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Abstract. The optimization problems occurring in nonlinear regression normally cannot be proven
unimodal. In the present paper applicability of global optimization algorithms to this problem is
investigated with the focus on interval arithmetic based algorithms.
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1. Introduction

Least squares regression (LSR) is among the most frequently used statistical methods.
LSR algorithms are comprised of two main constituents: a minimization algorithm and a
procedure of statistical analysis. In this paper we consider optimization problems occur-
ring in LSR, specifically we focus on nonlinear LSR; optimization in the linear case is not
a concern since it can be reduced to the solution of a system of linear equations. The the-
oretical and algorithmic achievements in nonlinear programming greatly influenced the
development of software for solution of problems of nonlinear LSR. The contemporary
statistical packages contain algorithms of nonlinear LSR including efficient subroutines
for local minimization of sums of squared residuals. Besides of algorithms in commercial
and shareware statistical packages there are also available local minimization algorithms
for special problems of nonlinear LSR, e.g., related to dynamical system (Schittkowski,
2002). However, in applications the multimodal objective functions of residuals are not
so rare to be ignored, moreover their unimodality can be proven only in exceptional
cases. Therefore investigation of the applicability of the available global optimization
algorithms to the problems of nonlinear LSR is an urgent problem.

We briefly discuss the advantages/disadvantages of various global optimization algo-
rithms with respect to the properties of the objective functions in the problems of non-
linear LSR. The discussion is based on general properties of algorithms of global opti-
mization (Törn and Žilinskas, 1989), experience of solution of nonlinear LSR problems
by means of standard techniques (Seber and Wild, 2003), and several typical examples of
application of global optimization algorithms for the solution of such problems (Dorsey
and Mayer, 1995; Goffe et al., 1994; Jerrell, 1997; Křivý et al., 2000; Žilinskas and
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Bogle, 2006). It is concluded that efficiency of interval arithmetic based global optimiza-
tion algorithms are worth to be investigated. The subsequent part of the paper is devoted
to the experimental investigation of the efficiency of well recognized interval arithmetic
software in solution of proven difficult problems of nonlinear LSR.

2. Problem Statement

The optimization problem in nonlinear LSR is formulated as follows

min
X∈A

m∑

i=1

(
yi − ϕ(X, Zi)

)2 = min
X∈A

f(X), (1)

where the measurements yi at the points Zi = (z1i, z2i, ..., zpi) should be tuned by the
nonlinear function ϕ(X, ·). A typical example of the regression function is

ϕ(X, z) = x1 exp(−x3z) + x2 exp(−x4z),

which is used as a test problem (Křivý et al., 2000), and as a model of a real world
problem (Griffiths and Hunt, 1991).

The minimization problem (1) seems favourable for application of classical nonlin-
ear programming techniques: normally the number of variables (equal to the number of
model parameters to be estimated) is small, and the objective function is smooth. In-
deed, many well developed nonlinear programming techniques can be applied to find a
local minimizer of (1). A practical problem could be solved easily using algorithms from
many available packages if a starting point for local descent would be known in the re-
gion of attraction of the global minimizer. However, such a starting point frequently is
not known, and (1) should be considered as a global optimization problem. This general
theoretical argumentation is supported by the experimental results (Křivý et al., 2000)
where 14 regression functions have been considered. Křivý et al. (2000) have shown that
the standard algorithms from the statistical packages NCSS, SYSTAT, S-PLUS, SPSS for
the large percentage of random starting points failed to find the global minimizer.

Neither minimax nor in average optimal algorithms are favourable for minimization
of (1) since the intrinsic complexity of these algorithms is much higher than the complex-
ity of computation of (1). The branch and bound type algorithms using underestimates
based on global constants seem not competitive here since behaviour of f(X) in different
subsets of A can be very different, e.g., for small step in the parameter space the gradient
norm can change more than by several orders. Adaptive versions of such algorithms can
be appropriate for these problems, and hopefully they will be investigated in detail later.
Randomized heuristics is a popular approach for various difficult optimization problems.
There was a few attempts to attack the considered here optimization problems by random-
ized heuristics (Dorsey and Mayer, 1995; Goffe et al., 1994; Křivý et al., 2000; Žilinskas
and Bogle, 2006). Although the latter results seem promising the considered methods
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suffer from known general disadvantages of randomized heuristics. The strongest com-
petitors of randomized heuristics for the considered problems seem interval arithmetic
based global optimization methods as a natural complement to classical nonlinear pro-
gramming methods for multimodal problems.

Let us note that the optimization problem related to the other technique of data analy-
sis, namely to multidimensional scaling, is defined by the formula similar to (1). This op-
timization problem appeared indeed difficult, e.g., Mathar and Žilinskas (1994) proposed
test functions based on this problem presenting real challenge to general global optimiza-
tion algorithms. Our experience as well as experience of our colleagues shows that for
the successful solution of these problems special sophisticated combinations of different
techniques are needed (Karbauskaitė and Dzemyda, 2009; Žilinskas and Žilinskas, 2006;
2007; 2008; 2009; Žilinskas, 2008b). It seems likely that the hybridization idea can be
appropriate also in construction of algorithms for nonlinear LSR. Therefore we are go-
ing not only to evaluate the efficiency of interval arithmetic based global optimization
methods in solution of nonlinear LSR problems but also to investigate possibilities of the
further development of hybrid algorithms for efficient solution of these problems.

3. Interval Arithmetic Based Algorithm

The objective function (1) seems favourable for application of interval arithmetic based
global optimization algorithms: the function is defined by a rather simple analytical ex-
pression, the number of variables is small, and the formulas of derivatives are available.
The extensive testing shows that for functions with such properties interval methods are
efficient, and their application in such cases can be recommended (Hansen and Walster,
2004). The only difference of the problem (1) from the test problems used in experiments
justifying high efficiency of interval methods is the number of summands: the number
of summands in (1) typically is no less than 10. This at first glance inconsiderable dif-
ference, however can be crucial for the optimization efficiency because of increasing of
the dependence (Hansen and Walster, 2004). Theoretical evaluation of the influence of
dependence is difficult, and it should be investigated experimentally.

For the experiments the application of a well established software is desirable.
A global optimization algorithm from the C++ toolbox for verified computing CTool-
box (Hammer et al., 1995) has been chosen. The standard for interval methods branch
and bound approach is implemented using the branching tree constructed by bisecting
(through the middle point of the longest side) the promising sub-regions (multidimen-
sional interval boxes). Bounds of the function values are estimated using interval arith-
metic in standard and centered forms. Monotonicity and concavity tests and interval New-
ton method (Hansen and Walster, 2004) are used to discard nonpromising sub-regions,
where the objective function is monotone or concave, or where there are no stationary
points. Intervals of first and second derivatives are evaluated using automatic differentia-
tion. In the experiments the parameter of the algorithm – tolerance was set to 10−8.

No criteria of performance of global optimization algorithms (time of optimization
and number of function evaluations) are measured in CToolbox. The package has been
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edited to provide these criteria. Time is measured in CPU time in seconds. The optimiza-
tion is stopped if the time limit of 3600 s is exhausted. The interval objective function with
automatic differentiation should be defined for the package. The number of evaluations
of this function (NFE) is another measured criterion of performance.

The package uses interval library fi_lib (Hofschuster and Krämer, 1997) and C++
class library for extended scientific computing C-XSC (Hofschuster et al., 2001). Žilin-
skas (2005) has shown that fi_lib library is the fastest and most accurate of freely available
libraries implementing interval arithmetic.

Let us note that the function “interval to the power of interval” is not implemented
as a function with automatic differentiation in CToolbox. Extended interval arithmetic
allowing to evaluate interval function over an interval containing points where the corre-
sponding real value function is not defined (division by interval containing 0 or logarithm
of interval containing 0) is not supported as well. These deficiencies should be taken into
account when designing the experiments.

4. Testing Results

The known difficult cases have been considered for testing. Fourteen regression functions
with example data (Tvrdík, 2010) are used. Křivý et al. (2000) have shown that the stan-
dard algorithms from the statistical packages NCSS, SYSTAT, S-PLUS, SPSS are not
reliable to find the solution from random starting points.

Because of the absence of power function and extended interval arithmetic in CTool-
box, the feasible regions of the 10th, 12th and 14th test problems had to be changed to
exclude the possibility for some variables to take the value 0. Therefore the original fea-
sible intervals for the variables x3 and x4 in 10th test problem, for the variable x3 in 12th
test problem, and for the variables x2 and x3 in 14th test problem have been shifted to
the right by 1; e.g., the initial interval [0, 5] has been replaced with the interval [1, 6].

The experiments have been performed on HP Compaq 6710b notebook computer with
Intel Centrino processor, 2GB memory and Ubuntu LINUX. GNU C compiler 4.4.1. has
been used to build cxsc-2-4-0 package and developed programs. The results of optimiza-
tion using CToolbox are presented in Table 1. Three test problems have been solved
successfully: both two-dimensional problems and one three-dimensional problem. The
feasible regions of these problems are relatively small, and variables are properly scaled.
The other problems have not been solved with the prescribed accuracy during the allowed
time limit of 3600 s. The guaranteed requested accuracy was not achieved because of too
many active boxes obtained by bisection of the longest edge where the length of the initial
longest edge in the not successful cases is much longer than in the successful cases.

The other algorithm used in our experiments was implementation of the interval
global optimization method combined with searches implemented in real number arith-
metic. This global unconstrained minimization method involves a combination of lo-
cal search, branch-and-bound technique and interval arithmetic (Jansson and Knüppel,
1995). In this method derivatives are not required. The method has been implemented in
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Table 1

Optimization of test problems using CToolbox algorithm

No. Time (s) NFE Minimum

1 3600 718,757 Not finished

2 3600 1,723,972 Not finished

3 3600 1,186,617 Not finished

4 3600 1,191,193 Not finished

5 3600 789,384 Not finished

6 0.00 661 124.3622

7 3600 656,474 Not finished

8 3600 672,142 Not finished

9 0.54 13,570 8.896301 × 10−3

10 3600 555,223 Not finished

11 3600 700,494 Not finished

13 3600 659,215 Not finished

14 3600 1,644,024 Not finished

12 1.29 17,454 4.375281 × 10−3

PROFIL/BIAS (Knüppel, 1994; 1999). Numerical results for well-known problems and
comparisons with other methods are available (Jansson and Knüppel, 1995).

Both tested interval global optimization algorithms did not find solutions for majority
of problems with requested guaranteed accuracy during the allowed time limit. The de-
tailed results of PROFIL/BIAS algorithm are not given because of limited space. CTool-
box algorithm is faster than PROFIL/BIAS algorithm for simplest problems providing
guaranteed solutions. Monotonicity and concavity tests and interval Newton method help
to discard nonpromising sub-regions more early. The advantage of PROFIL/BIAS algo-
rithm is its relatively good approximations found more often than by CToolbox algorithm,
even when the global minimum is not found with prescribed accuracy. The use of local
searches provides the opportunity for this. It seems that the algorithm using local searches
as well as monotonicity and concavity tests and interval Newton method could have both
the advantages. Objective function evaluation in PROFIL/BIAS algorithm is much faster,
because interval objective function with automatic differentiation in CToolbox algorithm
is much more expensive than the interval and real test functions without differentiation.

5. Testing Results for Modified Problems

The results of the previous section suggest that only the problems of low dimensionality
can be expected to be solved with guaranteed accuracy. In case the regression function
contains linear and nonlinear parameters the optimal values of the former can be found
analytically reducing the dimensionality of the objective function. For example, the re-
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gression function of cases 2 and 3

ϕ(X, Z) = x3

(
exp(−x1z1) + exp(−x2z2)

)

contains the linear parameter x3 whose optimal value can be expressed as

b3 =
∑

yi(exp(−x1z1i) + exp(−x2z2i))∑
(exp(−x1z1i) + exp(−x2z2i))2

,

implying the presentation of the regression function by the following formula

ϕ(X, Z) = b3

(
exp(−x1z1) + exp(−x2z2)

)
.

Similarly, in the cases 7 and 11, the optimal values of the linear parameters x1 and x2

of the regression function

ϕ(X, z) = x1 exp(x3z) + x2 exp(x4z),

can be expressed as

b1 =
(
∑

yi exp(x3zi))×(
∑

exp(2x4zi))−(
∑

yi exp(x4zi))×(
∑

exp((x3+x4)zi))
(
∑

exp(2x3zi))×(
∑

exp(2x4zi)−(
∑

exp((x3 + x4)zi))2

and

b2 =
(
∑

yi exp(x4zi))×(
∑

exp(2x3zi))−(
∑

yi exp(x3zi))×(
∑

exp((x3 + x4)zi))
(
∑

exp(2x3zi))×(
∑

exp(2x4zi))−(
∑

exp((x3+x4)zi))2

with the subsequent reduction of the original four-dimensional problem to a two-
dimensional problem:

ϕ(X, z) = b1 exp(x3z) + b2 exp(x4z).

Eleven problems have been modified in this way, except of 6th and 9th who have no linear
parameters, and 13th who is too complicated for the considered modification.

The results of optimization of the modified test problems using CToolbox interval
global optimization algorithm are shown in Table 2. The objective functions of all modi-
fied test problems have interval division. Optimization of several modified test problems
cause interval errors because of division by interval containing 0. The results of these
problems are not shown in Table 2. It seems that it would be possible to avoid symme-
tries of objective functions and sub-regions of feasible region containing division by zero
in modified objective functions by setting linear constraints and using simplicial parti-
tioning (Paulavičius and Žilinskas, 2007; 2008; Žilinskas, 2007; 2008a; Žilinskas and
Žilinskas, 2002). However this requires further investigation.

The modified 3rd test problem has not been solved during allowed time limit seem-
ingly because of different scales of variables. The modification of 12th test problem have
made optimization twice faster by means of CPU time and 2.7 times faster by means of
the number of objective function evaluations.
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Table 2

Optimization of modified test problems using CToolbox algorithm

No. Time (s) NFE Minimum

1 0.58 11,572 4.355266 × 10−5

2 173.49 398,660 7.471221 × 10−5

3 3600 1,054,775 Not finished

12 0.68 6507 4.375281 × 10−3

6. Influence of Scaling

Different scales of variables make difficulties for interval global optimization algorithms
especially when sub-regions are subdivided through the middle points of the longest
sides. If the feasible interval of one variable is k times larger than of the others and sub-
regions are bisected through the middle of the longest sides, m = 2�log2(k)� −1 bisections
through this variable and 2m+1 evaluations of sub-regions should be done before any bi-
sections through other variables. In the case of the 7th test problem, with very differently
scaled variables ([0, 108], [0, 108], [−2, 0], [−5, 0]), 2�log2(5×107)� − 1 bisections through
the first variable, the same number of bisections through the second variable and 3 bisec-
tions through the fourth variable – the total number m = (226 − 1) × (226 − 1) × (22 − 1)
bisections and approximately 257 evaluations of sub-regions should be done before bi-
section through the third variable. Since this is not feasible practically, only bisections
through two first variables is performed. To make the scales of variables similar we use
feasible intervals [0, 1] for all variables and use coefficients in the objective functions to
scale variables back to get the original problems.

The results of optimization of the scaled test problems using CToolbox interval global
optimization algorithm is shown in Table 3. Changing of scales have helped to solve
2nd test problem and 3rd modified test problem, which were not solved without scaling.
Since 2nd test problem has been solved with scaling it is possible to estimate impact
of modification for this test problem. The modification have made optimization at least
13 times faster by means of CPU time and 5 times faster by means of the number of
objective function evaluations. Both modification and scaling of variables were required
to solve 3rd test problem.

7. Conclusions

The results of experiments with difficult cases of nonlinear regression show that non-
sophisticated application of interval arithmetic based global optimization methods is not
promising. Only a couple of two-dimensional problems and one three-dimensional prob-
lem have been solved with guaranteed accuracy. The success of the guaranteed solution
crucially depends on scaling of parameters and analytical reformulation of the problem
in the case of presence of linear parameters. Analytical reformulation made solution of
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Table 3

Optimization of scaled test problems using CToolbox algorithm

No. Original formulation Modified problems

Time (s) NFE Minimum Time (s) NFE Minimum

1 3600 726,149 Not finished 0.59 11,572 4.355266 × 10−5

2 72130 1,981,543 7.471221 × 10−5 164.84 398,732 7.471221 × 10−5

3 3600 871,086 Not finished 79.00 150,486 1.251892

4 3600 1,502,698 Not finished

5 3600 778,363 Not finished

6 0.00 661 124.3622

7 3600 659,066 Not finished

8 3600 646,724 Not finished

9 0.56 13,570 8.896301 × 10−3

10 3600 541,437 Not finished

11 3600 1,022,742 Not finished

12 1.36 17,454 4.375281 × 10−3 0.72 6507 4.375281 × 10−3

13 3600 659,328 Not finished

14 3600 1,659,838 Not finished

problems from 2 to 13 times faster and together with scaling of variables enabled solution
with guaranteed accuracy of three problems which were not solved in original formula-
tion during reasonable time. The experience with interval methods can be valuable in
development of other branch and bound type algorithms using adaptive underestimates
of objective function.
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Interval ↪u aritmetika pagr ↪ist ↪u optimizavimo metod ↪u taikymas
netiesinėje regresijoje

Antanas ŽILINSKAS, Julius ŽILINSKAS

Optimizavimo uždaviniai kylantys sudarant netiesinės regresijos modelius yra sudėtingi ta
prasme, kad j ↪u unimodalumo paprastai ne↪imanoma ↪irodyti. Šiame straipsnyje nagrinėjama galimy-
bė spr ↪esti tokius uždavinius globaliojo optimizavimo metodais koncentruojant dėmes↪i ↪i interval ↪u
aritmetika pagr↪istus metodus.


