s. After that, S2 chooses a random t ∈ Z
∗
q and sets Q = tP .

The adversary A2 then starts making oracle queries such as described in Definition 3.
Note that the user’s partial key pskID = sH1(ID) can be computed by both S2 and A2,
thus the hash function H1(·) is not modelled as a random oracle in this case.

S2 maintains a list L = {(ID , upkID , uskID , W )}, which does not need to be made
in advance and is populated when A2 makes certain queries specified below. �

CreateUser Oracle: Suppose the request is on an identity ID .

• If the list L contains (ID , upkID , uskID , W ), S2 returns upkID to A2.
• If the list L does not contain (ID , upkID , uskID , W ), as in Coron’s proof (Coron,

2000), S2 flips a coin W ∈ {0, 1} that yields 0 with probability ζ and 1 with
probability 1 − ζ. S2 also picks a number t1 ∈ Z∗

q at random. If W = 0, the
value of upkID is defined as t1P ∈ G1. If W = 1, S2 returns t1X ∈ G1. In both
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cases, S2 sets uskID = t1, and inserts a tuple (ID , upkID , uskID , W ) in a list
L = {(ID , upkID , uskID , W )} to keep track the way it answered the queries. S2

returns upkID to A2.

RevealSecretKey Oracle: Suppose the request is on an identity ID .

• If the list L contains (ID , upkID , uskID , W ), S2 returns uskID to A2 if W = 0,
and halts otherwise.

• If the list L does not contain (ID , upkID , uskID , W ), S2 makes a CreateUser
query itself, and then adds (ID , upkID , uskID , W ) to the list L. Then it returns
uskID if W = 0, and halts otherwise.

Queries on Oracle H2: Suppose (ω, ID , upkID , U) is submitted to oracle H2(·).
S2 first scans L2 = {(ω, ID , upkID , U, t2, H2)} to check whether H2 has already been
defined for that input. If so, the previously defined value is returned. Otherwise, S2 picks
at random t2 ∈ Z

∗
q and returns H2 = t2 as a hash value of H2(ω, ID , upkID , U) to A2

and also stores the values in the list L2.
Queries on Oracle H3: Suppose (ω, ID , upkID) is submitted to oracle H3(·). S1 first

scans L3 = {(ω, ID , upkID , t3, H3)} to check whether H3 has already been defined for
that input. If so, the previously defined value is returned. Otherwise, S2 picks at random
t3 ∈ Z

∗
q and returns H3 = t3Y ∈ G1 as a hash value of H3(ω, ID , upkID) to A2 and

also stores the values in the list L3.
RevealProxyKey Oracle: Suppose A2 queries a proxy signing key with in-

puts {ID i, IDj , ω}. S2 first finds the corresponding (ID i, upkIDi
, uskIDi

, Wi) and
(IDj , upkIDj

, uskIDj
, Wj) from the list L. If Wi = 1 or Wj = 1, then S2 outputs

“failure” and halts because it is unable to coherently answer the query. Otherwise S2

chooses ri, t2i, t2j , t3i, t3j ∈ Z
∗
q and computes Ui = riP . If the tuples containing t2i and

t2j already appear in list L2, or the tuples containing t3i and t3j already appear in list L3,
then S2 chooses another t2i, t2j , t3i, t3j and tries again. Then S2 computes

σP = t2i

(
sH1(ID i)

)
+ riQ + uskIDi(t3iP ) + t2j

(
sH1(IDj)

)
+ uskIDj (t3jP )

and stores (ω, ID i, upkIDi , Ui, t2i, H2i), (ω, IDj , upkIDj , Uj , t2j , H2j) in list L2, and
(ω, ID i, upkIDi , t3i, H3i), (ω, IDj , upkIDj , t3j , H3j) in list L3, respectively. Finally, S2

responds to A2 with σP as IDj’s proxy signing key.
Sign Oracle: When A2 makes a Sign-query on m with {ID i, IDj , ω}, S2 first finds

the corresponding (ID i, upkIDi , uskIDi , Wi) and (IDj , upkIDj , uskIDj , Wj) from the
list L. If Wi = 1 or Wj = 1, then S2 outputs “failure” and halts because it is un-
able to coherently answer the query. Otherwise S2 chooses ri, rj ∈ Z

∗
q and computes

Ui = riP, Uj = rjP . After that S2 picks t2i, t2j , t
′
2j , t3i, t3j ∈ Z

∗
q randomly, and if

the tuples containing t2i, t2j and t′
2j already appear in list L2, or the tuples contain-

ing t3i and t3j already appear in list L3, then S2 chooses another t2i, t2j , t
′
2j , t3i, t3j

and tries again. Then S2 computes V = t′
2j(t2i(sH1(ID i)) + riQ + uskIDi(t3iP ) +

t2j(sH1(IDj)) + uskIDj (t3jP )) + rjQ and stores (ω, ID i, upkIDi , Ui, t2i, H2i),
(ω, IDj , upkIDj , Uj , t2j , H2j) and (ω, m, ID i, IDj , upkIDi , upkIDj , Uj , t

′
2j , H

′
2j) in list
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L2, and (ω, ID i, upkIDi , t3i, H3i), (ω, IDj , upkIDj , t3j , H3j) in list L3, respectively. Fi-
nally, sig = (Ui, Uj , V ) is returned to A2, which appears to be a valid signature since

ê(V, P ) = ê
(
t′
2j(t2i(sH1(ID i)) + riQ + uskIDi

(t3iP )

+ t2j(sH1(IDj)) + uskIDj (t3jP )) + rjQ, P
)

= ê
(
Ppub , H

′
2j(H2iQIDi + H2jQIDj )

)

× ê
(
H ′

2j(H3i + H3j), upkIDi
+ upkIDj

)
ê(Q, H ′

2jUi + Uj).

Eventually, A2 outputs a forgery sig∗ = (U ∗
i , U ∗

j , V ∗) on a message m∗ for
{ID ∗

i , ID
∗
j , ω

∗ } with public key {upkID∗
i
, upkID∗

j
}. Now S2 recovers the correspond-

ing (ID ∗
i , upkID∗

i
, uskID∗

i
, W ∗

i ) and (ID ∗
j , upkID∗

j
, uskID∗

j
, W ∗

j ) from the list L. If
W ∗

i = 0 or W ∗
j = 0, then S2 outputs “failure” and stops. Otherwise, it goes on

and finds out the items (ω∗, ID ∗
i , upkID∗

i
, U ∗

i , t∗
2i, H

∗
2i), (ω

∗, ID ∗
j , upkID∗

j
, U ∗

j , t∗
2j , H

∗
2j)

and (ω∗, m∗, ID ∗
i , ID

∗
j , upkID∗

i
, upkID∗

j
, U ∗

j , t′ ∗
2j , H

′ ∗
2j) in the list L2, and the items

(ω∗, ID ∗
i , upkID∗

i
, t∗

3i, H
∗
3i), (ω∗, ID ∗

j , upkID∗
j
, t∗

3j , H
∗
3j) in list L3. Note that the list L2

and L3 must contain such entries with overwhelming probability. If A2 succeeds in the
game, then ê(V ∗, P ) = ê(Ppub , H

′ ∗
2j(H

∗
2iQID∗

i
+ H∗

2jQID∗
j
))ê(H ′ ∗

2j(H
∗
3i + H∗

3j), (t
∗
1i +

t∗
1j)X)ê(Q, H ′ ∗

2jU
∗
i + U ∗

j ) with H∗
2i = t∗

2i, H∗
2j = t∗

2j , H ′ ∗
2j = t′ ∗

2j , H∗
3i = t∗

3iY , H∗
3j =

t∗
3jY and Q = tP for known elements t∗

2i, t
∗
2j , t

′ ∗
2j , t

∗
3i, t

∗
3j , t

∗
1i, t

∗
1j , t ∈ Z∗

q . Therefore,
ê(V ∗ −st′ ∗

2j(t
∗
2iQID∗

i
+t∗

2jQID∗
j
) −t(t′ ∗

2jU
∗
i +U ∗

j ), P ) = ê((t∗
1i+t∗

1j)X, t′ ∗
2j(t

∗
3i+t∗

3j)Y )
and thus (t∗

1i +t∗
1j)

−1(t′ ∗
2j(t

∗
3i +t∗

3j))
−1(V ∗ − st′ ∗

2j(t
∗
2iQID∗

i
+t∗

2jQID∗
j
) − t(t′ ∗

2jU
∗
i +U ∗

j )
is the solution to the target CDH instance (X, Y ).

Now, we evaluate S2’s probability of failure. By an analysis similar to Coron’s tech-
nique (Coron, 2000), the probability ζqRPar+qSig (1 − ζ) for S2 not to fail in key extrac-
tion queries or because A2 produces its forgery on a ‘bad’ identity ID ∗ is greater than
1
e ·(qRPar +qSig) when the optimal probability ζopt = (qRPar +qSig)/(qRPar +qSig +1)
is taken. And, the probability S1 does not abort after A2 outputs a valid and nontrivial
forgery is at least ( 1

qRPar+qSig+1 )2, since S2 succeeds only if A1 generates a forgery such

that W ∗
i = 1 and W ∗

j = 1 for (ID ∗
i , ID

∗
j ). Therefore, it results that S2’s advantage in

solving the CDH problem in G1 is at least 1
e · qRPar+qSig

(qRPar+qSig+1)2 .

4.2. Further Security Analysis

Now, we show that our certificateless proxy signature scheme satisfies all the require-
ments described in the Section 2.

1. Distinguishability: This is obvious, because there is a warrant ω in a valid proxy
signature, at the same time, this warrant ω and the public keys of the original signer
and the proxy signers must occur in the verification equations of proxy signatures.

2. Verifiability: It derived from correctness of the proposed certificateless proxy sig-
nature scheme. In general, the warrant contains the identity information and the
limitation of the delegated signing capacity and so satisfies the verifiability.

3. Strong Non-Forgeability: It derived from correctness of the Theorem 1.
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4. Strong Identifiability: It contains the warrant ω in a valid proxy signature, so
anyone can determine the identity of the corresponding proxy signers from the
warrant ω.

5. Strong Non-Deniability: As the identifiability, the valid proxy signature contains
the warrant ω, which must be verified in the verification phase, it cannot be modi-
fied by the proxy signer. Thus once a proxy signer creates a valid proxy signature
of an original signer, he cannot repudiate the signature creation.

6. Prevention of Misuse: In our proxy signature scheme, using the warrant ω, we
had determined the limit of the delegated signing capacity in the warrant ω, so
the proxy signer cannot sign some messages that have not been authorized by the
original signer.

5. Conclusion

The notion and security models of certificateless proxy signature are formalized. The
models capture the essence of the possible adversaries in the notion of certificateless
system and proxy signature. A concrete construction of certificateless proxy signature
scheme from the bilinear maps is presented. The unforgeability of our CL-PS scheme is
proved in the random oracle based on the hardness of Computational Diffie–Hellman
problem. We note that CL-PS schemes may be more efficient than proxy signature
schemes in traditional PKC since they avoid the costly computation for the verification
of the public key certificates of the signers. And no key escrow in CL-PKC makes it
impossible for the KGC to forge any valid proxy signatures.
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Saugus ↪igaliotojo parašo algoritmas sertifikat ↪u nenaudojančioje
kriptografijoje

Hu XIONG, Fagen LI, Zhiguang QIN

↪Igaliotojo parašo algoritmas ↪igalina asmen↪i perduoti savo pasirašymo teis ↪e ↪igaliotajam asme-
niui, kuris gali pasirašyti dokument ↪a ↪igaliojančiojo asmens vardu. Neseniai, norint nenaudoti serti-
fikat ↪u viešojo rakto kriptografijoje, buvo pasiūlyta viešojo rakto be sertifikat ↪u kriptografija. Straip-
snyje nagrinėjama ↪igaliotojo parašo be sertifikat ↪u algoritmas, kuriame panaudota efektyvi struktūra
gr↪ista bitiesiniais poravimais (bilinear pairings). Gali būti ↪irodyta, kad pasiūlyto algoritmo saugu-
mas yra ekvivalentus Diffie–Hellman’o uždavinio sprendimo sudėtingumui.


