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Abstract. As a means of supporting quality of service guarantees, aggregate multiplexing has at-
tracted a lot of attention in the networking community, since it requires less complexity than flow-
based scheduling. However, contrary to what happens in the case of flow-based multiplexing, few
results are available for aggregate-based multiplexing. In this paper, we consider a server multi-
plexer fed by several flows and analyze the impact caused by traffic aggregation on the flows at the
output of the server. No restriction is imposed on the server multiplexer other than the fact that it
must operate in a work-conserving fashion. We characterize the best arrival curves that constrain
the number of bits that leave the server, in any time interval, for each individual flow. These curves
can be used to obtain the delays suffered by packets in complex scenarios where multiplexers are
interconnected, as well as to determine the maximum size of the buffers in the different servers.
Previous results provide tight delay bounds for networks where servers are of the FIFO type. Here,
we provide tight bounds for any work-conserving scheduling policy, so that our results can be
applied to heterogeneous networks where the servers (routers) can use different work-conserving
scheduling policies such as First-In First-Out (FIFO), Earliest Deadline First (EDF), Strict Priority
(SP), Guaranteed Rate scheduling (GR), etc.
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1. Introduction

Although it is known that in flow-based architectures tight delay bounds can be computed
for single flows, the computation overhead associated to per-flow management operations
(i.e., classification and scheduling) is often unfeasible at high speeds when dealing with
many flows simultaneously. For this reason, in large-scale packet-switched-networks, as
the Internet, flows are managed as an aggregate rather than per-flow state operation. Ex-
amples of such architectures are Differentiated Services (Diff-Serv) adopted by the IETF
(Blake et al., 1998) and Multi-Protocol Label Switching (MPLS; Rosen et al., 2001).

Whereas most of the work done using aggregate multiplexing assume that aggregate
packets are served using a FIFO discipline, in practice, many devices cannot be accurately
described by a FIFO service model because packets arriving at the output queue from
different input ports may experience different delays when traversing a node. This is due
to the fact that many networking devices like routers are implemented using input-output
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buffered crossbars and/or multistage interconnections between input and output ports.
Hence, packet reordering on the aggregate level is a frequent event and should not be
neglected.

In this paper, we analyze the impact caused by traffic aggregation on the flows at the
output of a work-conserving blind multiplexing server. Concretely, we provide a tight
arrival curve which constrains the number of packets that leave the server, during any
time interval.

The paper is organized as follows. Section 2 describes our assumptions and notation.
Section 3 shows our main result and its optimality (tightness). A review of related work
is reported in Section 4. In Section 5, we show the suboptimality of taking an iterative
approach to obtain the arrival curves. Finally, in Section 6, we present some conclusions
and point out future work.

2. Aggregate Scheduling: Model and Notation

We consider I flows which are served as an aggregate in a work-conserving blind multi-
plexing server with constant service rate R.

A fluid approach is taken, leaving packetization effects for further study; these ef-
fects are likely to have an impact on our results in the order of one maximum packet
size (Chang, 2000; Le-Boudec, 2002).

We call Ai(t) to the input function which computes the number of bits observed in
flow i arriving to the server between the time interval 0 to t. Similarly, let Bi(t) be the
otput function which computes the number of bits, for flow i, during the same time in-
terval. Let A(t) =

∑I
i=1 Ai(t) be the aggregate input function, and B(t) =

∑I
i=1 Bi(t)

the aggregate output function.
We assume that flow i arriving to the server is constrained by an arrival curve αi (Cruz,

1995):

Ai(t) − Ai(s) � αi(t − s) for all t, s such that s � t. (1)

Arrival curves are of great importance since are used to obtain the bounds on the
delays suffered by packets, as well as properly dimension the buffer sizes (Cruz, 1995;
Fidler et al., 2005; Le-Boudec and Thiran, 2001; Lenzini et al., 2005; Ying et al., 2005;
Chunlin and Layuan, 2007).

Our problem, is to find the tightest arrival curves (α∗
i (x)) for the output func-

tions Bi(t):

Bi(t) − Bi(s) � α∗
i (t − s) for all t, s such that s � t. (2)

In other words, we look for the tight arrival curve which bounds flow i at the output of
the work-conserving blind multiplexing server. Note that this arrival curve will be used
to bound the flow at the input of the next server on flow’s path.
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We focus on the case where arrival curves are leaky-bucket constrained. This is a
typical constraint, which allows for bursts of a certain size and a defined sustainable
rate (Cruz, 1995; Jiang, 2002; Cholvi et al., 2002; Fidler et al., 2005; Le-Boudec and
Thiran, 2001; Lenzini et al., 2005; Ying et al., 2005). More formally, the arrival curve
that is enforced by a leaky-bucket with depth bi and sustainable rate ri is the function

αi(x) = bi + rix for all x � 0. (3)

An interesting feature of leaky-bucket curves is that they allow for a very simple
description of traffic aggregation, since the aggregate arrival curve of a number of flows
is the sum of the individual arrival curves.

PROPOSITION 1. The aggregate of a set of leaky-bucket constrained curves I according
to Eq. (3) is a single leaky-bucket curve given by

αi(x) =
∑
j∈I

bj +
∑
j∈I

rjx for all x � 0. (4)

Without loss of generality, we can focus on flow i = 1 and consider the other flows
as one aggregate flow. Thus, we can limit ourselves to the case I = 2 and find an arrival
curve for the output of flow 1 (flow 2 represents the aggregate of all flows other than 1).

The term scenario is understood to mean any arbitrary collection of functions
(Ai(t))1�i�I that are wide-sense increasing and non-negative, and each function sat-
isfies Eq. (1). For convenience, whenever necessary, we use a super-index to identify a
scenario. For example, Bγ

i (t) is the output function of flow i corresponding to scenario γ.
Let Γ be the set of all scenarios. Our problem is now to find the best possible ar-

rival curve α∗
1(x) for the output flow B1(t). In other words, we should have, for any

scenario γ ∈ Γ:

Bγ
1 (t) − Bγ

1 (s) � α∗
1(t − s) for all t, s such that s � t. (5)

We say that the arrival curve α∗
1 is tight if it is the smallest possible one. Whenever

necessary, we will use a super-index to identify the particular work-conserving policy
used to perform the aggregation of flows (e.g., ΓP is the set of all scenarios in a system
using P as scheduling policy).

Call Breq := supx�0[α1(x) + α2(x) − Rx] the worst case buffer required for a
loss-free operation. We assume the finiteness condition

Breq < ∞. (6)

Otherwise, it can easily be seen that our problem has no finite solution. A necessary
and sufficient condition for a finite buffer requirement is that r1 + r2 < R, assuming that
b1 + b2 is finite.
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3. Optimal Arrival Curve at the Output Flow

In this section, we obtain the result that gives the solution to our problem. Before we
proceed with it, we will introduce some new concepts. Consider some arbitrary but fixed
time interval [s, t].

• Denote as a the value of x � 0 that solves the following equation:

α2(x) − Rx = 0. (7)

Since α2 is a leaky-bucket function and r2 < R then a is defined and unique;
namely, a = b2

R−r2
. Denote sa = s − a. Also, for a given scenario β ∈ Γ, denote

as sβ the start of the busy period1 that lasts, at least, until s.
• For any given scenario β ∈ Γ, denote as qβ(s) the number of bits of flow 1 in the

queue at time instant s.
• We say that scenario β ∈ Γ confines scenario γ for time interval [s, t], denoted as

γ ≺[s,t] β, if Bγ
1 (t) − Bγ

1 (s) � Bβ
1 (t) − Bβ

1 (s). We also say that β is the confiner
for time interval [s, t] if ∀γ ∈ Γ (γ ≺[s,t] β).

• Given a scenario β ∈ Γ, we define βg as the scenario obtained from β making
flow 1 to inject in time interval [s − ε, t] (taking ε so that bits injected at time
instant s − ε are transmitted at or after time instant s) the same number of bits
injected by flow 1 in the same interval in β, but in a greedy fashion.2

• Define Second Flow First (SFF ) as the work-conserving policy that gives prefer-
ence to bits from the second flow. Define φ(s, t) as the scenario in ΓSFF such that
(see Fig. 1):

– in time interval [sa, t] flow 1 injects α1(t − sa) bits in a greedy fashion;
– in time interval [sa, s] flow 2 injects α2(s − sa) bits in a greedy fashion;
– in the rest of the intervals, no flow injects any bits.

Regarding the form of the output function for flow 1 corresponding to scenario φ(s, t),
we have the following result:

Fig. 1. Scenario φ(s, t) showing the amount of flow 1 and flow 2 bits injected in different time intervals.

1A busy period is a period where the server buffer is non-empty.
2We say that in scenario β flow 1 injects bits in a greedy fashion in time interval [s, t] if ∀m: s � m �

t (Aβ
1 (m) − Aβ

1 (s) = α1(m − s)) (resp. for flow 2).
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Lemma 1. For any given time interval [s, t], we have that B
φ(s,t)
1 (t) − B

φ(s,t)
1 (s) =

min{R(t − s), α1(t − sa)}.

Proof. Taking into account how φ(s, t) has been defined, we have that, at time instant s,
all bits injected by flow 2 will be transmitted, and the buffer will contain α1(s − sa) bits
from flow 1.

• Case R(t − s) > α1(t − sa): This means that not all injected flow 1 bits have been
transmitted at time instant t and, since at time s all injected flow 2 bits have been
transmitted, then R(t − s) will be transmitted at time t.

• Case R(t − s) � α1(t − sa): Since R(t − s) � α1(t − sa) then, at time t the
buffer will be empty. This means that all injected flow 1 bits have been transmitted.
Namely, α1(t − sa).

Furthermore, we have that φ(s, t) is the scenario that provides the highest number of
flow 1 bits in the queue at time instant s.

Lemma 2. For any given time interval [s, t], we have that ∀β ∈ Γ (qβ(s) � qφ(s,t)(s)).

Proof. If sβ � sa the proof is immediate. Therefore, assume that sβ < sa. Proof by
contradiction. Assume that there is a scenario β ∈ Γ such that (qφ(s,t)(s) � qβ(s)).
Therefore, we have that α1(s − sβ)+α2(s − sβ) − R(s − sβ) > α1(s − sa). Taking into
account that both α1 and α2 are leaky-bucket constrained, we have that b1 +r1(s − sa)+
r1(sa − sβ)+b2 +r2(s − sa)+r2(sa − sβ) − R(s − sa) − R(sa − sβ) > b1 +r1(s − sa),
which implies that r1(sa −sβ)+b2+r2(s−sa)+r2(sa −sβ)−R(s−sa)−R(sa −sβ) > 0.
Since b2 +r2(s − sa) − R(s − sa) = 0 then r1(sa − sβ)+r2(sa − sβ) − R(sa − sβ) > 0,
and consequently (r1+r2)(sa −sβ) > R(sa −sβ). Clearly, this implies that r1+r2 > R.
But, by definition, r1 + r2 � R, thus contradicting our initial hypothesis.

The previous lemma provides us with an upper bound on the maximum number of
flow 1 bits queued at any time instant.

COROLLARY 1. For all β ∈ Γ (max∀s qβ(s) = α1(a)).

Proof. Consider any time instant s. We know, from Lemma 2, that ∀β ∈ Γ (qβ(s) �
qφ(s,t)(s)). But since qφ(s,t)(s) = α1(a) (see how qφ(s,t)(s) has been defined) then the
proof follows.

The following lemma relates the “confinement” relationship of any scenario β ∈ Γ
with its “greedy” version (i.e., with βg).

Lemma 3. For any given time interval [s, t], we have that ∀β ∈ Γ (β ≺[s,t] βg).
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Proof. Immediate, taking into account that, in time interval [s − ε, t], the number of
injected bits in both scenarios will be the same and in βg they have been injected in a
greedy fashion.

Now, we can state the main theorem.

Theorem 1. Consider a system serving two flows in an arbitrary aggregate manner, with
the assumptions in Section 2. Define

α∗
1(x) = min

{
Rx, α1

(
x +

b2

R − r2

)}
.

Then α∗
1 is the tight arrival curve for the output flow B1(t) that can be found under these

assumptions.

Proof. First, we prove that for any given time interval [s, t], we have that ∀β ∈ Γ
then β ≺[s,t] φ(s, t).

• Case sβ � sa: Consider scenario β ∈ Γ. On the one hand, given a time interval
[s, t], the buffer cannot transmit at a rate that is higher than R (i.e., R(t − s)).
Furthermore, the buffer cannot transmit, in time interval [s, t], more that what is
injected in time interval [sβ , t], which is, at most, α1(t − sβ). Therefore, we have
that Bβ

1 (t) − Bβ
1 (s) � min{R(t − s), α1(t − sβ)}.

Now, taking into account Lemma 1 and the fact that sβ � sa, we have that Bβ
1 (t) −

Bβ
1 (s) � min{R(t − s), α1(t − sβ)} � min{R(t − s), α1(t − sa)} = B

φ(s,t)
1 (t) −

B
φ(s,t)
1 (s). Consequently, β ≺[s,t] φ(s, t).

• Case sβ < sa: On the one hand, the number of bits that can be transmitted in time
interval [s, t] in scenario φ(s, t) is min{qφ(s,t)(s)+r1(t − s), R(t − s)}. Similarly,
in scenario βg we have that it is bounded by min{qβg

(s) + r1(t − s), R(t − s)}.
Since, from Lemma 2, qβg

(s) � qφ(s,t)(s) then min{qβg

(s) + r1(t − s), R(t −
s)} � min{qφ(s,t)(s) + r1(t − s), R(t − s)}. Therefore βg ≺[s,t] φ(s, t). Further-
more, from Lemma 3, we have that ∀β ∈ Γ (β ≺[s,t] βg). Then β ≺[s,t] φ(s, t).

Therefore, we have that the scenario φ(s, t) is the confiner for time interval [s, t]. Tak-
ing into account Lemma 1 and considering how sa has been defined, the proof follows.

Since α1 is a leaky-bucket curve, then we have that α∗
1 is bounded by the server rate

R and by a leaky-bucket function with parameters (b∗
1, r1), with

b∗
1 = b1 + r1

b2

R − r2
.

Fig. 2 provides a numerical example of the shape of this curve. In Fig. 3, we also
illustrate how the parameters of flow 2 affect α∗

1(x). As expected, the increment of the
sustainable ratio (r2), as well as the burst (b2) of the curve for flow 2, produces an increase
in α∗

1(x).



Tight Arrival Curve at the Output of a WC Blind Multiplexing Server 37

Fig. 2. Worst case arrival curves for the output of flow 1. The server rate is R = 10, α1(x) = 15 + 3x and
α2(x) = 10 + 6x.

Fig. 3. Worst case arrival curve for the output of flow 1 when varying the parameters of the aggregate flow 2. The
server rate is R = 10, α1(x) = 10 + 3x, α2A(x) = 10 + 3x, α2B(x) = 20 + 3x and α2C(x) = 10 + 6x.
α∗

1i(x) represents the arrival curves for the output of flow 1 when flow 2 is constrained by α2i(x).

4. Related Work

Regarding previous work that has dealt with the characterization of arrival curves that
constrain the number of packets that leave an arbitrary blind multiplexing server, to our
knowledge, the only source that we are aware is a result in Le-Boudec and Thiran (2001).
In this result, when two leaky-bucket constrained flows (αi(x) = bi + rix) arrive to a
server with strict service curve βR,T , when r1+r2 � R the output of flow 1 is constrained
by the following leaky-bucket arrival curve:

α∗ ∗
1 (x) =

(
b1 + b1T + r1

b2 + r2T

R − r2

)
+ r1x.

In a constant rate server, as assumed in this paper, T = 0 and Eq. (4) matches our
result. Contrary to our result in Le-Boudec and Thiran (2001) it is not demonstrated that
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the bound is optimal either for constant servers nor for a server provinding a βR,T service
curve.

A similar result has been reported in Cruz (1998) for the case of FIFO multiplexing
(and extended for concave piecewise linear arrival curves in Cholvi et al. (2002). In that
case, the arrival curve for the output of flow 1 (which is also optimal) is bounded by a
leaky-bucket function with parameters (d1, r1), with

d1 = b1 + r1
b2

R
.

Now, we have that d1 is lower than b∗
1. However, it must be taken into account that

FIFO is a special case of work-conserving aggregate multiplexing policy (i.e., the FIFO
bound is not valid, in general, for work-conserving multiplexing policies).

5. Feasible Scenarios

In this section, we show that, contrary to what happens at the input, at the output not all
valid scenarios in accordance with the worst case arrival curves can occur.

PROPOSITION 2. Consider a work-conserving server serving two flows (with the as-
sumptions in Section 2). Then, at the output, not all valid scenarios in accordance with
the worst case arrival curve can occur.

Proof. By counter-example. Let us focus on a system where α1(x) = α2(x) =
min{Rx, b + rx}. Clearly, we have that α∗

1(x) = α∗
2(x). Denote as x′ the point where

α∗
1 (and consequently α∗

2) changes the value of its linearity. Therefore Rx′ � b∗ + rx′.
Take a scenario, denoted β∗, in which both flow 1 and flow 2 are greedy in time

interval [s, s + x′] at the output. By definition of the arrival curve (see Eq. (1)), β∗ is
a valid scenario. Assume, by way of contradiction, that this scenario can occur. Since
Rx′ � b∗ + rx′ then both flow 1 and flow 2 will transmit (at the output of the server) in
time interval [s, s + x′] at a rate of R. This implies that, in time interval [s, s + x′], the
server will transmit at a rate of 2R, which is not possible.

As a consequence of this, we have that taking an iterative approach to characterize the
arrival curves at the output when flows pass throughout several servers does not guarantee
that they will be optimal (in the sense that, although valid, they do not necessarily have
to be the tight arrival curves that can be found).

6. Conclusions

In this paper, we have analyzed the impact caused on the input flows by a work-
conserving blind multiplexing server. We provide the tightest arrival curve at the output
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of the server. Furthermore, it has been shown that the scenarios at the output of such
server are, in general, more restrictive than those at the input, which explains the well-
known inefficiency involved in finding performance bounds by iteratively applying output
burstiness bounds in arbitrary work-conserving servers (Le-Boudec and Thiran, 2001).

An important issue is to extend our result to the case where the arrival curve con-
straints for the input flows are piecewise linear functions, which correspond to combina-
tion of leaky-buckets. This will allows us to work directly with the variable bit rate case
(or T-SPEC) used by the IETF.
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Tiksli siunt ↪u intensyvumo kreivė darbus tausojančio aklai
multipleksuojančio serverio išėjime

Juan ECHAGÜE, Vicent CHOLVI

Agreguotas multipleksavimas, kaip priemonė palaikyti kokybės garantijas, pritraukia daug
su tinklais dirbančios visuomenės dėmesio, nes yra mažiau sudėtingas lyginant su kitais eili ↪u
valdymo būdais. Šiame darbe analizuojama trafiko sraut ↪u agregavimo ↪itaka multipleksuojanči ↪u
serveri ↪u išėjimo srautams, laikant, kad ↪i ↪iėjimus ateina atskiri pavieniai srautai. Vienintelė prielaida
– laikoma, kad multipleksuoti serveriai veikia darb ↪u tausojimo būdu, tai yra siunčia duomenis,
kai tik yra laukianči ↪u duomen ↪u. Mes charakterizuojame geriausi ↪a siunt ↪u intensyvumo kreiv ↪e, kuri
riboja iš serverio išeinanči ↪u individuali ↪u sraut ↪u bit ↪u skaiči ↪u bet kuriuo laikotarpiu. Šios kreivės
gali būti panaudotos nustatant paket ↪u vėlinimus sudėtinguose multiplekseri ↪u junginiuose ir ↪ivairi ↪u
serveri ↪u didžiausias buferi ↪u talpas. Ankstesni rezultatai pateikia vėlinim ↪u ribas tinklams, kuri ↪u
serveriai veikia FIFO būdu. Čia pateikiamos vėlinim ↪u ribos bet kuriai darbus tausojančiai eili ↪u
valdymo politikai, todėl rezultatai gali būti pritaikyti heterogeniniams tinklams, kuri ↪u serveriai ar
maršrut ↪u parinktuvai gali veikti taikant ↪ivairias eili ↪u valdymo politikas, tokias kaip FIFO, EDF, SP,
GR ir kitas.


