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Abstract. We address the issue of inapproximability of the wavelength assignment problem in
wavelength division multiplexing (WDM) optical networks. We prove that in an n-node WDM
optical network with m lightpaths and maximum load L, if NP �= ZPP, for any constant δ > 0, no
polynomial time algorithm can achieve approximation ratio n1/2−δ or m1−δ , where NP is the class
of problems which can be solved by nondeterministic polynomial time algorithms, and ZPP is the
class of problems that can be solved by polynomial randomized algorithms with zero probability of
error. Furthermore, the above result still holds even when L = 2. We also prove that no algorithm
can guarantee the number of wavelengths to be less than (

√
n/2)L or (m/2)L. This is the first

time inapproximability results are established for the wavelength assignment problem in WDM
optical networks. We also notice the following fact, namely, there is a polynomial time algorithm
for wavelength assignment which achieves approximation ratio of O(m(log log m)2/(log m)3).
Therefore, the above lower bound of m1−δ is nearly tight.
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1. Introduction

Given a wavelength division multiplexing (WDM) optical network represented by an
n-node graph G = (V, E) and a set P = {p1, p2, . . . , pm} of m lightpaths, the wave-
length assignment problem is to assign a wavelength to each lightpath, such that no two
lightpaths sharing a common link are assigned the same wavelength, and that the number
of wavelengths used is minimized (Ramaswami and Sivarajan, 1998).

It has been proven that for a general WDM optical network, the wavelength assign-
ment problem is NP-complete (Chlamtac et al., 1992), even if the length of any lightpath
is bounded by two (Harder, 1998). The wavelength assignment problem remains NP-
complete for simple networks such as mesh and tree networks (Choi and Harder, 1998).

Extensive research has been conducted to find approximation algorithms that solve
the wavelength assignment problem by producing near-optimal wavelength assignments.
Virtually all these algorithms are evaluated based on the load L of the set of lightpaths,
i.e., the maximum number of lightpaths passing through an optical link. The quantity L

is an obvious lower bound for the number of wavelengths required to support a set of
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lightpaths. It was shown in Aggarwal et al. (1994) that for an arbitrary WDM optical
network, the number of wavelengths required to satisfy a set of lightpaths is at most

min
(
(L − 1)D + 1, (2L − 1)

√
M − L + 2

)
, (1)

where D is the longest length of a lightpath and M is the number of optical links in the
optical network.

Better results have been obtained for specific and simple networks. For instances, for a
linear array network, a wavelength assignment which uses exactly L wavelengths can be
found easily (Berge, 1973). For a ring network, it was known that 2L − 1 wavelengths are
sufficient (Tucker, 1975). For star and tree networks, it was shown that 3

2L wavelengths
are sufficient (Raghavan and Upfal, 1994).

However, as pointed out in Choi and Harder (1998), the sufficient number of wave-
lengths required to support a set of lightpaths has no direct relation to the parameter L. In
particular, there is no algorithm for the wavelength assignment problem that guarantees
the number of wavelengths to be bounded by a constant times L even if L = 2 on a mesh
network. Such a result is certainly interesting; however, it does not reveal inapproxima-
bility of the wavelength assignment problem, since the minimum number of wavelengths
required can be arbitrarily larger than L.

Let I be an instance of a minimization problem. We use ALG(I) to represent the
solution produced by a polynomial time approximation algorithm ALG, and OPT(I) the
optimal solution. If

ALG(I)
OPT(I)

� α,

for all instances I , we say that algorithm ALG achieves approximation ratio α.
In this paper, we prove the following inapproximability results for the wavelength

assignment problem in WDM optical networks.

• If NP �= ZPP, for any constant δ > 0, no polynomial time algorithm can achieve
approximation ratio n1/2−δ or m1−δ.

• The above result still holds even when L = 2.

Note. NP is the class of problems which can be solved by nondeterministic polynomial
time algorithms. ZPP is the class of problems that can be solved by polynomial random-
ized algorithms with zero probability of error, i.e., Las Vegas algorithms (Papadimitriou,
1994).

This is the first time inapproximability results are established for the wavelength as-
signment problem in WDM optical networks. We notice the following fact.

• There is a polynomial time algorithm for wavelength assignment which achieves
approximation ratio of O(m(log log m)2/(log m)3).

Hence, the above lower bound of m1−δ is nearly tight. We also point out the hardness of
approximating L. In particular, the following result is proved.

• No algorithm can guarantee the number of wavelengths to be less than (
√

n/2)L
or (m/2)L.
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Therefore, attempting to approximate L in general WDM networks is meant to be
fruitless.

2. Reduction from Graph Coloring

Consider an input graph G′ = (V ′, E′) for the graph coloring problem. We will construct
a WDM optical network G = (V, E) together with a set P of lightpaths such that G′ is
k-colorable if and only if the lightpaths in P can be assigned k wavelengths.

The main purpose of this section is to prove the following result.

Lemma 1. There is a polynomial time O((n′)2) algorithm, which, for every graph G′ =
(V ′, E′) with n′ vertices V ′ = {v1, v2, . . . , vn′ }, constructs a WDM optical network
G = (V, E) with n = (n′)2 nodes and a set P = {p1, p2, . . . , pm} of m = n′ lightpaths,
such that the n′ vertices in V ′ can be colored with c1, c2, . . . , ck if and only if the m

lightpaths in P can be assigned wavelengths λ1, λ2, . . . , λk; furthermore, vi is colored
with cji if and only if pi is assigned wavelength λji , 1 � ji � k, for all 1 � i � n′.

Proof. Assume that V ′ = {v1, v2, . . . , vn′ } contains n′ vertices. Without loss of genera-
lity, each edge (vi, vj) in E′ has i < j. The network G has n = (n′)2 nodes

V =
{
vi,j | 1 � i, j � n′}.

The optical links in G are

E =
{
(vi,j , vi,j+1) | 1 � i � n′, 1 � j � n′ − 1

}
.

The network G contains a set P = {p1, p2, . . . , pm} of m = n′ lightpaths, where

pi: vi,1 → vi,2 → vi,3 → · · · → vi,n′ ,

for all 1 � i � n′. Therefore, each vertex vi in G′ has a corresponding lightpath pi in G,
and the problem of coloring vertex vi is treated as assigning a wavelength to lightpath pi.

Each edge (vi, vj) in E′ will be represented by overlapping of lightpaths pi and pj .
On each lightpath pi,

pi: vi,1 → vi,2 → · · · → vi,i → vi,i+1 → vi,i+2 → · · · → vi,n′ ,

the edge (vi,j−1, vi,j) is reserved for possible overlapping with lightpath pj−1, where
2 � j � i, and the edge (vi,j−1, vi,j) is reserved for possible overlapping with lightpath
pj , where i + 1 � j � n′.

The following changes to E and lightpath pj are performed for each edge (vi, vj) ∈ E′,
where 1 � i < j � n′, namely,

• deleting link (vj,i, vj,i+1) and adding links (vj,i, vi,j−1) and (vj,i+1, vi,j), as illus-
trated in Fig. 1;



208 K. Li

Fig. 1. Change to E in the network G = (V, E) and lightpath pj for (vi, vj) ∈ E′ .

• modifying the lightpath pj from

pj : vj,1 → · · · → vj,i → vj,i+1 → · · · → vj,n′ ,

to

pj : vj,1 → · · · → vj,i → vi,j−1 → vi,j → vj,i+1 → · · · → vj,n′ .

The lightpath pi remains unchanged. The above modification ensures that lightpaths pi

and pj overlap on link (vi,j−1, vi,j).
It is clear from the above construction of G = (V, E) and P that there is an edge

(vi, vj) ∈ E′ if and only if pi and pj overlap. In other words, G′ = (V ′, E′) is precisely
the lightpath graph of P = {p1, p2, . . . , pn′ } in the reduction from the wavelength as-
signment problem to the graph coloring problem (Ramaswami and Sivarajan, 1998). The
n′ vertices in V ′ can be colored with c1, c2, . . . , ck if and only if the m lightpaths in P

can be assigned wavelengths λ1, λ2, . . . , λk. Furthermore, vi is colored with cji if and
only if pi is assigned wavelength λji , 1 � ji � k, for all 1 � i � n′.

It is easy to verify that the construction of G = (V, E) and P = {p1, p2, . . . , pm}
takes polynomial time, i.e., O((n′)2) time. �

Let us call the algorithm in the proof of Lemma 1 as TRANSFORM, which constructs
the WDM optical network G = (V, E) and the set P of lightpaths based on a graph
G′ = (V ′, E′).

The following result is a direct consequence of Lemma 1.

COROLLARY 1. For every graph G′ = (V ′, E′), the WDM optical network G = (V, E)
and the set P of lightpaths constructed by algorithm TRANSFORM satisfy OPT(G′) =
OPT(G, P ).

3. An Example

The following example illustrates the construction performed by algorithm TRANSFORM.
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Fig. 2. A graph G′ = (V ′, E′).

EXAMPLE 1. Let us consider the graph G′ = (V ′, E′) with 7 vertices given in Fig. 2.
The WDM network G = (V, E) before and after edge and lightpath modification are
shown in Figs. 3 and 4 respectively. The 11 lightly printed links in Fig. 3 are to be modi-
fied. The 7 modified lightpaths in G are

p1: v1,1 → v1,2 → v1,3 → v1,4 → v1,5 → v1,6 → v1,7,

p2: v2,1 → v1,1 → v1,2 → v2,2 → v2,3 → v2,4 → v2,5 → v2,6 → v2,7,

p3: v3,1 → v3,2 → v2,2 → v2,3 → v3,3 → v3,4 → v3,5 → v3,6 → v3,7,

p4: v4,1 → v1,3 → v1,4 → v4,2 → v4,3 → v4,4 → v4,5 → v4,6 → v4,7,

p5: v5,1 → v1,4 → v1,5 → v5,2 → v2,4 → v2,5 → v5,3 → v5,4 → v4,4

→ v4,5 → v5,5 → v5,6 → v5,7,

p6: v6,1 → v6,2 → v2,5 → v2,6 → v6,3 → v3,5 → v3,6 → v6,4 → v6,5

→ v5,5 → v5,6 → v6,6 → v6,7,

p7: v7,1 → v7,2 → v7,3 → v3,6 → v3,7 → v7,4 → v7,5 → v7,6 → v6,6

→ v6,7 → v7,7.

An example coloring of the vertices in V ′ is also given in Fig. 2, where the 7 vertices
v1, v2, v3, v4, v5, v6, v7 are colored with c1, c2, c3, c2, c3, c1, c2, respectively. Therefore,
the 7 lightpaths p1, p2, p3, p4, p5, p6, p7 are assigned wavelengths λ1,λ2,λ3,λ2,λ3,λ1,λ2,
respectively.

4. Inapproximability Results

Lemma 1 in Section 2 implies that any algorithm ALG for the wavelength assignment
problem can be converted to an algorithm ALG′ to solve the graph coloring problem.

Lemma 2. For every polynomial time O(na) algorithm ALG for wavelength assignment,
there is a polynomial time O((n′)2 max(a,1)) algorithm ALG′ for graph coloring, such
that for every graph G′ = (V ′, E′), algorithm ALG′ constructs a WDM optical network
G = (V, E) and a set P of lightpaths, with ALG′(G′) = ALG(G, P ) and OPT(G′) =
OPT(G, P ).
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Fig. 3. A WDM network G = (V, E) before edge and lightpath modification.

Fig. 4. A WDM network G = (V, E) after edge and lightpath modification.

Proof. Given a graph G′ = (V ′, E′), where V ′ = {v1, v2, . . . , vn′ }, algorithm ALG′

performs the following three steps.
1. Construct a WDM optical network G = (V, E) and a set P = {p1, p2, . . . , pm}

of lightpaths, by using algorithm TRANSFORM.
2. Call algorithm ALG to find wavelength assignment to the lightpaths in P , i.e.,

λj1 , λj2 , . . . , λjm .
3. Color vertex vi with cji if pi is assigned wavelength λji , for all 1 � i � n′.

The algorithm ALG′ is illustrated in Fig. 5.
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Fig. 5. Algorithm ALG′ .

Step 1 takes O((n′)2) time. Step 2 takes O(na) = O((n′)2a) time. Step 3 takes O(n′)
time. The over time complexity of algorithm ALG′ is O((n′)2 max(a,1)).

Step 3 implies that ALG′(G′) = ALG(G, P ). From Corollary 1, we know that
OPT(G′) = OPT(G, P ). �

Now, we are ready to prove the main result of the paper.

Theorem 1. If NP �= ZPP, for any constant δ > 0, no polynomial time algorithm can
achieve approximation ratio n1/2−δ or m1−δ for wavelength assignment in WDM optical
networks.

Proof. Lemma 2 implies that

ALG′(G′)
OPT(G′)

=
ALG(G, P )
OPT(G, P )

.

If algorithm ALG can achieve approximation ratio n1/2−δ for some constant δ > 0,
that is,

ALG(G, P )
OPT(G, P )

� n1/2−δ = m1−2δ,
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for all G and P , then

ALG′(G′)
OPT(G′)

� (n′)1−2δ,

for all G′. If algorithm ALG can achieve approximation ratio m1−δ for some constant
δ > 0, that is,

ALG(G, P )
OPT(G, P )

� m1−δ,

for all G and P , then

ALG′(G′)
OPT(G′)

� (n′)1−δ,

for all G′. In either case, for some constant δ > 0, the polynomial time algorithm ALG′

can achieve approximation ratio (n′)1−δ for graph coloring.
However, inapproximability of graph coloring has been studied with improved results

(Bellare and Sudan, 1994; Feige and Kilian, 1996; Fürer, 1995), and the currently best
result is the following fact shown in Feige and Kilian (1996).

PROPOSITION 1. If NP �= ZPP, for any constant δ > 0, no polynomial time algorithm
can achieve approximation ratio (n′)1−δ for graph coloring.

Thus, if NP �= ZPP, for any constant δ > 0, no polynomial time algorithm ALG can
achieve approximation ratio n1/2−δ or m1−δ for wavelength assignment in WDM optical
networks. �

We also notice that in the reduction performed by algorithm TRANSFORM, the num-
ber of lightpaths passing through an optical link is at most 2, i.e., L = 2. Thus, we can
claim the following.

Theorem 2. Theorem 1 holds even when L = 2.

To show the quality of the above inapproximability results, we notice the following
reduction from the wavelength assignment problem to the graph coloring problem (Ra-
maswami and Sivarajan, 1998).

Lemma 3. For every polynomial time algorithm ALG′ for graph coloring, there is a poly-
nomial time algorithm ALG for wavelength assignment, such that for every WDM optical
network G with a set P of m lightpaths, algorithm ALG constructs an m-vertex graph G′

with ALG(G, P ) = ALG′(G′) and OPT(G, P ) = OPT(G′).

As for approximate graph coloring, achievable performance ratio has been improved
(Berger and Rompel, 1990; Halldórsson, 1993; Wigderson, 1983), and the following fact
has been proven in Halldórsson (1993).
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PROPOSITION 2. There is a polynomial time algorithm ALG′ for graph coloring which
achieves approximation ratio of O(n′(log log n′)2/(log n′)3).

The above fact implies the following result which says that the lower bound of m1−δ

is nearly tight.

Theorem 3. There is a polynomial time algorithm ALG for wavelength assignment which
achieves approximation ratio of O(m(log log m)2/(log m)3).

5. Hardness of Approximating L

We now prove that on an n-node WDM optical network with m lightpaths, it is impossible
for any algorithm of wavelength assignment to guarantee to use less than (

√
n/2)L or

(m/2)L wavelengths.

Theorem 4. No algorithm for wavelength assignment in WDM optical networks can
guarantee the number of wavelengths to be less than (

√
n/2)L or (m/2)L.

Proof. The reduction performed by algorithm TRANSFORM always yields L = 2, even
when G′ = (V ′, E′) is a complete graph. In this case, the number of colors used to color
the vertices in V ′ is n′, i.e., the number of wavelengths assigned to the lightpaths in P is
n′ = (

√
n/2)L or m = (m/2)L. �

6. Notes on Related Research

Reductions from the graph coloring problem to the wavelength assignment problem have
been reported before (Chlamtac et al., 1992; Choi and Harder, 1998). However, in all
these reductions, the WDM network G = (V, E) constructed contains more than (n′)2

nodes. For example, the WDM network in the reduction of Choi and Harder (1998) has
(n′)3 nodes. It is clear that the reduction of this paper yields higher inapproximability
results.

7. Final Remarks

For the first time, inapproximability results for the wavelength assignment problem in
WDM optical networks are established. We have also pointed out the hardness of ap-
proximating L.
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Bang ↪u ilgi ↪u paskyrimo WDM optiniuose tinkluose uždavinio
sprendini ↪u neaproksimuojamumo rezultatai

Keqin LI

Nagrinėjamas neaproksimuojamumo klausimas tokiame uždavinyje: paskirti bang ↪u ilgius j ↪u
dalijimo multipleksiniuose (WDM) optiniuose tinkluose. ↪Irodoma, kad WDM optiniame tinkle joks
polinominio sudėtingumo algoritmas negali užtikrinti aproksimacijos santykio n1/2−δ arba m1−δ ,
jei NP �= ZPP, čia n-tinklo mazg ↪u skaičius, m-šviesolaidži ↪u skaičius, L – maksimalus apkrovi-
mas, δ > 0 bet kokia konstanta, NP-klasė uždavini ↪u išsprendžiam ↪u per polinomin↪i laik ↪a nede-
terministiniu algoritmu, ZPP-klasė uždavini ↪u išsprendžiam ↪u per polinomin↪i laik ↪a randomizuotu
algoritmu su nuline klaidos tikimybe. Toks rezultatas galioja ir specialiu atveju, kai L = 2. Taip
pat ↪irodoma, kad joks algoritmas negali užtikrinti bang ↪u ilgi ↪u skaičiaus mažesnio už

√
n/2L arba

(m
2

)L. Tai yra pirmieji neaproksimuojamumo rezultatai tokio tipo uždaviniams. Pastebėsime, kad
apatinis rėžis m1−δ yra beveik griežtas.


