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Abstract. In the previous papers (Pupeikis, 2000; Genov et al., 2006; Atanasov and Pupeikis,
2009), a direct approach for estimating the parameters of a discrete-time linear time-invariant (LTI)
dynamic system, acting in a closed-loop in the case of additive noise with contaminating outliers
uniformly spread in it, is presented. It is assumed there that the parameters of the LQG (Lin-
ear Quadratic Gaussian) controller are unknown, as well as known beforehand, too. The aim of
the given paper is development of a minimum variance control (MVC) approach for a closed-
loop discrete-time linear dynamic system when slowly or suddenly time-varying coefficients of the
transfer function of such a system as well as that of a minimum variance (MV) controller are not
known and ought to be estimated. The recursive parametric identification of an open-loop system
and determination of the coefficients of the MV controller are performed in each current operation
by processing observations in the case of additive noise at the output with contaminating outliers
uniformly spread in it. The robust recursive technique, based on the S-algorithm, with a version of
Shweppe’s GM-estimator and with discounting previous data, used in the estimation, by introduc-
ing a constant as well as time-varying forgetting factors in the abovementioned estimator, is applied
here in the calculation of estimates of the parameters of a dynamic system. Then, the recursive pa-
rameter estimates are used in each current iteration to determine unknown parameters of the MV
controller. Afterwards, the current value of the MV control signal is found in each operation, and it
is used to generate the output of the system, too. The results of numerical simulation by computer
are presented and discussed.

Keywords: adaptive systems, closed-loop, self-tuning controller, the minimum variance control
law, parametric identification, observations, outliers.

1. Introduction

The minimum variance control (MVC) and generalised MVC (GMVC) algorithms were
the first that were designed specially for self-tuning applications and are now considered
‘classical’ formulations (Ȧström and Wittenmark, 1987; Thamm, 1999). The algorithms
described there can be implemented as self-tuning controllers that underpin the design
and development of a modern model based predictive control approach. It is known (Häg-
glund, 1983), that in order to track time-varying system model parameters the recursive
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parametric identification algorithms sensitive to their changes are required. Usually they
rely on the description of variations in the parameters. Therefore an obvious approach to
estimate the time-varying parameters is to introduce some model for the variations, i.e.,
linearly dependent on the time coefficients of a linear time-variant (LTV) dynamic sys-
tem. However, the possibly most common method, as noted in Waller and Saxén (2000),
is to discount the previous data in the parametric estimation by introducing a forget-
ting factor according to Hägglund (1985), Ljung and Gunnarsson (1990) in the quadratic
prediction error criterion to be minimized if the parameters of the LTV system to be
controlled have been slowly time varying.

Note that, by the MV control, stochastic characteristics of the additive noise acting
on the output of the system to be controlled are usually unknown in advance. Despite
that, it is frequently assumed that system’s output is affected by Gaussian disturbance.
However, nonnormal noise, and particularly the presence of outliers (Huber, 1964; Lucas,
1996), degrades the performance of a system acting in an open- as well as a closed-
loop. In such a case, ordinary recursive techniques used for parametric identification of
any control systems, are inefficient, as a rule. It is known (Novovičova, 1987; Pupeikis,
1991, 2000) that, for parametric identification of open-loop, as well as of closed-loop
systems, robust recursive techniques ought to be applied that are efficient in the case of
nonnormal noise. Similar techniques could be used for systems with output nonlinearities,
too (Vörös, 2010).

To implement the self-tuning MV controller, it is necessary, firstly, to recursively es-
timate the LTV system’s model parameters, slowly varying in time in such a noisy envi-
ronment and, secondly, to determine the controller coefficients in each current operation
(see Evans, 2008; Fig. 1) that are recalculated using the values of abovementioned esti-
mates. Then, the current value of the control signal, based on the values of the reference
signal and that of input-noisy output of a system, multiplied by the respective weighting
coefficients, is obtained according to Fig. 1.

In Section 2, a statement of the problem is presented. In Section 3, an ordinary direct
approach is described for identification of time-varying parameters of the LTV system
transfer function. We analyze a recursive parametric identification, based on GM-esti-
mators in the presence of outliers in the LTV system’s output observations when the
parameters to be calculated have been varying in time, in Section 4. Section 5 presents
the simulation and parametric identification results. Section 6 contains conclusions.

2. Statement of the Problem

Assume that a system to be observed is causal and LTV with one output {y(k)} and one
input {u(k)}, expressed by the equation

y(k) = G0

(
q−1; θ(k)

)
u(k) + H0

(
q−1; ϕ(k)

)
ξ(k)︸ ︷︷ ︸

v(k)

, (1)

that consists of two parts (Fig. 2): a system model G0(q−1; θ(k)) and a noise model
H0(q−1; ϕ(k)). Here k is the current number of observations of a respective signal,



On a Time-Varying Parameter Adaptive Self-Organizing System 81

Fig. 1. The parameter adaptive self-organizing system.

Fig. 2. The closed-loop system to be observed. Here GR ≡ GR(q−1; α(k)) G0 ≡ G0(q−1; θ(k)), and
H0 ≡ H0(q−1; ϕ(k)).

θ(k), ϕ(k) are unknown slowly time-varying parameter vectors to be estimated, q−1

is the backward time-shift operator such that q−1u(k) = u(k − 1), and H0(q−1, ϕ(k))
is an inversely stable monic filter (Forsell and Ljung, 1999). Given model (1) and the
measured data

ZN = {u(1), u(2), . . . , u(N), y(1), y(2), . . . , y(N)} (2)

and assuming that the white noise {ξ(k)}, k = 1, 2, . . . is really a sequence of indepen-
dent identically distributed variables with an ε-contaminated distribution of the form

p(ξ(k)) = (1 − ε)N
(
0, σ2

μ

)
+ εN

(
0, σ2

ς

)
, (3)

and the variance

σ2
ξ = (1 − ε)σ2

μ + εσ2
ς , (4)
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let us suppose that {ξ(k)} is used to generate unmeasurable noise {v(k)}. Here p{ξ(k)}
is the probability density distribution of the sequence {ξ(k)}, k = 1, 2, . . .;

ξ(k) = (1 − γk)μk + γkςk (5)

is the value of the sequence {ξ(k)}, k = 1, 2, . . . at a time moment k; γ is a random
variable, taking values 0 or 1 with probabilities p(γk = 0) = 1−ε, p(γk = 1) = ε; μk, ςk
are sequences of independent Gaussian variables with zero means and variances σ2

μ, σ2
ς ,

respectively; besides, σμ < σς ; 0 � ε � 1 is the unknown fraction of contamination.
The aim of the given paper is to design a slowly or suddenly time-varying parameter

adaptive self-organizing system with the MV control law, shown in Fig. 1, in the case of
additive noise {v(k)}, that contains large outliers and corrupts the output {y(k)} of the
LTI system (see Fig. 2).

3. The Direct Approach for a System with Time-Varying Parameters

The direct approach ignores the feedback and identifies the system G0(q−1; θ) that uses
the measurements of the input u(k) and output y(k) ∀k = 1, 2, . . . [2], assuming that the
white noise {ξ(k)}, k = 1, 2, . . . is stationary with the following characteristics:

E{ξ(k)} = 0, E{ξ(k)ξ(k + τ)} = σ2
ξδ(τ), (6)

where E{ξ(k)} is the mean value, σ2
ξ is the variance, δ(τ) is the Kronecker delta function.

Using the direct parameric identification method, one has to estimate the prediction error
value ˆθ(k)N of the vector of parameters θ(k) by means of

θ̂N (k) = arg min
θ∈DM

VN (θ(k), ZN ). (7)

Here

VN (θ(k), ZN ) =
1
N

N∑
k=1

w(k)eT
F (k, θ(k))Λ−1eT

F (k, θ(k)), (8)

with

eF (k, θ(k)) = L(q, θ(k))ε(k, θ(k)), (9)

w(k) = λN −k(k) is a set of the weighting coefficients varying in time,

λ(k) = λ0λ(k − 1) + (1 − λ0), (10)

with λ0 < 1 and λ(0) < 1, 0 < λ(k) � 1 is a forgetting factor used to discount
previously processed observations (Isermann, 1988), Λ is a symmetric, positive definite
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weighting matrix, and L(q−1; θ(k)) is a monic prefilter that can be used to enhance cer-
tain frequency regions (Forsell and Ljung, 1999). The prediction error is calculated by
the formula

ε(k, θ(k)) = y(k) − ŷ
(
k, θ̂(k)

)
= H−1

(
q−1; ϕ̂(k)

)[
y(k) − G

(
q−1; θ̂(k)

)
u(k)

]
. (11)

Here the output y(k) of the general model of the LTV system G(q−1; θ(k)) and noise
filter H(q−1; ϕ(k)), respectively, is of the form

y(k) = G
(
q−1; θ(k)

)
u(k) + H

(
q−1; ϕ(k)

)
ξ(k), (12)

where G(q−1; θ(k)) corresponds to the first part of (1) and H(q−1; ϕ(k)) to the second
one. Then, the one-step-ahead predictor for the model structure (12) is

ŷ
(
k, θ̂(k)

)
= H−1

(
q−1; ϕ̂(k)

)
G

(
q−1; θ̂(k)

)
u(k)

+
[
1 − H−1

(
q−1; ϕ̂(k)

)]
y(k). (13)

Here ϕ̂(k) is the estimate of the parameter vector ϕ(k). The parameter vector θ(k) can
be determined by an ordinary prediction error method, based on the recursive LS (RLS):

θ̂(k) = θ̂(k − 1) +
Γ(k − 1)z(k)

λ(k) + zT (k)Γ(k − 1)z(k)
ε̂(k),

Γ(k) = λ(k)−1

{
Γ(k − 1) − Γ(k − 1)z(k)zT (k)Γ(k − 1)

λ(k) + zT (k)Γ(k − 1)z(k)

}
, (14)

with the vector of observations zT(k) = [−y(k−1), . . .,−y(k−m), u(k−1), . . ., u(k−m)],
and some initial values of the vector θ̂(0) and matrix Γ(0), introducing the forgetting
factor 0 < λ(k) � 1 in the RLS. Here

θ̂T (k) =
[
âT (k), b̂T (k)

]
=

[
â1(k), . . . , âm(k), b̂0(k), b̂1(k), . . . , b̂m(k)

]
, (15)

is the current estimate of the vector

θT (k) =
(
aT (k),bT (k)

)
=

(
a1(k), . . . , am(k), b0(k), b1(k), . . . , bm(k)

)
, (16)

and

ε̂(k) = y(k) − zT (k)θ̂(k − 1) (17)

is the prediction error of the current k-th iteration, respectively, where G0(q−1; θ) is the
system transfer function of the form
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G0

(
q−1; θ(k)

)
=

B(q−1;b(k))
A(q−1;a(k))

=
b0(k) + b1(k)q−1 + b2(k)q−2 + . . . + bm(k)q−m

1 + a1(k)q−1 + . . . + am(k)q−m
. (18)

Here bT (k) = (b0(k), b1(k), . . . , bm(k)), and aT = (a1(k), . . . , am(k)) are vectors of
the parameters to be estimated.

It is known that RLS with λ(k) = 1, used to calculate time-constant parameters of
the linear time-invariant system, is efficient only in the case where

H0

(
q−1; ϕ

)
=

1
1 + A(q−1;a)

=
1

1 + a1q−1 + . . . + amq−m
, ϕ ≡ a. (19)

It could be emphasized that, before the direct parametric identification of the closed-loop,
the respective identifiability conditions should be satisfied according to Isermann (1977).

4. Calculation of Estimates of Time-Varying Parameters in the Presence of Large
Outliers

In the presence of outliers in additive noise one can determine the prediction error esti-
mate θ̂N of the parameter vector (16) by minimizing

θ̂N (k) = arg min
θ(k)∈DM

V̂N

(
θ(k),ZN

)
(20)

with

V̂N

(
θ(k),ZN

)
=

1
N

N∑
k=1

w(k)ρ
(
eF (k, θ(k)/s)

)
. (21)

Here θ̂N (k) is the robust estimate of the parameter vector θ(k), established by processing
N pairs of input-output samples; s is the scale of residuals (examples of the scale are
the standard deviation, the median, absolute deviation from the median, etc.,); ρ(·) is a
real-valued function that is even and nondecreasing for positive residuals, and ρ(0) = 0,
ψ = ρ′.

For the Huber M -estimator, the ρ-function is given by Huber (1984)

ρ(x) =
{

x2/2 if |x| � cH ,

cH |x| − c2
H/2 if |x| > cH ,

(22)

where cH is a cutoff value. The most often used function ψ is:

ψ(x) =
{

x if |x| � cH ,

cHsign(x) if |x| > cH ,
(23)
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with given cH > 0. To get a better performance of θ̂N in the case of very long-tailed
distributions, function (21) satisfying ψ(x) = 0, if |x| > cH , could be selected for
some cH > 0. It is known (Novovičova, 1987) that, in both such cases, i.e., ε �= 0 and
H0(q−1; ϕ) of form (19), the current M -estimates of an unknown vector of parameters θ

of system (1) with G(q−1, θ) of form (18), but only in the case of time-constant parame-
ters, can be calculated using three techniques: the S-algorithm, the H-algorithm, and the
W -one. All the three of them could be written in the general form:

θ̂(k) = θ̂(k − 1) +
Γ(k − 1)z(k)

γ(k) + zT (k)Γ(k − 1)z(k)
β(k),

Γ(k) = λ(k)−1

{
Γ(k − 1) − Γ(k − 1)z(k)zT (k)Γ(k − 1)

γ(k) + zT (k)Γ(k − 1)z(k)

}
, (24)

when they are used to calculate time-varying parameters of the LTV system. Here

β(k) = ŝψ[α(k)] (25)

with

α(k) = ε̂(k)/ŝ (26)

for the S- and H-algorithms, and

β(k) = ŝε̂(k) (27)

for the W -algorithm, and

ε̂(k)/ŝ = {y(k) − zT (k)θ̂(k − 1)}/ŝ (28)

is the same for all the three algorithms, while

γ(k) = λ(k) (29)

for the H-algorithm,

γ(k) =
{

λ(k)ŝψ[α(k)]/ε̂(k)}−1 as ε̂(k) �= 0,

λ(k) as ε̂(k) = 0,
(30)

for the W -algorithm, and

γ(k) = λ(k)ψ
′
[α(k)]−1 (31)

for the S-algorithm. Here ŝ is the robust estimate of the scale s of residuals.
Genov et al. (2006) have proposed to use

β(k) = ŝφz1ψ
[
α(k)/φz2

]
, (32)
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and

λ(k) =
{

φz1ψ[α(k)/φz2]/[α(k)/φz2] for α(k) �= 0,

φz1 for α(k) = 0,
(33)

respectively, instead of (25) and (30). Here

φz1 = φz2 = 1 (34)

for Huber’s M -estimator;

φz1 = φz[h(k)], φz2 = 1 (35)

for Mallow’s, and

φz1 = φz2 = φz[h(k)], (36)

for Shweppe’s GM -estimators [6], respectively, where

φz[h(k)] =
√

1 − h(k) (37)

with

h(k) = zT (k)Γ(k)z(k). (38)

5. Simulation Example

A closed-loop system to be simulated is shown in Fig. 3 and described by a linear differ-
ence equation of the form

(
1 + a1(k)q−1 + a2(k)q−2

)
y(k)

= q−1
(
b0(k) + b1(k)q−1

)
u(k) +

(
1 + a1(k)q−1 + a2(k)q−2

)−1
ξ(k), (39)

while the MV controller design equation is (Evans, 2008; Thamm, 1999)

u(k) =
a1(k)y(k) + a2(k)y(k − 1) − b1(k)u(k − 1) + r(k)

b0(k)
. (40)

Here a1(k), a2(k), b0(k) and the value of the coefficient b1(k) are time-varying. In the
first experiment they varry linearly from −1.5, 0.7, 1 and 0.5 to −1.4, 0.8, 1.1, and
0.6 over 400 observations, respectively (see Fig. 4c), while in the second one coef-
ficients −1.5, 0.7, and 0.5 suddenly give a jump at k = 100 observations and ob-
tain the new values −1.2, 0.5, 0.25, correspondingly (Figs. 7, 9). At the same time
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Fig. 3. The closed-loop system with time-varying parameters to be simulated. The current values of respective
signals: r(k) is a reference signal, u(k) is a control signal, y(k) is a noisy output, v(k) is an additive correlated
noise, ξ(k) is a sequence of independent identically distributed variables with an ε-contaminated distribution
of form (17), and e(k) = r(k) − y(k) is an error.

Fig. 4. Two different realizations of the noise {v(k)} with outliers (a, b), true parameters linearly in dependence
on time (c): b0(k) − 1, b1(k) − 3, a1(k) − 4, and a2(k) − 2, respectively, and the reference signal (d) for a
simulated closed-loop LTV system (see Fig. 3). The fraction of contamination ε = 0.1.

the parameter b0(k) is still varies linearly over all the set of observations. The output
{y(k)}, k = 0, 1, 2, . . . , 400 of the closed-loop system will be observed under the addi-
tive noise {v(k)}, k = 0, 1, 2, . . . , 400 in the presence of large outliers (see Figs. 4a, 4b)
with the fraction of contamination ε = 0.1. Note that both two noise realizations given
here are the same except that their amplitudes are artificially increased from one realiza-
tion to the other by ten times. The reference signal {r(k)}, k = 0, 1, 2, . . . , 400 is given
in Fig. 4d.
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The parameter adaptive self-organizing system has been implemented here ac-
cording to the structure shown in Fig. 1. Firstly, the initial values of estimates
â1(k), â2(k), b̂0(k), b̂1(k) of the true parameters a1(k), a2(k), b0(k), b1(k) of (39) were
calculated by the ordinary LS with Mallow’s estimator using 23 pairs of observations of
u(k), y(k). Secondly, we recursively calculate the estimates â1(k),â2(k), b̂0(k), b̂1(k)
of the same time-varying parameters a1(k), a2(k), b0(k), b1(k) by processing k =
24, 25, . . . , 400 observations of the control signal {u(k)} and the output {y(k)} in
each current iteration, using S-algorithm (24) with a version of Shweppe’s GM -
estimator (36)–(38) (see Figs. 5c, 5d, 6c, 6d, 7, 8c, 8d, 9, 10c, 10d), and constant or
time-varying forgetting factors λ. Note that constant as well as time-varying values of λ

have been applied for estimation of suddenly jumping coefficients −1.5, 0.7, and 0.5.
For estimation linearly varying coefficients only constant values of forgetting factor have
been used. The output signals, noisy with oytliers {y(k)} and the true signal y∗(k), of the
same LTV system (39) to be processed have been generated as follows:

Fig. 5. The signals and parametric identification results, in the presence of additive noise, given in Fig. 4a,
depending on the number of recursive iterations: x-axis is the number of iterations, y-axis is meanings of
the signals (a, b, e, f ) and current estimates of linearly time varying parameters (c, d); a, b, e, f are sig-
nals: the reference signal {r(k)} − 1, output signals: noisy {y(k)} − 2 (a, b), true {y∗(k)} − 2 (e, f ),
the control signal {u(k)} − 3, respectively; c, d denote current estimates of linearly varying parame-
ters b0(k), b1(k), a1(k), a2(k) (see Fig. 4c): b̂0(k), b̂1(k), â1(k), â2(k) − 1, 3, 4, 2, respectively. In
S-algorithm (24), the forgetting factor is: λ = 1 (b, d, f ) and λ = 0.955 (a, c, e).
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Fig. 6. The signals and parametric identification results in the presence of additive noise (see Fig. 4b). Other
values and notation are the same as in Fig. 5.

Fig. 7. Current estimates â2(k) (a, b), â1(k) (c, d), b̂0(k) (e, f ), b̂1(k) (g, h) of the parameters a2(k), a1(k),
b0(k), b1(k), respectively, dependent on the number of recursive iterations in the presence of additive noise
(see Fig. 4a). The parameters a1(k), a2(k) and b1(k) give a jump at k = 100 observations while the parameter
b0(k) varies linearly over the same set of observations. The estimates b̂0(k), b̂1(k), â1(k), â2(k) correspond
to curves 1, while the true parameters b0(k), b1(k), a1(k), a2(k) with a jump and without it correspond to
curves 2. The forgetting factor λ is constant and equal to 0.955 (a, c, e, g) and varying in time according to
(10), where λ0 = 0.972 (b, d, f, h).
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Fig. 8. The signals and parametric identification results, in the presence of additive noise (see Fig. 4a), dependent
on the number of recursive iterations: x-axis is the number of iterations, y-axis is meanings of the signals
(a, b, e, f ) and current estimates (c, d); a, b, e, f are signals: the reference signal {r(k)} – 1, output signals:
noisy {y(k)} – 2 (a, b), true {y∗(k)} – 2 (e, f ), the control signal {u(k)} – 3, respectively; c, d denote current
estimates of parameters b0(k), b1(k), a1(k), a2(k) (see Fig. 7): b̂0, b̂1, â1, â2 – 1, 3, 4, 2, respectively. In
S-algorithm (24) the forgetting factor λ is constant and equal to 0.955 (a, c, e) and time-varying according to
(10), where λ0 = 0.972 (b, d, f ).

y(k) = y∗(k) +
(
1 + a1(k)q−1 + a2(k)q−2

)−1
ξ(k), (41)

y∗(k) = q−1
(
b0(k) + b1(k)q−1

)
u(k) −

(
a1(k)q−1 + a2(k)q−2

)
y∗(k), (42)

with

u(k) =
â1(k)ŷ(k) + â2(k)ŷ(k − 1) − b̂1(k)u(k − 1) + r(k)

b̂0(k)
, (43)

and

ŷ(k) = q−1
(
b̂0(k) + b̂1(k)q−1

)
u(k) −

(
â1(k)q−1 + â2(k)q−2

)
ŷ(k), (44)

respectively, where the values of the noiseless auxiliary signal {ŷ(k)} for determina-
tion of the current value of control signal u(k) are applied, and the current estimates
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Fig. 9. Current estimates â2(k) (a, b), â1(k) (c, d), b̂0(k) (e, f), b̂1(k) (g, h) of the parameters a2(k), a1(k),
b0(k), b1(k), respectively, dependent on the number of recursive iterations in the presence of additive noise
(see Fig. 4b). Other values and notation are the same as in Fig. 7.

â1(k), â2(k), b̂0(k), b̂1(k), obtained by recursive S-algorithm (24), are used. Note that
the current value of control signal could be generated as follows:

u(k) =
â1(k)y(k) + â2(k)y(k − 1) − b̂1(k)u(k − 1) + r(k)

b̂0(k)
. (45)

However in such a case, the transfer of meanings of large outliers proceeds in random
noise appearing in output observations {y(k)} k = 24, 25, . . . , 400. Therefore, we pro-
pose here in each current operation to generate an auxiliary output signal y(k) according
to (44) that will be without outliers (Pupeikis, 2009).

It follows that the accuracy of estimates â1(k), â2(k), b̂0(k), b̂1(k) of the parameters
a1(k), a2(k), b0(k), b1(k), obtained by recursive procedure (24) (see Figs. 5c, 5d, 6c, 6d,
7, 8c, 8d, 9, 10c, 10d), decreases when the amplitudes of values of the additive noise
{v(k)} with outliers in it are increasing (see Fig. 4a, 4b). In the case of slowly linearly
varying parameters of difference equation (39) the true output signal {y∗(k)} (42) tracks
the reference signal {r(k)} enough accurately even for large outliers (Fig. 4b) if the
forgetting factor λ = 0.955 is chosen (see Fig. 6e). Comparing the results obtained for
different but constant forgetting factors (see Figs. 5e, 5f, and 6e, 6f, respectively), one
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Fig. 10. The signals and parametric identification results in the presence of additive noise (see
Fig. 4b) dependent on the number of recursive iterations. In c, d, current estimates of the parameters
b0(k), b1(k), a1(k), a2(k) (see Fig. 9): b̂0, b̂1, â1, â2 – 1, 3, 4, 2, respectively. Other values and notation
are the same as in Fig. 8.

can state, that in the case of slowly linearly varying parameters the true output signal
{y∗(k)} tracks the reference signal {r(k)} better if λ < 1. On the other hand, comparing
the results obtained for constant and time-varying forgetting factors, one can notice, that
the true output signal {y∗(k)} tracks the reference signal {r(k)} even better in the case
of suddenly jumping parameters of the same equation if λ is constant (see Figs. 8e, 8f,
10e, 10f). However, the tracking accuracy of respective parameters by their estimates is
insufficient in spite that constant or varying in time λ is applied (see Figs. 7, 8c, 8d, 9, 10c,
10d). Therefore it is important to use the methods more sensitive to sudden changes in
values of the parameters when calculating the current values of estimates of the respective
parameters of difference equation (39) (Isermann, 1988; Ljung and Gunnarsson, 1990).

6. Conclusions

Despite that the MV approach has been worked out for a random disturbance generated
from the statistically independent and stationary sequence with (6), it appears to be also
applicable in the presence of large, but rare outliers in output observations, in case the
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robust recursive parametric identification algorithms are used. The recursive estimates,
obtained by S-algorithm (24) with the version of Shweppe’s GM -estimator (36)–(38)
with the constant, but less than a unit, forgetting factor, track the respective true slowly
linearly varying values of parameters more rapidly than that calculated by the same ordi-
nary procedure without discounting older observations in the estimation process. At the
same time the true output {y∗(k)} of the same system tracks the reference signal {r(k)}
accurately enough. On the other hand, in the case of suddenly jumping parameters of the
LTV system, more sensitive methods are required because the recursive S-algorithm (24)
is unable to generate estimates of the parameters with a high tracking abilities, even if the
time-varying forgetting factor is used in recursive formulas.
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Apie laike besikeičianči ↪u parametr ↪u atžvilgiu adaptyvi ↪aj ↪a savitvark ↪e
sistem ↪a, esant dideliems triukšm ↪u impulsams stebėjimuose

Rimantas PUPEIKIS

Straipsnyje nagrinėjama gr↪ižtamojo ryšio diskrečiojo laiko tiesinė dinaminė sistema, veikianti
pagal mažiausiosios dispersijos valdymo (MDV) dėsn↪i. Dinaminės sistemos bei reguliatoriaus koe-
ficientai keičiasi laikui bėgant ir nėra žinomi. Jie turi būti ↪ivertinami pagal ↪iėjimo bei užtriukšminto
išėjimo stebėjimus. Triukšmuose atsitiktiniais laiko momentais pasirodo reti didelės amplitudės
impulsai. Siūloma sistemos parametrams ↪ivertinti taikyti rekurentinius patvariuosius algoritmus
su pasenusios informacijos užmiršimu pagal eksponentin↪i dėsn↪i, o jos valdymo signalo einamajai
reikšmei gauti – papildomo modelio išėjim ↪a, laisv ↪a nuo triukšm ↪u. Pateikti II eilės MDV sistemos
su kintamaisiais koeficientais modeliavimo rezultatai.


