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Abstract. The aim ofthis paper is to concentrate in one place 
and to show the relations among the matrix block impulse response, 
block impulse response, matrix impulse response and impulse re
sponse of linear time-varying (LTV) systems, frozen-time LTV sys
tems, linear periodically time-varying (LPTV) systems, and linear 
time-invariantl (LTI) systems. 
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Introduction. The input-output behaviour of a LTV 
system (LoefHer and Burrus, 1984; Huang and Aggarwa.l, 
1980, 1983; Park and Aggarwal, 1985; Portnoff, 1980) can be 
characterized in the time domain by a weighting pattern, or 
Green 's function, g( k, k1 ) which represents the response of the 
system at time 1~ to a unit sample applied at time k1 . Equiv
alently, the same system can be described by a time-varying 
impulse response h( k, k1) defined as the response of the sys
tem at time k to a unit sample applied 1.~1 samples earlier, i.e., 
at time (k - k1 ). Furthermore, the time-varying impulse re
sponse h(k, k1 ) and the Green's function g(k, k1) are related by 
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h(k, kt} = g( k, k - k1 ) or, equivalently, g(I.~, kJ) = h(k, k ~ kd. 
· If y( k) is the response of a system to the input x( k1 ), then 
y( k) is given by 

In the system (of filter) theory (Zadeh and Desoer, 1970) im
pulse responses have fundamental importance, as they com
pletely characterize the behaviour of the system (or filter). 

On the other hand, block implementation has some ad
vantage such as fewer computatioils,a possibility to use fast 
convolution techniques for intermediate computations, effi
cient implementation by parallel processors, and reduced 
roundoff noise. Block structures have been studied by Barnes 
and Shinnaka (1980); Burrus, 1972; Clark, :tvIitra and Parker 
(1981); Nikias (1985); Vaidyanathan and Mitra (1988). 

The aim of this paper is to show a close connection be
tween scalar and block impulse responses of different types 
of linear systems and to analyze the relations betw~n these 
impulse responses and the coefficients of'difference equations 
(ARMA models). 

Block difference equation of LTV systems. Let us 
assume that a linear dynamical time-varying system is de-
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scribed by the difference equation 

11-1 N 

L.,b;(k)x(k - i) = Lai(k)y(k - i), 
i=O i=O 

(3) 

aO ( ~~) =I- 0, AI::;; N, k = 0, 1, 2, ... 

where x( ".) is the input signal, y( k) is the output signal of the 
LTV system. 

Define k = mL + n, m = 0,1,2, .... n = O. 1. ... ,L - L 
L = 1,2,3, ... L is the length of the block. Then from equation 
( 3) we obtain the block difference equation of the LTV system 

r p 

LBr.i(m)X(m - i) = 2: Ap,ii-(m - i), 
i=O i=O (4) 

m == 0,1,2, ... , r::;; p, 

vV'here }'(m) and X(m) are the moth output and input bloc.ks 
of the length L, respectively 

Y (m) = [,( mL), ... , y( mL + n}, ... , y( mL + L _ 1)] T, 

• ; . T 
.. \ ( m) = l.r( mL ), , .. , ;r.l rnL + n), .... x( mL + L - 1)] , 

...... '....... .......... 

A.p.i(rn) and Br,j(rn) are the LxL matrices given by A.p.i(m) = 
= [onj], where anj = aiL+n-j(iL + mL + n), i = 0,1, ... ,p, 

Br,i(m) = [bnj ], where bnj = biL+n-i(iL + mL + n), 
i = 0,1, ... ,r; n,j = 0,1, .. " L -1. p and r are such smallest 
integers that inequalities pL ~ N and r L ~ J1 are valid. If 
L ~ IV-, then p = l' = 2. 

From equation (4) we obtain 

r 

Y(m) = A;,~{m) L Br,i(m)X(m - i) 
i=O 
p 

- .4;:~(m) :L.4p,i(m)1"(m - i) 
i=l 
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or 
r p 

Y(m) = LBr,i(m)X(m - i) - LAp,i(m)Y(m - i), (5) 
i=O ;=1 

where Ap,i(m) - ..4;,~( m )..4p,.(m), i = 0,1, ... p. 

Br,i(m.) = A;'~(m)Br,i(m), i = O,I, ... r 

Block impulse response of LTV systems. According 
to the definition of the block impulse response, H(m, mJ) is 
the output of block difference equation (5) at time m to a. 
block unit pulse input X(m - ml) applied at tinle ml block 
earlier, i.e., 

r 

Y(m) = L Br,i(m)X[(m - md - i] 
;=0 
p 

- L Ap,iY(m. - i). 
i=1 

r ~ p, m ~ m}, rn, ml = 0,1,2, ... , 

where we define ~~l = m}L + j, j = 0,1, ... ,L-1. 

(6) 

According to the definition of the block unit-pulse input, 
X[(m-md-i] = 1, for i = m-m} and X[(m -md-i] = 0, 
for i =1= m - 711.1' Then equa.tion (6) gives the matrix block 
impulse response of the LTV system H B defined as H B = 
[Hmm1 ], where H mm_1 = H(m,mt), m,ml = 0,1,2, ... The 
block impulse response of the LTV system 

m,ml = 0,1,2, ... m ~ m}, 

where Br,m-ml (m) = 0, for m - ml > r. H(m, md is the 
Lx L -ma.trix given by H(m, md = {hnj ], where hnj = h( mL+ 
,n, m1L+j), n,j =O,l, ... ,L-1. 
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REMARK 1: H a block unit pulse input. signal of the 
LTV system is X(ml) = 1, for 1nl = ° and ... " ml) = 0. 
for m 1=/= 0, then equation (5) gives block Green's function 
G(m, m1) = H(rn., m - m1). 

For the non-recursive LTV system (Ap,d 171) = I, for i = ° 
and Ap,j(m) = 0, for i i= 0) t.he block impulse response is 

H(m, 1nl) = Br,m-ml (m), 

m,m1 =0,1,2, ... , 111;::: 7nl, 

. where Br .m - m ! (m) = 0, for m- m} > 1'. 

(8) 

For the recursive LTV system (Br,m-ml (m)= I, for m = 
Tn1 and Br .m - m ! (rn) = 0, for m =/= 1nl) the block impulse 
respon£e is as in (7). 

The impulse response of a slowly varying system lUay be 
approximated by the invariant impulse response t.hrough freez
ing the variant difference equation at an instant of considera
tion (Nikolic, 1975). We obtain the block impulse response of 
the frozen-time LTV system H*(rn,7n1) from equation (7) 

H7(m,1nl) ~ Br,m-ml ( 771 1) 
p . 

-: 2: Ap,i(1nl )JI(m - i, 1nl), (9) 
i=l 

1n,ml = 0,1,2, .... m;::: 1nl, 

where Br,m-:ml (m1 )=0, for m - 1711 > 1'. 

A special case of LTV systems is LPTV systems. Con
sider a discrete-time linear system, whose coefficients vary 
periodically in time, with period L. For such systems it is 
valid: G.i(k + L) = ai(X,), i == 0,1, ... , N; k = 0,1,2 .... and 
biO: + L) = bi(I.:), i = 0,1, ... , AI: I.: = 0,1. 2 .... 

H the length of the block is. equal to L, then equation (7) 
gives the block impulse response of the lPTV system 

p . 

H(m) = Br,m - LAp,iD(m - i), m = 0,1,2, ... ~· (10) 
i=l 
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where Br,m = 0, for ° > m > r. Ap,i~ Br,m and H(m) are 
the L x L matrices given by Ap,i = _4;,~.4}1,i' i = 0,1, ... ,p; 

---I ........ 
Br,m = A.p,oBr,m, 111, - 0,1, ... , r, 

.4p ,i == [anj], where anj = aiL+n-j(iL +11), 

n,j = 0,1. ... ,L - 1, 

Br,m = [bnj ), where bnj = bmL+n-j(mL + n), 

n,j = 0,1. .... L - I, 

H(m) = [h nj ], where hnj = h(mL + n - j), 

n,j=O.1. ... ,L-l. 

For the non-recursive LPTV system (A.p ,; = I, for i = ° 
and Ap,j = 0, for i -I 0) the block impulse response is 

H{m) = Br,m, m = 0,1,2, ... , (11 ) 

where Br m = 0. for 0> m > r. .' . 

For the recursive LPT"V 8yst~m (B~,m'''':'' /., for m = ° 
and Br,m = 0, for m =1= 0) the block impulse I"E'SpOllSe is as in 
(10). . .' 

. A special case of LTV (or of LPT\-) systems is LTI sys
tems. Fromequation ('/) we obtain the block impulse response 
of. the LTI system . 

Jl 

H(m) = Br,m - L A..1,.iH (m - i), 111 = 0,1.2, ...• (12) 
i=l 

where Br,m = 0, for ° > m> r. A p,;' Br,m and H(m) are 

the L x L matrices given by A.p,i =A;,~~,i' i = 0,1, ... ,Pi 
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.... 1--
Br,m = A;,oBr.m, m = 0,1, ... , r, 

.4p ,i = [anj], where anj = aiL+n-j, 
n,j =0,1, ... ,L - 1, 

Br .m = [bnjJ, where bnj = bmL+n-j, 
n,j = 0,1, ... ,L- 1, 

lI(m) = [h nj ], where hnj = h(mL + n - j), 

rn = 0,1,2, ... , 

n,j = 0,1, ... ,L - 1. 

For the non-recursive LTI system (.:ip ,; = I, for i = 0 and 
Ap,i = 0, for i i: 0) the block impulse response is 

H(m) = Br,m, rn, =0,1,2, ... , (13) 

where Br m = 0, for 0 > m > r. , 
For the rf'cursive LTI system (B r •m = I, for m = 0 and 

B r •m = 0, for/m =I 0) the block impulse respon;:;e is as in (12). , , , 
Scalar Impulse Response of LT V systems. If L = 1, 

then n = 0, m = k, ml = kl , P = N, r = AI. So from equation 
( 5) we obtairl a difference equation of the LTV system 

where 

M N 

y(k) = L bi(k);r(],~ - i) - L ai(1,~)y(k - i), 
i=O i=l 

]" = 0,1,2, ... , NI ~ N, 

bj(k) = a~l(J.:)bi(k), i = 0,1, ... , AI; 

ao(k) =I 0, k=0,1,2, ... , , 

ai(k) = ao1(k)aj(k), i = 0,1, ... , N. 

(14) 
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The matrix impulse response of the LTV system H AI = 
,[hu1], whe~e hkk1 = h(k, k1 ) we obtain from block impulse 
response (7) of the LTV system 

N 

h(k~kd = bk-k1(k)-Lai(l.~)h(k -i.].'I)· 
i=l 

1.:,k1 =0,1,2, ... , 

(15 ) 

where bk - k1 (l.:) = O. for k - 1.:1 > AI, i.e., according to the 
definition of impulse response of the LTV system h( k, k1 ) is 
the output of the difference equation (14) at time k to a unit 
pulse input applied' 1.:1 samples earlier. 

REMARK 2: If an input signal of the system is .r( I.-J ) = 1. 
for kl = ° and x( kl ) = 0, for /..'1 :f. 0, then equation (14) gi';es 
Green's function gU~, k1 ) = h( /,:, k - 1..-1 ). 

For the non-recursive LTV system (ai( /..:) = 1. for i = 0 
and aj(J..:) = 0, for i =j; 0) we have scalar impulse response 

where bk-1q(k) = 0, for l.~ -1'1 > 111. . 
For the recursive LTV system the scalar impulse response 

is as in (15), where bk-kJ"~) = 1, for /,.:-/,.'1 = 0 and h-kl = 0, 
for .k - /.:1 =1= O. 

The scalar impulse response of the linea.r frozen-time LTY 
system gives equation (9). For the scalar system L = 1. t.hen 
m = k, 1nl = kl, P = N, thus 

N 

h*(J.:,1.~I) = bk-k1(kd - I:ai(kl)h(k - kl:kIJ: 
i=l 

(17) 

. k, kl = 0,1,2, ... , k ~ 1.:1 , 
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The scalar impulse response of the LPTV system h(1.:, kl ) 
gives equation (7). As Tn = k, Tnl =kl , P =N, so 

N 

h( 1.:, /..:1) = bk- k1 (k) - L aj( k )h( It - i, kl), 
i=1 

(18) 

k::;: 0,1,2, ... , k ~ /":1, 

where bk - k1 (It) = 0, for 1.: - kl > AI; k} = 0,1, ... , L-1. 
For the non-recursive LPTV system the scalar impulse 

response is 

k= 0,1,2, ... , 

\vhere 1>/.:-k1 (1.-) = 0, for k - kl > AI; kl = 0,1, ... , L - l. 
For the recursive LPTV system the scalar impulse re

sponse IS 

N 
1 . '" h(~:, ?~1) = bk - k1 (k) - L..t ai(k)h(/..: ~i, k1), 

{ • i=.1 .. (20) 

1.:-0,1,2, ... , k~kl' 

where bk - k1 (k) = 1, for k - kl = ° and bk - k1 (k) = 0, for 
k .- 1.:1 :/: 0; kl __ 0,1,2, .. ~,L -'- l. 

A special case of the scalar impulse response of the LTV 
(or LPTV) system is the sc~ar impulse response of the LTI 
system. In such a case h(k, kd = h(k -. k1 ) = h(1.:*) = h(k) .. 
From equation (15) we have 

N 

h(J.·) = bk - L a,h(k - i), k = 0. 1,2, ... , (21) 
i=l 

where bA; = 0, for k > AI. 
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For the non-recursive LTI system the scalar impulse re-
• sponse 

k = 0,1,2, ... , (22) 

where h = 0, for J.~ > Al. 
For the recursive LTI system the scalar impulse response 

N 

h(J.~) = bk - L aih(k - i), /... = 0,1,2, ... , (23) 
i=l 

where bk = 1. for k = 0 and h = 0, for k i= 0. 
For all the cases discussed earlier we can form matrix 

impulse responses HM = [h Ht 1, where h Hl =. h( J.~, 1.:1 ) or 
matrix block impulse responses HE = [Hmml ], y.,·hereHmmt = 
H(m, nil)' In the case when L = 1, i.e., m = k, 111] = ~'J we 
have HE = HA1 • 

Conclusions. The main aim of this paper has been to 
explore the theoretical relationship behveen scalar and block 
impulse responses of LTV, frozen-time LTV, LPTV and LTI 
systems. It has been shown that for all the cases anal)~sed in 
the paper Green's function depend on the time index kl (1711 

- for block systems), while impulse responses depend on the 
time index ~. - J.~1 (111 - 1nl - for block systems ). The matrices 
Ap,i and Br,m of block LPTV syst,emsand block LTI systems 
are different, however their impulse responses ate the same and 
do not depend on the instant ml of the behavior of the block 
unit pulse input~ Impulse responses of scalar LPTV, LTV and 
LTV with frozen-time systems are the same arid depend on 
the instant J.~l of the behavior of the unit plllse input. 
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