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Abstract. The DPLL procedure for the SAT problem is one of the fundamental algorithms in
computer science, with many applications in a range of domains, including software and hardware
verification. Most of the modern SAT solvers are based on this procedure, extending it with different
heuristics. In this paper we present a formal proof that the DPLL procedure is correct. As far as we
know, this is the first such proof. The proof was formalized within the Isabelle/Isar proof assistant
system. This proof adds to the growing body of formalized mathematical knowledge and it also
provides a number of lemmas relevant for proving correctness of modern SAT and SMT solvers.
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1. Introduction

The propositional satisfiability problem (SAT) is the problem of deciding whether there
is a truth assignment under which a given propositional formula (in conjunctive normal
form) evaluates to true. It is a canonical NP-complete problem (Cook, 1971) and it holds
a central position in the field of computational complexity.

One of the first algorithms for testing satisfiability is a branch and backtracking proce-
dure called Davis–Putnam–Logemann–Loveland (in short DPLL) procedure (Davis and
Putnam, 1960; Davis et al., 1962). Although there have been many improvements to
this procedure (including techniques called backjumping, conflict-driven lemma learn-
ing, restarts, etc.) it is still a core of the majority of the state-of-the-art complete SAT
solvers (e.g., zChaff (Moskewicz et al., 2001), MiniSAT (Eén and Sörensson, 2003) and
their successors). Modern SAT solvers show excellent performance even for huge formu-
lae. They are used in many practical applications (electronic design automation, hardware
and software verification, scheduling, etc.). SAT solving and modifications of the DPLL
procedure such as DPLL(T ) Nieuwnhuis et al. (2006) are also used for SMT (Satisfia-
bility Modulo Theories) – the problem of deciding whether a given formula is satisfiable
with respect to a background first-order theory T (Ranise and Tinelli, 2006). SMT solving
also has many important industrial applications. For a survey of SAT solvers, their per-
formances, and applications see, for instance, Gu et al. (1997), Zhang and Malik (2002),
Le Berre and Simon (2005).

*This work was partially supported by Serbian Ministry of Science grant 144030.



58 F. Marić, P. Jančić

Despite their significance and wide applications, there are still no formal correctness
proofs for SAT and SMT solvers, neither for the original DPLL procedure nor for its
modern successors. For most of the modern SAT solvers, there are no even informal
correctness proofs. In this paper we address this issue and present a first formalized cor-
rectness proof for the DPLL procedure, a proof that can be verified by an independent and
reliable proof checking system. In its forty-five years history, there were no doubts about
the correctness of this algorithm, but we believe that it is important to have its correctness
proof formalized for, at least, the following two reasons: first, the correctness proof for
the DPLL procedure will be useful for checking correctness of modern SAT and SMT
solvers, some of which are still unreliable1; second, this proof adds to the growing body
of formalized, verifiable mathematical knowledge (which is important as the rigour, re-
liability, and objectivity of formal proofs is vital in many computer science applications,
such as software and hardware verification).

Our correctness proof for the DPLL procedure is formalized within Isabelle proof
assistant and for object-level proofs we use Isar (Intelligible semi-automated reasoning)
language, natively supported in Isabelle. For definitions of some functions we use prim-
itive recursion, also natively supported in Isabelle. We also use Isabelle’s built-in theory
of lists (Nipkow et al., 2005; p. 16) and, to a limited extent, Isabelle’s built-in theory of
sets (only for finite sets) (Nipkow et al., 2005; p. 109).

Overview of the paper. In Section 2 we give background information on the DPLL
algorithm, on formal proofs and the Isabelle/Isar system, and on program verification.
In Section 3 we give basic notation, definitions and properties of propositional logic,
required for our proof. In Section 4 we give a formalization of the DPLL procedure
(with one concrete implementation discussed in Appendix), and in Section 5 we prove
the procedure’s total correctness (partial correctness and termination). In Section 6, we
discuss some technical details and give some fragments of our formalization made in
Isabelle/Isar. In Section 7 we briefly discuss related work, and in Section 8 we draw final
conclusions and discuss future work.

2. Background

2.1. Davis–Putnam–Logemann–Loveland or DPLL algorithm

The Davis–Putnam procedure was introduced in 1960 by Martin Davis and Hilary Put-
nam. Two years later, Martin Davis, George Logemann, and Donald W. Loveland intro-
duced a refined version of the algorithm, in which they replaced the elimination rule by
a splitting rule (Davis et al., 1962). In this newer version, the splitting rule leads to two
smaller subproblems (one for each truth value for a selected variable), instead of a single,
possibly larger, subproblem generated by the elimination rule. Nowadays, this later ver-
sion of the algorithm is often referred to as DPLL procedure. The algorithm is shown in
Fig. 1. In the algorithm, Φ is a set of propositional clauses tested for satisfiability. Φ(l)

1For instance, over the previous years, several SMT solvers turned out to be unsound according to the
results from SMT competitions, http://www.smtcomp.org/.
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Procedure DPLL(CNF formula Φ)
if Φ is empty return yes.
else if there is an empty clause in Φ return no.
else if there is a pure literal l in Φ return DPLL(Φ(l)).
else if there is a unit clause {l} in Φ return DPLL(Φ(l)).
else

select a variable v occurring in Φ.
if DPLL(Φ(v))=yes

return yes.
else

return DPLL(Φ(¬v)).
end

end

Fig. 1. DPLL procedure.

denotes the formula obtained from Φ by substituting a literal l by �, by substituting the
opposite literal of l by ⊥, and by simplifying afterwards. A literal is pure if it occurs
in the formula but its opposite literal does not occur. A clause is unit if it contains only
one literal. A non-recursive version of the algorithm can be found in Davis et al. (1994).
There are also rule based descriptions of some more advanced versions of this algorithm
(Krstić and Goel, 2007; Nieuwnhuis et al., 2006).

The selection of a variable v within the given algorithm is critical for its performance.
Choosing a variable may be trivial – choosing a first remaining variable or a random
variable, but it can also be very complex. In the original version of the procedure, the
variable occurring in the first clause of minimal length was chosen. The worst case com-
plexity for this procedure on 3-SAT (3-SAT is a variant of the SAT problem, with all
clauses consisting of exactly three literals) is O(20.762n) (Cook and Mitchell, 1997). For
more references on selecting a split variable and on worst case complexity analysis of the
DPLL procedure see, for instance, Cook and Mitchell (1997), Irgens and Havens (2004).

2.2. Formal proofs and Isabelle

Over the last years, in all areas of mathematics and computer science, with a history
of huge number of flawed published mathematical proofs and also flawed software and
hardware components, formal proofs (machine verifiable, given in object-level form, in
terms of axioms and inference rules) have gained more and more importance. There are
growing efforts in this direction, with many extremely complex mathematical theorems
formally proved2 and with many software tools producing and checking formal proofs.
Isabelle is a generic theorem prover that supports a variety of logics, with Gentzen’s nat-
ural deduction as the basic built-in logic (Paulson, 1994). Distinctive Isabelle’s features
include representation of logics within a meta-logic and the use of higher-order unifica-
tion to combine inference rules. Isabelle can be applied to reasoning in pure mathematics
or verification of computer systems. Isabelle is one of the most popular theorem proving
systems nowadays.

2For a list of selected formally proved theorems see, for instance, http://www.cs.ru.nl/freek/
100/.
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2.3. Readable formal proofs and Isar

Theorem proving system supporting both interactive proof development and some degree
of automation have become quite successful in sizable applications in recent years. Most
of them are based on traditional proof scripts which explicitly list all axioms and infer-
ence rules used in every single proof step. Despite success of semi-automated proving
systems based on such scripts in formalizing fragments of mathematics and computer
science, they are still not accepted by a wide range of researchers. The Intelligible semi-
automated reasoning (Isar; Wenzel, 2007) approach to readable formal proof documents
aims to bridge the semantic gap between internal notions of proof given by state-of-
the-art interactive theorem proving systems and an appropriate level of abstraction for
user-level work. Isar is an alternative proof language interface layer, beyond traditional
formal proof tactic scripts, which is much more readable for the users. The Isabelle/Isar
system provides an interpreter for the Isar formal proof document language, and readable
Isar proof documents are converted and executed as series of low-level inference steps.
It allows users to express proofs in a human-friendly way but still have proofs that are
automatically formally verified by an underlying proof system and that rely only on valid
axioms and inference rules.

2.4. Program verification

Program verification is the process of formally proving that a computer program meets
its specification. Program verification is old, but very much active field. Following the
lessons from major software failures in recent years, more and more efforts have been
invested in this field. Many fundamental algorithms and properties of data structures have
been formalized. Also, a lot of work has been devoted to formalization of compilers,
program semantics, communication protocols, security protocols, etc. Formal verification
is vital for SAT and SMT solvers and first steps in this direction have been made. For a
short overview of results in program verification see Section 7.

3. Notation and Definitions

In this section, we introduce notation, definitions, and basic propositions used in our for-
malized correctness proof for the DPLL procedure. Our proof is almost self-contained,
so here we also define notions (and notation) of literals, clauses, formulae, satisfiabil-
ity, etc. All notions introduced here are also formalized within Isabelle’s higher order
logic (Isabelle/HOL). Some of them are defined by primitive recursion, supported in Is-
abelle/HOL.

Formulae and logical connectives of this meta-logic (∧, ∨, ¬, ⇒, ⇔) are written in
the usual way. Ternary if−then−else connective is also used: if f then f1 else f2 denotes
f ⇒ f1 ∧ ¬f ⇒ f2. The symbol = denotes syntactical identity of two expressions.3

3Note that in this presentation we make a clear distinction between syntactical identity and logical equiv-
alence and use different symbols for them, = and ⇔ (while in Isabelle/HOL these two notions are denoted by
the same symbol, =).
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[ ] The empty list.
[e1, . . . , en] The list of n given elements e1, . . . , en.
e ∈ list e is a member of the list list.
e # list The list obtained by prepending element e to the list list.
list1@list2 The list obtained by appending lists list1 and list2.
head(list) The first element of the list list (assuming the list is nonempty).
tail(list) The list obtained by removing the first element of the list list.
list \ e The list obtained by removing all occurrences of the element

e from the list list.
list1 \ list2 The list obtained from the list list1 by removing from it

all elements of the list list2.
list1 ⊆ list2 All elements of list1 are also elements of list2.
|list| The length of the list list.
{} The empty set.
e ∈ set e is a member of the set set.
set1 ∪ set2 The union of the sets set1 and set2.

Fig. 2. Notions from the theory of lists and the theory of sets that are used.

The theory that we built for expressing correctness of the DPLL procedure uses Is-
abelle’s built-in theory of lists and Isabelle’s built-in theory of sets (only for finite sets).
Fig. 2 informally describes the notions from these theories that we use.

We assume that all meta-logic formulae in the following text are implicitly universally
quantified, if not stated otherwise. We use typed logic, but for better readability, when
printing formulae we omit types, and use the following convention:

• vbl denotes a variable and has the type nat;
• l, l′, l1, l2, . . . denote literals and have the type Literal;
• c, c′, c1, c2, . . . denote clauses and have the type Clause;
• F, F ′, F1, F2, . . . denote formulae and have the type Formula;
• v, v′, v1, v2, . . . denote valuations and have the type Valuation.

DEFINITION 1. A variable is identified with a natural number.

DEFINITION 2. A literal is either a positive variable (denoted by +vbl) or a negative
variable (denoted by −vbl).

DEFINITION 3. A clause is a list of literals.

DEFINITION 4. A formula is a list of clauses.

DEFINITION 5. A valuation is a list of literals.

DEFINITION 6. A variable of a literal, denoted var(l), is defined in the following way:
var(+vbl) = var(−vbl) = vbl.

DEFINITION 7. A opposite literal of a literal, denoted l, is defined in the following way:
+vbl = −vbl, −vbl = +vbl.
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Notice that we abuse the notation and overload some symbols. For example, the sym-
bol ∈ denotes both set membership and list membership. It is also used to denote that a
literal occurs in a formula.

DEFINITION 8. A formula F contains a literal l (and the literal l occurs in the for-
mula F ), denoted l ∈ F , iff (∃c)(c ∈ F ∧ l ∈ c).

Symbol vars is also overloaded and denotes the set of variables occurring in a clause,
formula, valuation, defined by primitive recursion.

DEFINITION 9. A set of variables that occur in a clause c, denoted vars(c), is defined
in the following way:

vars([ ]) = { }
vars(l # c) = var(l) ∪ vars(c)

A set of variables that occur in a formula F , denoted vars(F ), is defined in the follow-
ing way:

vars([ ]) = { }
vars(c # F ) = vars(c) ∪ vars(F )

A set of variables that occur in a valuation v, denoted vars(v), is defined in the follow-
ing way:

vars([ ]) = { }
vars(l # v) = var(l) ∪ vars(v)

The semantics is introduced by the following definitions.

DEFINITION 10. A literal l is true in a valuation v, denoted v � l, iff l ∈ v.
A clause c is true in a valuation v, denoted v � c, iff (∃l)(l ∈ c ∧ v � l).
A formula F is true in a valuation v, denoted v � F , iff (∀c)(c ∈ F ⇒ v � c).

DEFINITION 11. A literal l is false in a valuation v, denoted v �¬ l, iff l ∈ v.
A clause c is false in a valuation v, denoted v �¬ c, iff (∀l)(l ∈ c ⇒ v �¬ l).
A formula F is false in a valuation v, denoted v �¬ F , iff (∃c)(c ∈ F ∧ v �¬ c).

DEFINITION 12. A valuation v is inconsistent iff it contains both literal and its opposite
i.e., (∃l)(v � l ∧ v � l). A valuation is consistent iff it is not inconsistent.

DEFINITION 13. A model of a formula F is a consistent valuation v under which F is
true i.e., model(v, F ) iff consistent(v) ∧ v � F . A formula F is satisfiable, denoted
sat(F ) iff it has a model i.e., (∃v)(model(v, F ))
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The following proposition gives some basic properties of the notions we have just
introduced. These properties were formulated and proved in Isabelle/Isar and used in the
correctness proof for the DPLL procedure.

PROPOSITION 1.
Basic properties of opposite literals:

(A1) l = l

(A2) l1 = l2 ⇔ l2 = l1
(A3) l1 = l2 ⇔ l1 = l2
(A4) l �= l

(A5) var(l) = var(l)

(A6) var(l1) = var(l2) ⇔ l1 = l2 ∨ l1 = l2

Basic properties of vars:
(B1) l ∈ c ⇒ var(l) ∈ vars(c)
(B2) l ∈ F ⇒ var(l) ∈ vars(F )
(B3) c ∈ F ⇒ vars(c) ⊆ vars(F )
(B4) l ∈ v ⇒ var(l) ∈ vars(v)

(B5) var(l) ∈ vars(c) ⇔ l ∈ c ∨ l ∈ c

(B6) var(l) ∈ vars(F ) ⇔ l ∈ F ∨ l ∈ F
(B7) var(l) ∈ vars(v) ⇔ v � l ∨ v �¬ l

Basic properties of consistent valuations:
(C1) consistent([ ])
(C2) inconsistent(v \ l) ⇒ inconsistent(v)

Basic properties of the relation �:
(D1) v � c \ l ⇒ v � c

(D2) var(l) /∈ vars(F ) ∧ v � F ⇒ v \ [l, l] � F

Basic properties of models and formula satisfiability:
(E1) model(v, F ) ∧ vbl /∈ vars(F ) ⇒

(∃v′)(model(v′, F ) ∧ vbl /∈ vars(v′))
(E2) F ⊆ F ′ ⇒ (sat(F ′) ⇒ sat(F ))
(E3) sat([ ])
(E4) [ ] ∈ F ⇒ ¬sat(F )

4. Formalization of the DPLL Procedure

In this section, we present a formalization of the DPLL procedure and all required notions.
We give a special attention to the notions of pure literal and unit clause, essential for
certain steps of the procedure. All the given proofs are rigorously formulated and verified
within Isabelle/Isar.

4.1. Substitution

One of the basic steps of the DPLL procedure is substitution of a literal by logical con-
stants � and ⊥, and simplification of the obtained formula. This operation is formalized
by the following definition.
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DEFINITION 14. F [l → �] is the formula that is obtained from F by deleting all clauses
that contain l and deleting all occurences of the literal l. It is defined by primitive recur-
sion:

[ ] [l → �] = [ ]
(c # F ) [l → �] = if l ∈ c then

F [l → �]
else if l ∈ c then

(c \ l) # F [l → �]
else

c # F [l → �]

F [l → ⊥] denotes F [l → �].

The following proposition (proved in Isabelle/Isar) gives some basic properties of this
operation.

PROPOSITION 2.

(1) var(l) /∈ vars(F [l → �])
(2) var(l) /∈ vars(F ) ⇒ F [l → �] = F

(3) l /∈ F ∧ l /∈ F ⇒ F [l → �] = F [l → ⊥] = F
(4) model(v, F ) ∧ l ∈ v ⇒ model(v, F [l → �])
(5) model(v, F ) ∧ var(l) /∈ vars(v) ⇒ model(v, F [l → �])
(6) v � F [l → �] ⇒ (l # v) � F
(7) [l] ∈ F ⇒ ¬sat(F [l → ⊥])

(8) l ∈ F ∧ l /∈ F ⇒ F [l → �] ⊆ F [l → ⊥]

The following lemma suggests that the satisfiability of a formula can be, by using
substitution, checked by testing the satisfiability of two smaller formulae. Since this is a
fundamental lemma in the proof of the DPLL correctness, we give a sketch of its proof.
This sketch is still very close to its formal, Isabelle/Isar counterpart. It also illustrates the
use of the listed properties.

Lemma 1 (split rule lemma).

sat(F ) ⇔ sat(F [l → �]) ∨ sat(F [l → ⊥])

Proof.

(⇒): Let us assume sat(F ). This means that there is a valuation v such that
model(v, F ), i.e., consistent(v) and v � F . We consider two cases:

1. var(l) /∈ vars(v): from Proposition 2(5) it follows that v is a model for
F [l → �], and, therefore, it holds that sat(F [l → �]).

2. var(l) ∈ vars(v): from Proposition 1(B7), either v � l or v �¬ l holds.

(a) v � l: from Proposition 2(4) it follows that v is a model for F [l → �],
and, therefore, it holds that sat(F [l → �]).
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(b) v � l: from Proposition 2(4), it holds that v is a model for F [l → �],
and, therefore, it holds that sat(F [l → ⊥]).

(⇐) : Let us assume sat(F [l → �]) ∨ sat(F [l → ⊥]).
Consider the case when sat(F [l → �]) holds. This means that there is a valuation
v such that model(v, F ), i.e., consistent(v) and v � F [l → �]. From Proposi-
tion 2(1), it holds that var(l) /∈ vars(F [l → �]). From Proposition 1(E1) applied
to the formula F [l → �], variable var(l), and the valuation v, it follows that there
is a valuation v′ such that consistent(v′), v′ � F [l → �] and var(l) /∈ vars(v′).
Then, from Proposition 2(6) applied to the valuation v′, it follows that (l # v′) � F .
Since var(l) /∈ vars(v′), it follows l /∈ v′ and therefore consistent(l # v′). Fi-
nally, sat(F ) holds since l # v′ is a model of F .
The case when sat(F [l → ⊥]) holds is analogous to the previous case, with the
literal l replaced by l.

This lemma inspires a naive, but still sound and complete, procedure for satisfiability
checking. In some situations, one of the two formulae sat(F [l → �]) and sat(F [l → ⊥])
from the above lemma does not need to be considered. For instance, if the first disjunct is
satisfied, then the second one does not need to be checked (as indicated by the algorithm
shown in Fig. 1). Also, in some special cases discussed below it suffices to consider just
one of these disjuncts.

4.2. Unit Clauses

One sort of optimization of the mentioned naive procedure for satisfiability checking is
based on exploiting unit clauses.

DEFINITION 15. A clause c is a unit clause iff it has only one literal, i.e., c = [l]. Then
we also say that l is a unit literal.

The following lemma shows that when a formula contains a unit clause, checking
its satisfiability can be reduced to checking satisfiability of just one smaller formula (in
constrast to Lemma 1).

Lemma 2 (unit clause rule lemma).

[l] ∈ F ⇒ (sat(F ) ⇔ sat(F [l → �]))

Proof. By Proposition 2(7) it holds that [l] ∈ F ⇒ ¬sat(F [l → ⊥]), so the lemma is a
direct consequence of the split rule lemma (Lemma 1).

4.3. Pure Literals

Another sort of optimizations of the naive procedure for satisfiability checking is based
on pure literals.
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DEFINITION 16. A literal l is a pure literal in F iff l ∈ F and l /∈ F .

Lemma 3 (pure literal rule lemma).

l ∈ F ∧ l /∈ F ⇒ (sat(F ) ⇔ sat(F [l → �]))

Proof. By Proposition 2(8) it holds that

l ∈ F ∧ l /∈ F ⇒ F [l → �] ⊆ F [l → ⊥],

so the lemma is a simple consequence of the Proposition 1(E2) applied to F [l → �] and
F [l → ⊥], and the Split rule lemma (Lemma 1).

4.4. Definition of the DPLL Procedure

A recursive definition of the DPLL procedure is given in the following definition.

DEFINITION 17.
dpll(F ) ⇔

if F = [ ] then
�

else if [ ] ∈ F then
⊥

else if hasPureLiteral(F ) then
dpll(F [getPureLiteral(F ) → �])

else if hasUnitLiteral(F ) then
dpll(F [getUnitLiteral(F ) → �])

else if dpll(F [selectLiteral(F ) → �] then
�

else dpll(F [selectLiteral(F ) → ⊥]

Notice that the functions getUnitLiteral, getPureLiteral and selectLiteral re-
turning literals and Boolean functions hasUnitLiteral, hasPureLiteral, must be ef-
fectively defined in order to have an effective DPLL procedure. As said in Section 2, this
can be done in many ways. The choice of a specific implementation of these functions,
can affect the procedure performance but does not affect its correctness, as long as they
meet the following specification (their sorts are obvious from the context):

(1) hasUnitLiteral(F ) ⇒
[getUnitLiteral(F )] ∈ F

(2) hasPureLiteral(F ) ⇒
getPureLiteral(F ) ∈ F ∧ getPureLiteral(F ) /∈ F

(3) F �= [ ] ∧ [ ] /∈ F ⇒
selectLiteral(F ) ∈ F

One simple way to define these functions is given in Appendix.
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5. Termination and Correctness of the DPLL Procedure

In this section we prove termination and, finally, correctness of the DPLL procedure. Our
proof roughly follows the informal proof given in Davis et al. (1994). In Isabelle spirit,
termination is ensured by defining a measure that is decreased by each recursive call of
the procedure. This property is ensured by proving several propositions corresponding to
different recursive calls.

5.1. Termination

In order to prove termination of the specified procedure, we show that the total number
of literals in all clauses of F is decreased by each recursive call.4 This number, denoted
by numLiterals(F ), is defined by primitive recursion.

DEFINITION 18.

numLiterals([ ]) = 0

numLiterals(c # F ) = |c| + numLiterals(F )

From the following proposition it follows that the total number of literals in F is
reduced by each recursive call. Because of that, the total number of literals in the for-
mula can be used as a decreasing measure suitable for proving termination of the DPLL
procedure. This measure and the following proposition are used by Isabelle/Isar for the
automatic proof of termination.

PROPOSITION 3.

(1) l ∈ F ⇒ numLiterals(F [l → �]) < numLiterals(F )
(2) l ∈ F ⇒ numLiterals(F [l → ⊥]) < numLiterals(F )
(3) F �= [ ] ∧ [ ] /∈ F ⇒

numLiterals(F [selectLiteral(F ) → �]) < numLiterals(F )
(4) F �= [ ] ∧ [ ] /∈ F ⇒

numLiterals(F [selectLiteral(F ) → ⊥]) < numLiterals(F )
(5) hasUnitLiteral(F ) ⇒

numLiterals(F [getUnitLiteral(F ) → �]) < numLiterals(F )
(6) hasPureLiteral(F ) ⇒

numLiterals(F [getPureLiteral(F ) → �]) < numLiterals(F )

5.2. Correctness

Finally, we can prove the correctness of the procedure defined by Definition 17.

4There are other suitable termination measures that can be used as well (e.g., the number of occuring
variables).
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Theorem 1.

dpll(F ) ⇔ sat(F )

Proof. As a base of the inductive proof, we consider the cases in which the function does
not perform a recursive call. There are two such branches:

• If F = [ ] then, by Proposition 1(E3), dpll(F ) = � and sat(F ) = �, so the
conjecture trivially holds.

• If F �= [ ] and [ ] ∈ F then, by Proposition 1(E4), dpll(F ) = ⊥ and sat(F ) = ⊥,
so the conjecture trivially holds.

Now, let us assume that the conjecture holds for each recursive call, and let us show
that the conjecture holds for the top level procedure call. Therefore, let us assume the
following inductive hypotheses.

(F �= [ ] ∧ [ ] /∈ F ) ⇒
(hasPureLiteral(F ) ⇒

dpll(F [getPureLiteral(F ) → �]) ⇔ sat(F [getPureLiteral(F ) → �]))

(F �= [ ] ∧ [ ] /∈ F ∧ ¬hasPureLiteral(F )) ⇒
(hasUnitLiteral(F ) ⇒

dpll(F [getUnitLiteral(F ) → �]) ⇔ sat(F [getUnitLiteral(F ) → �]))

(F �= [ ] ∧ [ ] /∈ F ∧ ¬hasPureLiteral(F ) ∧ ¬hasUnitLiteral(F )) ⇒
dpll(F [selectLiteral(F ) → �]) ⇔ sat(F [selectLiteral(F ) → �])

(F �= [ ] ∧ [ ] /∈ F ∧ ¬hasPureLiteral(F ) ∧ ¬hasUnitLiteral(F )) ⇒
(¬dpll(F [selectLiteral(F ) → �]) ⇒

dpll(F [selectLiteral(F ) → ⊥]) ⇔ sat(F [selectLiteral(F ) → ⊥]))

Let us consider different branches of if−then−else in the definition of dpll function:

• If F �= [ ] and [ ] /∈ F , and hasPureLiteral(F ), then by the dpll definition:

dpll(F ) ⇔ dpll(F [getPureLiteral(F ) → �])

Also, by the inductive hypothesis, it holds:

dpll(F [getPureLiteral(F ) → �]) ⇔ sat(F [getPureLiteral(F ) → �])

From the specification of getPureLiteral and the assumption
hasPureLiteral(F ), it holds that getPureLiteral(F )∈F ∧ getPureLiteral(F )
/∈ F . Then, by Lemma 3:

sat(F [getPureLiteral(F ) → �]) ⇔ sat(F )
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Therefore, dpll(F ) ⇔ sat(F ).
• If F �= [ ] and [ ] /∈ F and ¬hasPureLiteral(F ), and hasUnitLiteral(F ), then

by the dpll definition:

dpll(F ) ⇔ dpll(F [getUnitLiteral(F ) → �])

Also, by the inductive hypothesis, it holds:

dpll(F [getUnitLiteral(F ) → �]) ⇔ sat(F [getUnitLiteral(F ) → �])

From the specification of getUnitLiteral and the assumption hasUnitLiteral(F ),
it holds that [getUnitLiteral(F )] ∈ F . Then, by Lemma 2:

sat(F [getUnitLiteral(F ) → �]) ⇔ sat(F )

Therefore, dpll(F ) ⇔ sat(F ).
• If F �= [ ] and [ ] /∈ F and ¬hasPureLiteral(F ), and ¬hasUnitLiteral(F ) then,

from the specification of dpll and the definition of if − then − else connective, it
holds that

dpll(F ) ⇔ (dpll(F [selectLiteral(F ) → �]) ⇒ �) ∧
(¬dpll(F [selectLiteral(F ) → �]) ⇒

dpll(F [selectLiteral(F ) → ⊥])

Therefore, it holds that

dpll(F ) ⇔ dpll(F [selectLiteral(F ) → �]) ∨
dpll(F [selectLiteral(F ) → ⊥]).

If dpll(F [selectLiteral(F ) → �]) then, by the inductive hypothesis, it holds
that sat(F [selectLiteral(F ) → �]). Otherwise, if ¬dpll(F [selectLiteral(F ) →
�]) and dpll(F [selectLiteral(F ) → ⊥]) hold then, by the inductive hypothesis,
sat(F [selectLiteral(F ) → ⊥]) holds. Therefore:

dpll(F ) ⇔ sat(F [selectLiteral(F ) → �]) ∨
sat(F [selectLiteral(F ) → ⊥]).

Then, by Lemma 1, it holds that dpll(F ) ⇔ sat(F ).

This proof, together with the termination argument, proves the total correctness of the
dpll function.
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6. Formalization in Isabelle/Isar

Our formalization of the DPLL procedure and its correctness proof in Isabelle/Isar5 faith-
fully follow the definitions given in the previous sections. Using this formalization, an
effective, operational ML implementation of the DPLL procedure is automatically gener-
ated from Isabelle, yielding a formally verified (although not quite efficient) SAT solver
that is guaranteed to be correct (Haftmann, 2008). As an example, here we give some
fragments of Isabelle/Isar code that formalizes some of the content given in the previous
sections.

Definitions 1 and 2:

types Variable = nat
datatype Literal = Pos Variable | Neg Variable

Definitions 6 and 7:

text{* The variable of a literal *}
consts var :: "Literal => Variable"
primrec
"var (Pos v) = v"
"var (Neg v) = v"

text{* The opposite of a given literal *}
consts opposite :: "Literal => Literal"
primrec
"opposite (Pos v) = (Neg v)"
"opposite (Neg v) = (Pos v)"

The DPLL procedure, as defined in Section 4.4:

function dpll::"Formula => bool"
where
"(dpll formula) =
(if (formula = []) then

True
else if ([] mem formula) then

False
else if (hasPureLiteral formula) then

(dpll (setLiteralTrue
(getPureLiteral formula) formula))

else if (hasUnitLiteral formula) then
(dpll (setLiteralTrue

(getUnitLiteral formula) formula))
else if (dpll (setLiteralTrue

(selectLiteral formula) formula)) then
True

else
(dpll (setLiteralTrue

(opposite (selectLiteral formula)) formula))
)"

by pat_completenesss auto

5All proof documents are available from http://argo.matf.bg.ac.rs.
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termination
by (relation "measure (% formula. (numLiterals formula))")

(auto simp add: dpllTermination_1 dpllTermination_2
dpllTermination_3 dpllTermination_4)

The proof of correctness of the DPLL procedure, corresponding to the outlined proof
given in Section 5:

lemma dpllCorrectness: "(dpll F) = (satisfiable F)"
proof (induct F rule: dpll.induct)
case (inductiveStep formula)
note inductive_hypothesis = this
show ?case
proof (cases "formula = []")
case True
thus ?thesis

by (simp add:emptyFormulaIsSatisfiable)
next
case False
show ?thesis
proof (cases "[] mem formula")

case True
with ‘formula ~= []‘ show ?thesis
by (simp add:formulaWithEmptyClauseIsUnsatisfiable)

next
case False
show ?thesis
proof (cases "hasPureLiteral formula")
case True
let ?pl = "getPureLiteral formula"
hence "?pl el formula" and "~opposite ?pl el formula"
by (auto simp add: getPureLiteralIsPure)

with ‘formula ~= []‘ ‘~[] mem formula‘
‘hasPureLiteral formula‘
inductive_hypothesis
pureLiteraRule [of "?pl" "formula"]

show ?thesis
by auto

next
case False
show ?thesis
proof (cases "hasUnitLiteral formula")
case True
let ?ul = "getUnitLiteral formula"
hence "[?ul] mem formula"

by (simp add: getUnitLiteralIsUnit)
with ‘formula ~= []‘ ‘~[] mem formula‘

‘~hasPureLiteral formula‘ ‘hasUnitLiteral formula‘
inductive_hypothesis
unitLiteralRule [of "?ul" "formula"]

show ?thesis
by auto

next
case False
with ‘formula ~= []‘ ‘~[] mem formula‘

‘~hasPureLiteral formula‘ ‘~hasUnitLiteral formula‘
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inductive_hypothesis
show ?thesis
using split_rule[of "formula" "selectLiteral formula"]
by auto

qed
qed

qed
qed

qed

7. Related Work

There is a large and growing body of formalized mathematical knowledge. In this section
we briefly overview formalized knowledge and proofs relevant for computer science,
especially those formalized in Isabelle, and those relevant for automated reasoning and
SAT and SMT solving.

Archive of formal proofs6 is a collection of proof libraries, examples, and larger sci-
entific developments, mechanically checked in the theorem prover Isabelle. A range of
algorithms and data structures have been formalized and verified in Isabelle and simi-
lar proof assistant tools. These algorithms include Quicksort, Binary Search, AVL Trees,
Binary Search Trees, Depth First Search, Fast Fourier Transform, File Refinement, Cryp-
tographic algorithms (Lindenberg et al., 2006), a range of distributed and parallel algo-
rithms (Disk Paxos, Peterson’s algorithm).

Flaws were detected in many security protocols (e.g., Li et al., 2007). Even if secu-
rity protocols are accompained with correctness proofs, they can still be flawed if these
proofs are not formally verifiable (e.g., Choo, 2006). Proof assistant tools have been used
for formal verification of properties of various protocols (e.g., Nipkow, 2006; Barsotti
et al., 2007).

A lot of efforts have been invested in verifying programming language semantics
and compilers. For example, Klein and Nipkow introduced Jinja (Klein and Nipkow,
2006), a Java-like programming language with a formal semantics designed to exhibit
core features of the Java language architecture. A model of the language, virtual ma-
chine and a compiler are then formally verified. Berghofer described a formally verified,
fully executable compiler which was extracted from a proof assistant (Berghofer and
Strecker, 2003). Blech and Glesner developed a formal semantics for static single assign-
ment (SSA) phase of compilation (Blech and Glesner, 2004). Qian and Xu used iterative
abstraction refinement and automated theorem proving for automatically verifying C pro-
grams against safety specifications (Qian and Xu, 2007).

Clark Barrett formally proved correctness of Stanford Framework for Cooperating
Decision Procedures, but this proof, although quite detailed, was not verified using a
proof assistant (Barret, 2003).

6http://afp.sourceforge.net.
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Tom Ridge presented an efficient, mechanically verified sound and complete theorem
prover for first order logic (Ridge, 2004). After formalization in Isabelle, OCaml code is
generated, yielding a directly executable program.

Chaieb and Nipkow formalized and verified quantifier elimination based decision pro-
cedures for Presburger arithmetic (Chaieb and Nipkow, 2005).

Isabelle has been combined with different tools to achieve a higher degree of automa-
tion. For instance, Weber described integration of SAT solvers zChaff and MiniSat with
Isabelle (Weber, 2005; Weber, 2006). Both SAT solvers generate resolution-style proofs
of unsatisfiability of their input formulae. These proofs are verified by the theorem prover.
Fontaine et al. (2006) used Isabelle to verify the correctness of proof traces generated by
the SMT solver Harvey. Barsotti at al. experimented in combining the theorem prover
Isabelle with automatic first-order arithmetic provers to increase automation on the veri-
fication of distributed protocols (Barsotti et al., 2007). As a case study for the experiment,
they verified several clock synchronization algorithms.

Abstract descriptions of the DPLL algorithm and its extensions for ground Satisfia-
bility Modulo Theory (SMT) have been developed. In Nieuwnhuis et al. (2006), Tinelli
(2002), Krstić and Goel (2007), rule based presentations of these algorithms and their in-
formal correctness proofs are given. Informal correctness proofs of the DPLL procedure
can be found in many mathematical logic textbooks (Davis et al., 1994). However, as far
as we know, our proof is the first formalized correctness proof for the DPLL procedure.

8. Conclusions and Future Work

In this paper we presented the first formal proof of correctness of the forty-five years old
DPLL algorithm, one of the most fundamental algorithms in computer science. In its his-
tory, there were no doubts about the correctness of this algorithm. So, our proof does not
resolve a long-standing mystery, but rather: (i) it adds to the growing body of formalized,
verifiable mathematical knowledge, knowledge that can be verified by independent and
reliable proof checkers; (ii) it serves as a first building block of formalized correctness
proofs for modern SAT and SMT solvers. That task – formally proving correctness of
state-of-the-art SAT and SMT solvers, very important for many applications, is in the
focus of our current work.

Appendix: One Concrete Implementation

In this section we give very simple definitions of the functions used in the DPLL defini-
tion given in Section 4.4. They give a concrete, instantiated procedure and enable obtain-
ing an effectively executable ML implementation. In order to have a more efficient SAT
solver, these functions should be defined in a more sophisticated way.

A formula has a unit literal iff it has a clause with only one literal. We define
hasUnitLiteral(F ) function by primitive recursion.
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DEFINITION 19.

¬hasUnitLiteral([ ])

hasUnitLiteral(c # F ) ⇔ (|c| = 1) ∨ hasUnitLiteral(F )

getUnitLiteral(F ) is the first literal l such that [l] ∈ F . It is also defined by primitive
recursion.

DEFINITION 20.
getUnitLiteral(c # F ) =

if |c| = 1 then
head(c)

else
getUnitLiteral(F )

Procedures that find and select a pure literal from a formula are defined using a series
of auxiliary functions.

The functions literals(F ) is a list that contains all literals that occur in the formula F .
It is defined by primitive recursion.

DEFINITION 21.

literals([ ]) = [ ]

literals(c # F ) = c @ literals(F )

The function hasPureLiteralAux(c1, c2) checks if there is a literal from the list c1

whose opposite literal does not occur in the list c2. It is defined by primitive recursion.

DEFINITION 22.
¬hasPureLiteralAux([ ], c)
hasPureLiteralAux(l # c′, c) ⇔

if l /∈ c then
�

else
hasPureLiteralAux(c′, c)

Using this auxiliary function, we define hasPureLiteral:

DEFINITION 23. hasPureLiteral(F ) ⇔ hasPureLiteralAux(literals(F ), literals(F ))

The function getPureLiteralAux(c1, c2) finds the literal from the list c1 whose op-
posite literal does not occur in the list c2. It is defined by primitive recursion.
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DEFINITION 24.
getPureLiteralAux(l # c′, c) ⇔

if l /∈ c then
l

else
getPureLiteralAux(c′, c)

Finally, we can define the function getPureLiteral.

DEFINITION 25. getPureLiteral(F ) = getPureLiteralAux(literals(F ), literals(F ))

selectLiteral(F ) is used to select an arbitrary literal of F . For example, it can be the
first literal of the first clause of F .

DEFINITION 26. selectLiteral(F ) = head(head(F ))

It was proved that the functions defined in the above way meet the specification given
in Section 4.4. These proofs can also be found in http://argo.matf.bg.ac.rs,
while we don’t present them here since this simple implementation is just one of many
meeting the required specification.
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Formalus DPLL procedūros teisingumo ↪irodymas

Filip MARIĆ, Predrag JANIČIĆ

Teigini ↪u logikos formuli ↪u ↪ivykdomumui tikrinti (žinomam kaip SAT problema) yra sukurti

↪ivairūs efektyvūs algoritmai. Šie algoritmai yra vieno iš pirm ↪uj ↪u algoritm ↪u, skirt ↪u ↪ivykdomumui
tikrinti ir žinomo kaip Davis-Putnam-Logemann-Loveland (sutrumpintai, DPLL) procedūra, modi-
fikacijos. DPLL turi daugyb ↪e taikym ↪u, ↪iskaitant ir programinės bei techninės ↪irangos veri-
fikavim ↪a. Daugelis moderni ↪u SAT problemai spr ↪esti skirt ↪u program ↪u remiasi šia procedūra,
praplėsta ↪ivairiomis euristikomis. Straipsnyje pateikiamas formalus DPLL procedūros korek-
tiškumo ↪irodymas naudojant Isabelle/Isar sistem ↪a.


