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Abstract. In stochastic programming and decision analysis, an important issue consists in the ap-
proximate representation of the multidimensional stochastic underlying process in the form of sce-
nario tree. This paper presents the approach to generate the multistage multidimensional scenario
tree out of a set of scenario fans. For this purpose, the multistage K-means clustering algorithm is
developed. The presented scenario tree generation algorithm is motivated by the stability results for
optimal values of a multistage stochastic program. The time complexity of developed multistage
K-means clustering algorithm is proved to be linear in regard to the number of scenarios in the fan.
The algorithm to determine the branches with nonduplicate information in the multistage scenario
tree is also presented as an intermediate result of research.
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1. Introduction and Problem Statement

The notion of scenario tree is used in multistage stochastic programs where the main com-
putational approach consists in approximating the underlying multidimensional stochas-
tic process by a process having finitely many scenarios, exhibiting tree structure and
starting at a fixed element (Heitsch and Römisch, 2005; Fig. 1b). Each scenario in the
tree can be viewed as one realization of a certain multidimensional stochastic data pro-
cess of the model. The additional features of multistage scenario trees in dynamic deci-
sion models are that the process is deterministic at the first time period and that it has to
be non-anticipative. The latter feature means that the random data and decision processes
at any time do not depend on future realizations of the data process (Gröwe-Kuska et al.,
2003).

Approaches of scenario tree generation are based on various principles (Gülpinar
et al., 2004; Heitsch, 2003; Heitsch and Römisch, 2005; Mitra, 2006; Dzemyda and
Sakalauskas, 2009): (a) bound-based constructions, (b) Monte-Carlo schemes or Quasi
Monte-Carlo based methods, (c) EPVI-based sampling and reduction within decompo-
sition schemes, (d) moment-matching principle, (e) probability metric based approxima-
tions. There exists a group of scenario generation problems, when it is enough hard to
generate a scenario tree directly from historical time series or from statistical models,
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Fig. 1. The usage of multistage K-means clustering method in generating the scenario tree out of scenario fan.

e.g., time series or regression models. Thus, the idea is to start with a good initial approx-
imation of the underlying stochastic input process so that a fan of individual scenarios is
created (Fig. 1a). These scenarios can be obtained by sampling or simulation techniques
based on stochastic model. Clearly, a good approximation may involve a large number of
scenarios. Although such fan of individual scenarios represents a very specific scenario
tree (2-stage problem), its structure is not appropriate for the stage-wise decision process
and contains a large number of nodes (Heitsch and Römisch, 2005).

To eliminate these disadvantages, the initial scenario fan is modified by bundling sim-
ilar scenarios to construct the multistage scenario tree. The researches based on such
principle have been published, e.g., in Gröwe-Kuska et al. (2003) a subset of the ini-
tial scenario set is determined and the procedure based on a recursive reduction argu-
ment using transportation metrics is presented, in Heitsch and Römisch (2005), Möller
et al. (2004) the backward and forward scenario tree generation methods based on upper
bounds for two relevant ingredients of the stability estimate, namely, the probabilistic and
the filtration distance, are described.

We propose the algorithm based on method from cluster analysis to construct the
multistage scenario tree by bundling similar scenarios in the scenario fan (Fig. 1). An
approach similar to our work is introduced in the article Dupačová et al. (2002), but
without a detailed clustering algorithm. Due to this, K-means clustering method is mod-
ified to treat properly the inter-stage dependencies, and it is implemented while con-
structing the multistage scenario tree from the fan of individual scenarios. The developed
method allows to cluster similar scenarios from d scenario fans. Thus, the multistage
d-dimensional scenario tree is obtained, and the method is named as multistage K-means
clustering. This paper is a continuous research of paper Pranevičius and Šutienė (2007),
where the precision of approximation of scenario fans by the scenario tree is evaluated.

The other question considered in this paper is the redundancy elimination in the multi-
stage scenario tree. The redundancy is identified if the scenario tree is described scenario
by scenario, i.e., one could think of the scenarios as paths from the root node to the leaves
(Gassmann, 2006). Thus, scenarios may share data for several stages: information up to
the branch period is shared between a scenario and its parent scenario. It is useful for
system comprehension to remove redundancy and to identify branches in the scenario
tree with nonduplicate information (Gassmann and Kristjánsson, 2008). For this purpose,
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the algorithm based on idea of labelling on branches is developed and described in this
paper.

The third part of the paper addresses to the question of testing the stability of proposed
scenario tree generation method, according to the reference of Kaut and Wallace (2003),
since the procedure of tree construction involves the randomness. It is demonstrated on a
case from asset liability management, which is a problem from stochastic programming.

2. Notation for Scenarios

Scenarios are introduced as atoms of the true discrete probability distribution P or of
that discrete probability distribution which approximates the true one. The notation for
scenarios is given based on the references Domenica et al. (2007), Dupačová et al. (2000).

If a stochastic factor evolves in time, we have a stochastic process. Let assume that the
stochastic process ξ = {ξt}T t

t=1 is defined on some filtered probability space (Ω, S, F , P ).
The sample space Ω is defined as Ω := Ω1 × Ω2 × · · · × ΩT t , where Ωt ⊂ Rd are
taken as finite dimensional. For instance, these data may correspond to the random return
of d financial assets at different time moments t. The σ-algebra S is the set of events
with assigned probabilities by measure P , and {Ft}T t

t=1 is a filtration on S. For scenario
based models, one assumes that the probability distribution P is discrete and concentrated
on a finite number of points, say, ξs = (ξs

1, . . . , ξ
s
t , . . . , ξ

s
T t), ξs

t = (ξs,1
t , . . . , ξs,d

t )′,

s = 1, . . . , S. The probability of ξs
t is denoted as πs

t
� = πs

t
� (ξs

t ),
∑S

s=1 πs
t

� = 1,

t ∈ {1, . . . , T t}. At the current time moment t0, all scenarios are known with cer-
tainty. Thus, the first stage is represented by a single root node ξ0 (vector in Rd). Mov-
ing to the second stage, the structure branches into individual scenarios. Such struc-
ture of simulated data paths is called as scenario fan (Fig. 1a). It is represented as
two-stage problem, as all σ-fields Ft, t = 1, . . . , T t coincide. Thus, the probabilities
πs

t
� = πs

t′
�

, s = 1, . . . , S, t �= t′, t, t′ > 0. The two-stage stochastic problem has the
following properties, as in Dupačová et al. (2000): decisions at all time instances are
made at once and no further information is expected; except for the first stage no non-
anticipativity constraints appear. In general, such properties can be regarded as disadvan-
tages, especially in cases, when decisions are considered to be reformulated during the
horizon. By eliminating these disadvantages, the multistage scenario tree is generated.

The multistage scenario tree (Fig. 1b) allows to reflect the inter-stage dependency
and decreases the number of nodes while comparing to the scenario fan. The time stage
index τ ∈ {1, . . . , T τ } is associated with time moments when decisions are taken.
The structure of multistage scenario tree at initial time moment is described by a sole
root node ξ0 (vector in Rd) and by branching into a finite number of scenarios in ev-
ery stage. The probability distribution P is concentrated on a finite number of points
ξsT τ = (ξs1

1 , . . . , ξsτ
τ , . . . , ξsT τ

T τ ), ξsτ
τ = (ξsτ ,1

τ , . . . , ξsτ ,d
τ )′, sτ = 1, . . . , Sτ , but with

varying size of scenarios set Sτ . The probability of ξsτ
τ is denoted as πst

t
�� = πst

t
�� (ξsτ

τ ).
The stages are connected with possibility to take additional decisions based on newly
revealed information. Such information can be obtained periodically (every day, week,
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month) or based on some events (expiration of investment portfolio duration). The dis-
tinction between stages and time periods of discretization is essential, because in practical
application it is important that the number of time periods would be greater than the cor-
responding nodes. The arcs linking nodes represent various realizations of random vari-
ables. The number of branches from each node can vary depending on problem specific
requirements and not definitely constant through the tree.

3. Construction of Multistage Multidimensional Scenario Tree
out of the Scenario Fans

At this moment, we concentrate on the construction of scenario trees when the underly-
ing stochastic parameters have been determined and the individual scenarios are already
generated. Based on scenario’s dimension, the scenario trees can be of two types:

• The multistage scenario tree, which is generated from one scenario fan (one-
dimensional scenarios).

• The d-dimensional multistage scenario tree, which is generated from d scenario
fans (d-dimensional scenarios).

The scenario tree is used to describe the behaviour of one uncertain factor; the
d-dimensional scenario tree is used to describe the behaviour of d uncertain factors.

To bundle the individual scenarios into clusters, the clustering procedure is employed.
Clustering consists in partitioning of a set of scenarios into subsets, so that the scenarios
inside cluster would be more similar than outside the cluster. Since most of clustering
methods are developed for data not varying in time, we have to make some modifi-
cations in order to cluster the time dependent data, such as are scenarios. Due to this,
K-means clustering method (Kaufmann and Rousseeuw, 1990; Teknomo, 2006; Krilavi-
čius and Žilinskas, 2008) is modified to treat properly the inter-stage dependencies, and it
is implemented while constructing the multistage scenario tree out of scenario fans. Two
factors are used to delineate the structure of scenario tree: the branching scheme and the
number of stages. Let assume that branches Kτ are desired from each scenario tree node
at stage τ . For example, in the case of Kτ = 2 the pessimistic and optimistic scenarios
are considered. In the terminology of cluster analysis, it means that Kτ clusters have to
be formed. The following modifications for K-means method have to be done in order to
construct the scenario tree with (τ + 1) stages:

• In the current stage, the new sub-clusters have to be formed from each cluster
generated at previous stage.

• Centroids (means) have to be computed only at stage indexed time moments, while
the distance measure has to exploit the whole sequence of simulated d-dimensional
scenarios.

• The possibility of changing the number of clusters in every stage has to be allowed.
• The probabilities of each node have to be evaluated.

After a discussion of a kind of requirements we are using, the multistage K-means
clustering problem and then the algorithm for solving it are described below.
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3.1. The Multistage K-Means Clustering Problem

Given a set of d-dimensional scenarios ξs = (ξs
t ), where ξs

t = (ξs,j
t ), s = 1, . . . , S,

t ∈ {1, . . . , T t}, j = 1, . . . , d, and the number Kτ of desired clusters at stage
τ ∈ {1, . . . , T τ }, it is needed to solve κτ K-means clustering tasks in each stage τ ,
where

κτ =

{ ∏τ −1
j=1 Kj , τ > 1,

1, τ = 1.

The input to each of 1, . . . , κτ K-means clustering tasks is ξs ∈ C̃k
τ , k = 1, . . . , κτ ,

which are formed while performing usual K-means clustering algorithm. The output of
stage τ are cluster’s centroids ξ̄k = (ξ̄k

t ), where t = τ, k = 1, . . . ,
∏τ

j=1 Kj with

assigned probabilities π
��(ξ̄k).

3.2. The Multistage K-Means Clustering Algorithm

Set the stage indexed time moments as τ ∈ {1, . . . , T τ }, then iterate the following steps:
Step 1. Setting initial centroids. Let ξ̄k = (ξ̄k

t ), t ∈ {1, . . . , T t}, k = 1, . . . , Kτ be
the clusters’ centroids. Some method can be employed to choose the centroids’ positions
for initial clusters, sometimes known as “seeds”. It might be chosen to be the first Kτ

scenarios or scenarios by random since the scenarios are independently generated.
Step 2. Cluster assignment. Assign each scenario ξs = (ξs

t ), t ∈ {1, . . . , T t},
s = 1, . . . , S to the cluster C̃k = (C̃k

τ ), k = 1, . . . , Kτ , such that centroid ξ̄k = (ξ̄k
t )

is nearest to ξs = (ξs
t ) by the distance measure, i.e., compute the value of indicator

function:

δ
(
ξs, C̃k

)
=

{
1, D

(
ξs, ξ̄k

)
< D

(
ξs, ξ̄m

)
for all k, m = 1, . . . , Kt, k �= m,

0, otherwise,

where D(ξs, ξ̄k) =
∑T t

t=0 ‖ξs
t − ξ̄k

t ‖2 =
∑T t

t=0

√∑d
j=1(ξ

s,j
t − ξ̄k,j

t )2, s = 1, . . . , S,
j = 1, . . . , d, k = 1, . . . , Kτ . It is possible to apply other distance metrics, such as Man-
hattan distance, Maximum norm, Mahalanobis distance, in bundling similar scenarios,
only some modifications have to be done in order to exploit the whole simulated data
sequence.

Step 3. Centroid’s evaluation. Compute ξ̄k = (ξ̄k
t ) as the mean of all scenarios as-

signed to cluster C̃k:

ξ̄k = E{ξs}ξs ∈C̃k =
1

|C̃k |

S∑
s=1

δ(ξs, C̃k)ξs,

where |C̃k | =
∑S

s=1 δ(ξs, C̃k) is the number of scenarios in the cluster C̃k. The calcula-
tion of mean can be replaced by other estimate, such as median or mode.
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Step 4. Repeat. Go to Step 2 until convergence. The termination criteria of conver-
gence may be chosen as follows:

• Termination when convergence criteria is met, e.g., no (or very small) number of
scenarios are assigned to different clusters, squared error.

• Termination when a fixed number of iterations has been carried out (this can also
ensure stopping without convergence.

Step 5. Calculation of probabilities. Probability of ξ̄k is equal to the sum of probabil-
ities of individual scenarios ξs, belonging to the relevant cluster C̃k. The probability can
be evaluated from:

π
��(ξ̄k) = |C̃k |/S,

where |C̃k | =
∑S

s=1 δ(ξs, C̃k) is the number of scenarios in the cluster C̃k.
Step 6. Modification. Modify ξs = (ξs

0, . . . , ξ
s
t , . . . , ξs

T t) by replacing ξs
t with ξ̄k

t if
ξs
t ∈ C̃k and t = τ .

Step 7. Repeat. Go to Step 1 if the next stage index exists. The clustering proce-
dure starts over for each cluster ξs ∈ C̃j formed in the current stage separately, where
j = 1, . . . ,

∏τ
j=1 Kj .

This algorithm produces a separation of scenarios into groups. The given algorithm
lets to treat properly the inter-stage dependencies, exploiting the whole sequence of simu-
lated scenario path. New sub-clusters are constructed from previous generated clusters at
each defined stage, that’s why this approach is named as multistage K-means clustering
with varying Kτ , τ ∈ {1, . . . , T τ } in every stage. The output of multistage K-means
clustering algorithm is the multistage scenario tree, which is delineated by nodes con-
taining a cluster of scenarios (vectors in Rd), one of which is designated as centroids
ξ̄m = (ξ̄m

τ ), ξ̄m
τ = (ξ̄m,j

τ ), m = 1, . . . ,
∏τ

j=1 Kj , j = 1, . . . , d, τ ∈ {1, . . . , T τ } with

assigned probabilities π
��(ξ̄m

τ ) and the branching scheme Kτ .
The described idea of bundling scenarios to the clusters is illustrated in Fig. 2, where

the scenario fan is chosen to consist of one-dimensional data paths for better illustration
of clustering performance. It is assumed that a set of individual scenarios for the entire
time horizon (12 time moments) is already generated (Fig. 2a). The scenario fan of 100
scenarios is schematically illustrated. Let assume that we have three decision dates, i.e.,
we are planning to make decisions at 2, 5 and 8 time moments. Using the given notation,
we have τ = 1, 3. The strategy is to construct the scenario tree with two branches Kτ = 2
per each node in every stage τ . With this initial setting, we are ready to construct the
4-stage scenario tree. Thus, at the 1st decision moment (τ = 1, time = 2) two clusters
are formed by the first stage of multistage clustering algorithm (Fig. 2b). The centroid
of each cluster is computed, which represents the second-stage node. Next, at previous
step formed clusters are divided into two sub-clusters. It results that for the 2nd decision
moment (τ = 2, time = 5) we have four clusters representing third-stage nodes (Fig. 2c).
Finally, the result of the third-stage of K-means clustering algorithm is eight clusters,
since two more sub-clusters are formed from previous clusters at the 3rd decision moment
(τ = 3, time = 8; Fig. 2d).
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Fig. 2. Illustration of 4-stage scenario tree’s construction.

The computed nodes are denoted by black points in the clustered scenario fan. Joining
these points by line, we get the graphical representation of scenario tree (Fig. 3). The
constructed scenario tree has 4 stages and 8 scenarios. Such strategy of bundling scenarios
to the clusters can continue till the end of time horizon is reached.

The comments about the developed multistage K-means clustering procedure are
listed as follows:

• The projection of random variable nearer the time horizon is less critical than those
for the near future, because number of scenarios grows smaller down the tree and
the centroids that represent the scenario cluster are calculated from a smaller sam-
ple size.

• It allows to model extreme events because at every stage the simulated scenarios in
all of the clusters are not discarded, and at the next stage all simulated scenarios in
all of the clusters are used to determine new sub-clusters.

Two main approaches for determining the appropriate number of clusters are distin-
guished:
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Fig. 3. Graphical representation of 4-stage scenario tree.

• Compatible cluster merging, when the clustering procedure starts with a suffi-
ciently large number of clusters, and then this number is reduced by merging clus-
ters that are similar (compatible) with respect to some predefined criteria (Setnes,
1999).

• Usage of validity measures to assess the goodness of obtained partitions for differ-
ent values of number of clusters. Different validity measures, such as Dunn’s index,
Alternative Dunn’s index or Silhouette value, have been proposed in the literature,
none of them is perfect by oneself (Bruna et al., 2007).

4. The Time Complexity of Multistage K-Means Algorithm

The time complexity refers to a function describing how much time it will take an algo-
rithm to execute, based on the parameters of its input. An exact value of this function is
usually ignored in favour of its order, expressed in O-notation.

In the case of one-dimensional scenarios, the time complexity of one-stage K-means
clustering algorithm is estimated referring to the results given in references Lin et al.
(2004), Arthur and Vassilvitskii (2006). We get:

T1(S) = O(ST tKI),

where T t is the length of scenario, K is the number of clusters specified by the user,
and I is the number of iterations until convergence of K-means clustering. The distance
measure for one-dimensional scenarios is:

D(ξs, ξ̄k) = ‖ξs − ξ̄k ‖2 =

√√√√ T t∑
t=0

(ξs
t − ξ̄k

t )2, s = 1, . . . , S, k = 1, . . . , K.

Next, let evaluate the time complexity of multistage K-means clustering algorithm.
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Theorem. Assume that the multistage clustering problem consists of T τ stages. Denote
I as the number of iterations until convergence of K-means clustering task. The time
complexity of multistage K-means clustering is O(ST tdI

∑T τ

τ=1 Kτ ), where Kτ is the
number of clusters specified by the user in stage τ .

Proof. The distance measure of d-dimensional scenarios is given by:

D(ξs, ξ̄k) =
T t∑
t=0

‖ξs
t − ξ̄k

t ‖2 =
T t∑
t=0

√√√√ d∑
j=1

(ξs,j
t − ξ̄k,j

t )2,

s = 1, . . . , S, j = 1, . . . , d, k = 1, . . . , Kτ .

Comparing it with one-dimensional scenarios, the number of operations increases d

times. Then, the time complexity of one-stage K-means clustering for d-dimensional
scenarios is Td(S) = O(dT tSKI). Let introduce κτ as the number of clustering tasks to
be solved in stage τ , i.e.,:

κτ =

{ ∏τ −1
j=1 Kj , τ > 1,

1, τ = 1.

In each stage τ , the data set of scenarios is divided into κτ non-overlapping sub-sets
of size Sτ,j , where

∑κτ

j=1 Sτ,j = S. Thus, the time complexity of multistage K-means
clustering is as follows:

Tmulti(S) =
T τ∑
τ=1

κτ∑
j=1

Td(Sτ,j).

There exist positive constants c and s0 such that Tmulti(S)�cdT t
∑T τ

τ=1Kτ

∑κτ

j=1Sτ,jIτ,j

for all Sτ,j � s0. Let us assume that I = max
τ,j

Iτ,j is the slowest convergence of

K-means clustering task. Thus, we have Tmulti(S) � cdT tI
∑T τ

τ=1 Kτ

∑κτ

j=1 Sτ,j =

cdT tIS
∑T τ

τ=1 Kτ .

COROLLARY. If K = Kτ = const through all stages τ , then the time complexity of
multistage K-means clustering is O(ST tdIT τK).

5. The Exclusion of Duplicate Information from the Multistage Multidimensional
Scenario Tree

As was described in the introduction, there exists a need to eliminate the redundant in-
formation in the scenario tree. In this section, the developed algorithm, which allows
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Fig. 4. The illustration of scenario trees.

to discard the duplicate data from the multidimensional multistage scenario tree, is de-
scribed.

Let assume that the decision vector τ ∈ {1, . . . , T τ } is already defined and the num-
ber of clusters Kτ is known in every stage τ . We already declared that stages are con-
nected with time moments when decisions have to be taken. Stages also show the branch-
ing moment in the scenario tree, where nonduplicate information reveals. Thus, in every
stage the new branches are formed, which come up from parent branches; but these new
branches are as a parents for the other branches in subsequent stages. That’s why in de-
veloping the algorithm, we keep the idea that every scenario in the tree has its parent at
the same time being a parent itself. Then, the nature of scenario tree leads to the fact that
the longest branches appearing from stage τ will be as parents for branches in subsequent
stages τ +1, . . .. Thus, the proposed algorithm allows to determine the quantity of parent
branches starting only from stage τ and their labels in every stage. These branches will
capture the nonduplicate information. This purpose is schematically explained in Fig. 4.

In Fig. 4a the quantity of the parent branches starting from Stage 2 is 3 with their
labels 1, 3, 5 in Stage 2, and the quantity of the parent branches starting from Stage 3 is 3
with their labels 2, 4, 6 in Stage 3. In Fig. 4b) the quantity of the parent branches starting
from Stage 2 is 2 with their labels 1, 7 in Stage 2, the quantity of the parent branches
starting from Stage 3 is 4 with their labels 3, 5, 9, 11 in Stage 3, the quantity of the parent
branches starting from Stage 4 is 6 with their labels 2, 4, 6, 8, 10, 12 in Stage 4.

The algorithm for determining the parent branches and their labels at each stage τ > 0
is as follows. The procedure has to be continued while the set I is non-empty:

Step 1. Generate the set of possible labels:

I = {1, 2, . . . , (K1K2 . . . K|τ | )},

where |τ | is the length of the decision vector.
Step 2. In the stage indexed by τ > 0, the quantity of all branches is qs

τ =
K1K2 . . . Kτ . The quantity qp

τ of the parent branches starting from the stage indexed by
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τ > 0 is qp
τ = K1K2 . . . Kτ −1(Kτ − 1). The label for each parallel branch i = 1, . . . , qs

τ

is obtained as

ϑτ
i = 1 + (i − 1)Δτ ,

where Δτ is the difference between the label of these branches:

Δτ =
{

Kτ+1Kτ+2 . . . K|τ |, if (|τ | + 1) > (τ + 1),
1, else.

The new set of labels is formed Iτ = {ϑτ
i }, i = 1, . . . , qs

τ . Then

• If τ = 1, assign the set of labels for parent branches asLp
1 = I1.

• If τ > 1, assign the set of labels for parent branches starting from stage indexed
by (τ − 1) as La

τ = Iτ −1 and the set of labels for parent branches starting from
stage indexed by τ as Lp

τ = Iτ \Iτ −1. The initial set I is modified by calculating
the complement I = (I\Iτ ).

Then, the new stage is analyzed if I is non-empty.
This algorithm can be applied before generating stoch text file of multistage mul-

tidimensional scenario tree. Stoch text file belongs to SMPS (Stochastic Mathematical
Programming System) format (Gassmann and Kristjánsson, 2008), which is widely used
in solvers for solving stochastic programming problems.

6. Testing the Scenario Generation Algorithm for Stability

Usually scenario tree generation methods differ in their ability to describe randomness.
Since the proposed method involves the randomness, it should be tested for stability (Kaut
and Wallace, 2003). Let denote the constructed scenario tree by ξ

�
= {ξτ

� }T τ

τ=1. The stabil-
ity requirement means that if we generate G scenario trees ξg�

= {ξg
τ

� }T τ

τ=1, g = 1, G and
solve the stochastic programming problem with each tree, we should get approximately
the same optimal value of the objective function. This may also be seen as robustness
requirement on the scenario generation method. In general, two types of stability tests are
performed: in-sample test, and, if feasible, the out-of sample test. The important differ-
ence between these two definitions is: we need to solve the scenario-based optimization
problem for testing the in-sample stability, but we have to be able to evaluate the “true”
objective function for the out-of-sample stability. To do the latter test, we need to have
the full knowledge of the underlying distribution, which is not always the case.

6.1. Asset Liability Management as Multistage Stochastic Linear Problem

The stability of proposed scenario tree generation algorithm is tested on the optimiza-
tion problem of Asset Liability Management (ALM; Kouwenberg and Zenios, 2006).
In general, there exist J possible asset classes for allocating resources. The solution of
optimization model will consist of the initial and recourse decisions for recommended
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asset mixes by different combinations applied to the investment portfolio, i.e., weights
(α1, . . . , αJ) of asset allocation to various investments J . The following formulation is
fairly standard in ALM applications of stochastic programming (Hilli et al., 2007).

Inventory constraints are used to describe the dynamics of holdings in each asset class:

hs
0,j = h0

j + ps
0,j − qs

0,j , hs
τ,j = Rs

τ,jh
s
τ −1,j + ps

τ,j − qs
τ,j ,

τ ∈ {1, . . . , T τ }, s = 1, . . . , ST τ , j = 1, . . . , J,

where h0
j – initial holdings in asset j, Rs

τ,j – return on asset j (random) over stage
[τ − 1, τ ] in scenario s are parameters; ps

τ,j – non-negative purchases of asset j at time τ

in scenario s, qs
τ,j – non-negative sales of asset j at time τ in scenario s, hs

τ,j – holdings
in asset j in period [τ, τ + 1] are decision variables.

Budget constraints are used to guarantee that the total expenses do not exceed rev-
enues: ∑

j∈J

(1 + kp
j )ps

τ,j �
∑
j∈J

(1 − kq
j )q

s
τ,j + Vτ − Lτ ,

τ ∈ {0, . . . , T τ }, s = 1, . . . , ST τ , j = 1, . . . , J,

where kp
j � 0 – transaction costs for buying asset j, kq

j � 0 – transaction costs for selling
asset j, Vτ – cash inflows (random) in period [τ − 1, τ ], −Lτ – cash outflows (random)
in period [τ − 1, τ ] are parameters.

Portfolio constraints give limits for the allowed range of portfolio weights:

bj

∑
j∈J

hs
τ,j � hs

τ,j � b̄j

∑
j∈J

hs
τ,j ,

τ ∈ {0, . . . , T τ }, s = 1, . . . , ST τ , j = 1, . . . , J,

where
∑

j∈J hs
τ,j – total wealth at time τ , bj – lower bound for the proportion of∑

j∈J hs
τ,j in asset j, b̄j – upper bound for the proportion of

∑
j∈J hs

τ,j in asset j are
parameters.

Of course, the income should be sufficient to cover the liabilities and to earn the gain.
To encourage such outcomes, let Ψτ be the target wealth at the horizon τ = T τ , w̄s

τ

be an excess over target wealth at horizon τ = T τ , ws
τ be a deficit under target wealth

at horizon τ = T τ . The objective function will include d1, the penalty coefficient for
the shortfall, and d2, the reward coefficient for the surplus. Thus, the required wealth
constraint is:∑

j∈J

Rs
T τ ,jh

s
T τ −1,j + VT τ − LT τ − w̄s

T τ + ws
T τ = ΨT τ , s = 1, . . . , ST τ .

The objective function is given as

min
ST τ∑
s=1

πs
�� [d1 · ws

T τ − d2 · w̄s
T τ ],
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where πs
�� – probability of scenario s.

The above presented ALM model is applied for management of insurance company.
The revenues from the performance of investment and underwriting business are added
to the insurer’s asset, while the wealth is depleted both by outflows allocated to various
investments and by claims of its clients. The main goal of a company is to earn the profit.
The models for asset returns Rs

τ,j , for insurance underwriting cash flows Vτ , Lτ are
not detailed in this paper and can be found in Kaufmann et al. (2001), Hibbert et al.
(2001). The risk factors of investment activity are described by J-dimensional multistage
scenario tree, while the risk factors of insurance underwriting activity are described by
scenario fans.

6.2. The Results of Numerical Experiment

In the paper Kaut and Wallace (2003), it is stated that in most applications the in-sample
test should be sufficient in detecting a possible instability. However, if there is a way to
do the out-of-sample test, it is recommended to perform it as well. Since we don’t have
a representation of the true distribution, we will perform the in-sample stability testing,
i.e., we are going to test if holds the following equation:

min
w

F (w; ξg�
) ≈ min

w
F (w; ξk�

), ∀g �= k, w = (w, w̄),

where F (·) is the objective function given in Section 6.1.
The settings for a numerical experiment are as follows. We set J = 3, i.e., three asset

classes are possible for investment: cash, bonds, stocks. The investments are bounded
with lower limit and upper limit as follows: cash ∈ [0, 0.2], bonds ∈ [0.4, 0.7], and
stocks ∈ [0.3, 0.6]. The investment returns Rs

τ,j (Section 6.1) are described by multistage
3-dimensional scenario tree, which is constructed by multistage K-means clustering al-
gorithm developed in this paper. Stages in scenario tree denote the decision moments: first
stage is indexed as τ = 0, and the recourse stages are indexed as τ = (1, 3, 6, 10) in years.
It determines that we have 5 stages during 10 years time horizon. To test the in-sample
stability, 100 five-stage 3-dimensional scenarios tree are generated, each of them having
branching scheme Kτ = 2 and Kτ = 3. The initial investment consists of initial surplus∑3

j=1 h0
j = 1 × 104 at time τ = 0. The target wealth is set equal to ΨT τ = 2.5 × 105.

The sample means and standard deviations of optimal function (Section 6.1) are given in
Table 1.

In Table 1, the stability of scenario generation algorithm can be observed if high
density clustering scheme is chosen for a small number of simulated data paths; for large
number of scenarios, the clustering scheme can be sparser.

Additionally, the statistical t-test method is used to test a null hypothesis whether the
difference in the mean value of any two samples is equal to zero. On the whole, fifteen
tests (the number of ways that two cases can be chosen from among six cases, i.e., the
binomial coefficient (6

2 )) were performed. Statistical t-test method showed that sample
means are statistically equal for the cases within the same branching scheme. In summary,
the obtained results for a value of objective function show in-sample stability of a given
scenario tree generation algorithm.
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Table 1

In-sample stability test of scenario tree generation algorithm

Case No. Branching scheme Kτ = 2 Branching scheme Kτ = 3

1 2 3 4 5 6

# of simulated data paths

(scenario fan) 1000 1500 2000 1000 1500 2000

Mean of objective function, ·105 −0.6429 −0.7285 −0.8711 −1.5161 −1.3205 −1.1259

Standard deviation of objective

function, ×105 0.5358 0.6245 0.6330 0.7331 0.7259 0.6113

7. Conclusions

In the present paper, we described the algorithm based on simulation and multistage
K-means clustering to generate the multistage d-dimensional stochastic scenario tree
from d-dimensional scenario fans. It is proved that the time complexity of the developed
multistage K-means clustering algorithm is linear regarding the number of scenarios in
the fan. The proposed scenario tree generation algorithm is motivated by the stability of
optimal values, obtained from the multistage stochastic optimization problem of asset
liability management for insurance company. The algorithm for determining the parent
scenarios in the d-dimensional multistage scenario tree is also developed, which allowed
to exclude the duplicate information in every stage of scenario tree. This point of view is
advantageous because it allows for a reduction of redundancy in the tree.
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Daugiaetapis K-vidurki ↪u klasterizavimo metodas scenarij ↪u medžiui
konstruoti

Kristina ŠUTIENĖ, Dalius MAKACKAS, Henrikas PRANEVIČIUS

Sprendžiant stochastinio programavimo ir sprendim ↪u analizės uždavinius, vienas svarbiausi ↪u
tiksl ↪u yra daugiamačio stochastinio proceso apytikslis reprezentavimas scenarij ↪u medžiu. Šiame
straipsnyje yra išdėstomas metodas, skirtas daugiamačio daugiaetapio scenarij ↪u medžio generavi-
mui iš scenarij ↪u vėduokli ↪u aibės. Šiam tikslui yra sukurtas daugiaetapis K-vidurki ↪u klasterizavimo
algoritmas. Siūlomas scenarij ↪u medžio generavimo metodas yra stabilus daugiaetapės stochastinės
programos optimali ↪u reikšmi ↪u atžvilgiu. ↪Irodyta, kad daugiaetapis klasterizavimo algoritmas turi
tiesin↪i laiko sudėtingum ↪a scenarij ↪u skaičiaus vėduoklėje atžvilgiu. Kaip tarpinis rezultatas yra
pateiktas algoritmas, kuris leido daugiamačiame scenarij ↪u medyje išskirti nesidubliuojanči ↪a infor-
macij ↪a.


