
INFORMATICA, 2010, Vol. 21, No. 1, 139–148 139
© 2010 Institute of Mathematics and Informatics, Vilnius

Recursive Identification of Systems
with Noninvertible Output Nonlinearities

Jozef VÖRÖS
Faculty of Electrical Engineering and Information Technology, Slovak Technical University
Ilkovicova 3, 812 19 Bratislava, Slovakia
e-mail: jvoros@ elf.stuba.sk

Received: January 2008; accepted: October 2008

Abstract. The paper deals with the recursive identification of dynamic systems having noninvert-
ible output characteristics, which can be represented by the Wiener model. A special form of the
model is considered where the linear dynamic block is given by its transfer function and the nonlin-
ear static block is characterized by such a description of the piecewise-linear characteristic, which
is appropriate for noninvertible nonlinearities. The proposed algorithm is a direct application of
the known recursive least squares method extended with the estimation of internal variables and
enables the on-line estimation of both the linear block parameters and the parameters of some non-
invertible nonlinearities and their changes. The feasibility of the proposed method is illustrated on
examples of time-varying systems.
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1. Introduction

Many dynamic systems with output nonlinearity may be represented by the Wiener model
with a linear dynamic system followed by a nonlinear static block (Haber and Keviczky,
1999). The linear block of Wiener model is typically described by its transfer function or
a FIR model. The characteristics of nonlinear blocks are generally approximated by poly-
nomials, splines or other functions, and a large number of parametric and nonparametric
identification methods have been presented (Bai, 2003; Bershad et al., 2000; Celka et
al., 2001; Cerone and Regruto, 2006; Chen, 2006; Gerksic et al., 2000; Greblicki, 1997;
Hasiewicz and Sliwinski, 2002; Hu and Chen, 2005; Janczak, 2005, 2007; Jeng et al.,
2005; Korenberg and Hunter, 1999; Lacy and Bernstein, 2003; Lee et al., 2004a, 2004b;
Nordsjö and Zetterberg, 2001; Park and Lee, 2006; Pawlak et al., 2007; Pupeikis, 2005,
2006; Sun et al., 2003; Wigren, 1993). However, in most cases the inverse or ‘pseudoin-
verse’ of the output nonlinearity is assumed by the identification using Wiener models.

Recursive identification methods are important for the property that they can be com-
puted in real time. Hence, they may be used in on-line monitoring and analysis of gen-
erally time-varying processes, and also combined with on-line control strategies to pro-
duce adaptive control algorithms. Some of them were applied to the nonlinear systems of
Wiener type in the above-mentioned papers. The author has not found any published work
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that addresses the recursive identification of Wiener models when the static nonlinearity
is noninvertible and eventually time-varying.

In this paper a new recursive identification method is presented for dynamic systems
having noninvertible output characteristics using the Wiener model with piecewise-linear
nonlinearities. A special form of the Wiener model is considered where the linear dy-
namic block is given by its transfer function and the nonlinear static block is charac-
terized by such a description of the piecewise-linear characteristic, which is appropriate
for noninvertible nonlinearities (Vörös, 2002). The identification method is a direct ap-
plication of the known recursive least squares algorithm (Ljung, 1987) extended with
the estimation of internal variables. The recursive method enables the on-line estima-
tion of the parameters of linear block transfer function and the parameters characterizing
the noninvertible piecewise-linear nonlinearity and their changes during the process. The
proposed method is illustrated on two examples of time-varying Wiener systems.

2. Piecewise-Linear Characteristics

Piecewise-linear characteristics are often encountered in control systems to describe pro-
cesses operating with different gains in different input intervals (Kalaš et al., 1985). The
output y(t) of piecewise-linear characteristic according to Fig. 1 depends on the sign and
magnitude of input x(t) and can be written as

y(t) =
{

mR1x(t) if 0 � x(t) � DR1,
mR2[x(t) − DR1] + mR1DR1 if x(t) > DR1;

(2.1a)

y(t) =
{

mL1x(t) if DL1 � x(t) < 0,
mL2[x(t) − DL1] + mL1DL1 if x(t) < DL1,

(2.1b)

where |mR1| < ∞, |mR2| < ∞ are the linear segment slopes and 0 < DR1 < ∞ is the
constant for the positive inputs, |mL1| < ∞, |mL2| < ∞ are the linear segment slopes
and −∞ < DL1 < 0 is the constant for the negative inputs.

Fig. 1. Piecewise-linear characteristic.
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Using the description proposed in Vörös (2007) the piecewise-linear characteristic
can be described in the following input-output form:

y(t) = mR1x(t) + (mL1 − mR1)h[x(t)]x(t)

+ (mR2 − mR1)h[DR1 − x(t)]x(t)

− DR1f1(t) + (mL2 − mL1)h[x(t) − DL1]x(t) − DL1f2(t), (2.2)

where the internal variables

f1(t) = (mR2 − mR1)h[DR1 − x(t)], (2.3)

f2(t) = (mL2 − mL1)h[x(t) − DL1], (2.4)

are generally unmeasurable and the switching function h(· ) defined as follows:

h(α) =
{

0 if α � 0,
1 if α < 0,

(2.5)

switches between two sets of values, i.e., (−∞, α) and (α, ∞). This form of piecewise-
linear characteristic description is appropriate for the representation of noninvertible char-
acteristics with saturations or negative slopes equally as in Vörös (2002).

3. Wiener Model

The Wiener model is given by a linear dynamic system followed by a static nonlinearity
block and is shown in Fig. 2. The difference equation model of its linear block can be
given as

x(t) = A(q−1)u(t − d) + [1 − B(q−1)]x(t), (3.1)

where u(t) and x(t) are the block inputs and outputs, respectively, d is the time delay,
A(q−1) and B(q−1) are scalar polynomials in the unit delay operator q−1

A(q−1) = a0 + a1q
−1 + · · · + amq−m, (3.2)

B(q−1) = 1 + b1q
−1 + · · · + bnq−n, (3.3)

where m and n are assumed to be known. Let the nonlinear block characteristic be given
by (2.2). A direct substitution of x(t) from (3.1) into (2.2) would result in a very com-
plex expression containing cross-multiplied parameters and variables. To overcome this

Fig. 2. Wiener model.
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problem, the key term separation principle can be applied to simplify the model equation
(Vörös, 2007). Assuming that mR1 = 1 (this is always possible in the given system de-
scription), we separate the variable x(t) as the key term of the nonlinear mapping (2.2).
Then after the half-substitution of x(t) from (3.1) into (2.2) (i.e., for the key term only),
the system output is given in the form

y(t) = A(q−1)u(t − d) + [1 − B(q−1)]x(t) + m1h[x(t)]x(t)

+ (mR2 − mR1)h[DR1 − x(t)]x(t) − DR1f1(t)

+ (mL2 − mL1)h[x(t) − DL1]x(t) − DL1f2(t), (3.4)

where m1 = mL1 − mR1 = mL1 − 1. The output equation (3.4) and (2.3), (2.4) and
(3.1) defining the internal variables f1(t), f2(t) and x(t) represent a special form of the
Wiener model with piecewise-linear nonlinearities. This can be put into a concise form

y(t) = ϕT (θ, t)θ, (3.5)

where the data vector is defined as

ϕT (θ, t) =
[
u(t − d), . . . , u(t − d − m), −x(t − 1), . . . , −x(t − n), h[x(t)]x(t),

h[DR1 − x(t)]x(t), −f1(t), h[x(t) − DL1]x(t), −f2(t)
]

(3.6)

and the vector of parameters is

θT =
[
a0, . . . , am, b1, . . . , bn, m1, mR2 − mR1, DR1, mL2 − mL1, DL1

]
. (3.7)

The Wiener model with piecewise-linear nonlinearities given by (3.4) has the mini-
mum number of parameters, i.e., only the parameters characterizing the linear and non-
linear blocks are included into the output equation and not the combinations of these
parameters. All of them enter the expressions linearly, except DR1 and DL1, which ap-
pear both linearly and nonlinearly.

4. Recursive Identification

The problem with the decomposed form of Wiener model given by (3.4) is that the in-
ternal variables f1(t), f2(t) and x(t) are not accessible for measurement. Therefore an
iterative method was proposed for the batch identification of nonlinear systems using
this model (Vörös, 2007). For the recursive identification, a new estimation technique is
presented below combining the iterative and recursive approaches.

The estimates of the parameter vector θ̂(t) can be evaluated using the RLS algorithm,
minimizing the least-squares criterion based on (3.5), where the data vector ϕ(t, θ) is
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replaced by ϕ̂(t) with the estimates of the internal variable. The formulae of recursive
identification algorithm are as follows:

x̂(t) =
m∑

i=0

âi(t − 1)u(t − d − i) −
n∑

j=1

b̂j(t − 1)x̂(t − j), (4.1)

f̂1(t) =
[
m̂R2(t − 1) − m̂R1(t − 1)

]
h
[
D̂R1(t − 1) − x̂(t)

]
, (4.2)

f̂2(t) =
[
m̂L2(t − 1) − m̂L1(t − 1)

]
h
[
x̂(t) − D̂L1(t − 1)

]
, (4.3)

ϕ̂T (t) =
[
u(t − d), u(t − d − 1), . . . , u(t − d − m), −x̂(t − 1), . . . ,

− x̂(t − n), h
[
x̂(t)

]
x̂(t), h

[
D̂R1 − x̂(t)

]
x̂(t),

− f̂1(t), h
[
x̂(t) − D̂L1

]
x̂(t), −f̂2(t)

]
, (4.4)

θ̂(t) = θ̂(t − 1) +
P̂ (t − 1)ϕ̂(t)[y(t) − ϕ̂T (t)θ̂(t − 1)]

λ + ϕ̂T (t)P̂ (t − 1)ϕ̂(t)
, (4.5)

P̂ (t) =
1
λ

[
P̂ (t − 1) − P̂ (t − 1)ϕ̂(t)ϕ̂T (t)P̂ (t − 1)

λ + ϕ̂T (t)P̂ (t − 1)ϕ̂(t)

]
, (4.6)

P̂ (0) = μI, 0 < μ < ∞. (4.7)

The new values of internal variables for the data vector (4.4) in each recursion are com-
puted according to (4.1)–(4.3) with the previous estimates of the corresponding param-
eters. The initial estimates of parameters can be chosen zero. However, nonzero initial
values of DR1 and DL1 have to be considered for the first estimates of the internal vari-
able f1(t) and f2(t).

The so-called forgetting factor λ � 1 can be effectively applied to reduce the influence
of old data. Generally, the internal variable estimation requires the use of lower forgetting
factor λ to reduce the influence of old estimates, while a value of λ close or equal to 1
is less sensitive to disturbances (Chidambaram, 2001; Ljung, 1987). A compromise may
be to apply two values of forgetting factor: a lower one at the beginning of the recursive
process and a higher one later.

5. Examples

The method for the identification of Wiener systems with piecewise-linear nonlinearities
was implemented and tested in MATLAB. Several Wiener systems were simulated and
the estimations of all the model parameters were carried out on the basis of input and
output records. The performance of the proposed method is illustrated on the following
examples of time-varying systems.

EXAMPLE 1. The linear dynamic block of the Wiener system was described by the equa-
tion

[1 − 0.3q−1 + 0.4q−2]x(t) = [q−1 + 0.3q−2]u(t).
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The nonlinear block was given by the original piecewise-linear characteristic (an
asymmetric saturation – the thin line in Fig. 3) that was changed to the new one, i.e.,
characteristic with shifted constants DR1 and DL1 determining the nonlinearity domain
partition and negative slopes (the thick line in Fig. 3). The corresponding sets of param-
eters are given in Table 1.

The changes of nonlinear block parameters occurred slowly and gradually in the time
interval t ∈ (2000, 3000). The recursive identification was carried out for 5000 samples
of uniformly distributed random inputs with |u(t)| < 1 and generated process outputs
y(t) with additive noise. The noise was generated as a zero mean Gaussian white noise
and the signal to noise ratio (the square root of the ratio of output and noise variances) was
SNR = 50. The initial values of all the parameters were chosen zero, except DR1(1) =
0.1 and DL1(1) = −0.1. Two forgetting factors were used in this example, i.e., λ = 0.94
for 500 samples to reduce the influence the old estimates of internal variables at the
beginning of recursion and λ = 0.99 for the rest of data. The process of parameter
estimation is graphically shown in Fig. 4 for the linear block parameters and in Fig. 5
for the nonlinear block time-varying parameters. It can be seen that the model parameter
estimates are able to track the true parameters.

EXAMPLE 2. The linear dynamic block of the Wiener system was described by the equa-
tion

[1 − 0.2q−1 + 0.35q−2]x(t) = [q−1 + 0.5q−2]u(t).

Fig. 3. Original (thin) and changed (thick) characteristic – Example 1.

Table 1

Parameters of the nonlinear block – Example 1

Parameter Original Changed

m1 −0.4 −0.4

mR2 − mR1 −1.0 −1.1

mL2 − mL1 −0.6 −0.7

DR1 0.6 0.4

DL1 −0.5 −0.3
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Fig. 4. Estimates of the linear block parameters – Example 1.

Fig. 5. Estimates of the nonlinear block parameters – Example 1.

The nonlinear block was given by the original piecewise-linear characteristic (the thin line
in Fig. 6) that was changed to the new one (the thick line in Fig. 6). The corresponding
sets of parameters are given in Table 2.

The time-varying Wiener system generation and the recursive identification were per-
formed under the same conditions as in Example 1. The process of parameter estimation
is graphically shown in Fig. 7 for the linear block parameters and in Fig. 8 for the nonlin-
ear block time-varying parameters. It can be seen that the model parameter estimates are
able to track the true parameters also for this noninvertible nonlinearity.

Table 2

Parameters of the nonlinear block – Example 2

Parameter Original Changed

m1 −1.5 −1.5

mR2 − mR1 −0.8 −1.0

mL2 − mL1 0.3 0.5

DR1 0.8 0.6

DL1 −0.7 −0.5
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Fig. 6. Original (thin) and changed (thick) characteristic – Example 2.

Fig. 7. Estimates of the linear block parameters – Example 2.

Fig. 8. Estimates of the nonlinear block parameters – Example 2.

6. Conclusions

A new approach to the recursive identification of Wiener systems with piecewise-linear
characteristics has been presented that can be applied for a large class of dynamic systems
having noninvertible output characteristics. All the model parameters to be estimated ap-
pear explicitly in the model description. It means that not only the linear block parameters
but also the slopes of segments and the constants DR1 and DL1 determining the nonlin-
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earity domain partition, that may be time-varying, can be estimated.
The main application of this method is in on-line process monitoring and analysis

but it can also be used in adaptive control algorithms. Although a convergence analysis
has not yet been carried out, several specific examples have shown good convergence
of the parameter estimates. Finally, note that the proposed recursive algorithm can be
easily generalized for the more complex multisegment piecewise-linear characteristics
(Vörös, 2007).
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Sistem ↪u su neinversiniais išvesties netiesiškumais rekurentinis
identifikavimas

Jozef VÖRÖS

Straipsnyje nagrinėjamas rekurentinis dinamini ↪u sistem ↪u, turinči ↪u neinversines išvesties
charakteristikas, identifikavimas. Tokios sistemos gali būti aprašomos Vinerio modeliu. Šio mo-
delio speciali forma – tiesinis dinaminis blokas su sistemos funkcija ir netiesinis statinis blokas,
aprašomas atkarpomis tiesine charakteristika, charakteringa neinversiniams netiesiškumams, esti
duoto straipsnio tyrimo objektas. Pasiūlytas algoritmas šio modelio parametrams ↪ivertinti. Šis algo-
ritmas grindžiamas rekurentiniu mažiausi ↪uj ↪u kvadarat ↪u metodu, išplėstu vidiniams kintamiesiems
skaičiuoti. Jis suteikia galimyb ↪e realiame laike ↪ivertinti abiej ↪u identifikuojam ↪u blok ↪u parametrus ir
j ↪u pokyčius. Pasiūlyto metodo tinkamumas iliustruojamas pavyzdžiais, identifikuojant kintančias
laiko atžvilgiu sistemas.


