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Abstract. In this paper, we propose a new ID-based threshold signature scheme from the bilinear
pairings, which is provably secure in the random oracle model under the bilinear Diffie–Hellman
assumption. Our scheme adopts the approach that the private key associated with an identity rather
than the master key of PKG is shared. Comparing to the-state-of-art work by Baek and Zheng, our
scheme has the following advantages. (1) The round-complexity of the threshold signing protocol
is optimal. Namely, during the signing procedure, each party broadcasts only one message. (2) The
communication channel is optimal. Namely, during the threshold signing procedure, the broadcast
channel among signers is enough. No private channel between any two signing parties is needed.
(3) Our scheme is much more efficient than the Baek and Zheng scheme in term of computation,
since we try our best to avoid using bilinear pairings. Indeed, the private key of an identity is
indirectly distributed by sharing a number xID ∈ Z

∗
q , which is much more efficient than directly

sharing the element in the bilinear group. And the major computationally expensive operation called
distributed key generation protocol based on the bilinear map is avoided. (4) At last, the proactive
security can be easily added to our scheme.

Keywords: identity-based signature, threshold signature, bilinear pairing.

1. Introduction

In 1984, Shamir asked for ID-based encryption and signature schemes to simplify key
management procedures in certificate-based public key setting. Since then, many ID-
based cryptographic schemes (Boneh and Franklin, 2001; Bellare et al., 2004; Kancaharl
et al., 2005; Qian et al., 2005) have been proposed. The ID-based public key setting can
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be an alternative for certificate-based public key setting, especially when efficient key
management and moderate security are required.

Secret key exposure due to non-cryptographic reasons, such as the underlying ma-
chine or system compromise, human errors, and insider attacks, may be the greatest prac-
tical threat to many cryptographic protocols. The most common remedy is to distribute
secret information (i.e., a secret key) and computation (i.e., signature generation or de-
cryption) among n parties. The goal is to allow any subset of more than t parties to jointly
reconstruct a secret and/or perform the computation, while preserving security even in
the presence of a malicious adversary which can corrupt up to t (the threshold) parties.
A review of research on threshold cryptography under CA-based public key setting was
presented in Desmedt (1994).

Combining the above two concepts to realize “ID-based threshold signature” is the
focus of this paper. To the best of our knowledge, there exist two ID-based threshold
signature schemes (Baek and Zheng, 2004; Chen et al., 2004) which adopt the approach
that the private key associated with an identity rather than the master key of PKG is
shared (Boneh and Franklin, 2001). In Baek and Zheng (2004) the authors first proposed
a suit of secret sharing schemes based bilinear pairings, such as Computationally secure
Verifiable Secret-Sharing scheme based on the Bilinear Map (CVSSBM) and Distributed
Key generation Protocol Based on the Bilinear Map (DKPBM). Then they constructed
the first ID-based threshold signature scheme by applying these basic tools to the Hess’s
ID-based signature scheme (Hess, 2002). We observe one sharp difference between these
two schemes: Chen et al.’s scheme improperly reduces the distributed key generation
protocol which, however, is the most expensive operation in the Baek–Zheng scheme.
This improper reduction results in the greatly weakened robustness property: the claimed
robustness in Chen et al. (2004) means no more than that (1) the validity of any signature
share can be publicly verified, and (2) the threshold signing protocol completes success-
fully only if all signature shares is valid. In contrast, the claimed robustness in Baek and
Zheng (2004) strictly follows the standard notion (see Definition 5 in Section 3).

Our main contribution is that we propose a new ID-based threshold signature scheme
from the bilinear pairings, which is provably secure in the random oracle model (Bellare
and Rogaway, 1993) under the bilinear Diffie–Hellman assumption. On one hand, our
scheme shares with the Baek–Zheng scheme some advantages such as optimal-resilience
and the approach that the private key associated with an identity rather than the master
key of PKG is shared. On the other hand, a comparison with the Baek–Zheng scheme
shows the following advantages due to our scheme. (1) The round-complexity of the
threshold signing protocol is optimal. Namely, during the signing procedure, each party
broadcasts only one message. (2) The communication channel is optimal. Namely, during
the threshold signing procedure, the broadcast channel is enough. No private channel
between any two signing parties is needed. (3) Our scheme is much more efficient than
the Baek and Zheng scheme in term of computation, since we try our best to avoid using
bilinear pairings. Indeed, the private key of an identity is indirectly distributed by sharing
a number xID ∈ Z

∗
q , which is much efficient than directly sharing the element in the

bilinear group as in Baek and Zheng (2004). And the major computationally expensive
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protocol called distributed key generation protocol based on the bilinear map (Baek and
Zheng, 2004) is avoided. (4) At last, the proactive security can be easily added to our
scheme.

2. Bilinear Pairings and BDH Assumption

In this section, we present the definitions of bilinear pairings and the bilinear Diffie–
Hellman (BDH) assumption.

DEFINITION 1. Let G1 and G2 be groups of prime order q and let P be a generator
of G1. The map e: G1 × G1 → G2 is said to be a bilinear pairing if the following three
conditions hold: (i) e is bilinear, i.e., e(aP, bP ) = e(P, P )ab for all a, b ∈ Z

∗
q ; (ii) e is

non-degenerate, i.e., e(P, P ) �= 1; (iii) e is efficiently computable. Such a group G1 is
called a bilinear group.

DEFINITION 2. Let e: G1 × G1 → G2 be a bilinear pairing, where G1 and G2 are two
cyclic groups of prime order q and P is a generator of G1. We define the bilinear Diffie–
Hellman (BDH, for short) problem with respect to (G1, G2, e, P ) as following: given
random aP, bP, cP ∈ G1, output e(P, P )abc. Accordingly, the bilinear Diffie–Hellman
assumption states that: there is no PPT algorithm with non-negligible probability which
can solve the BDH problem.

3. Models and Formal Frameworks

In this section we introduce the communication model and the adversary model, and then
provide definitions of secure ID-based threshold signature schemes. For more details, we
refer readers to Baek and Zheng (2004).

3.1. Communication Model and Adversary Model

• Communication Model. We assume that the involved n signing parties are con-
nected by a broadcast channel. Furthermore, any one pair of the signing parties is
connected by a private channel. And there is a private channel between the dealer
and any signing participant. However, in this paper, the private channel between
any two signing parties is not required.

• Adversary Model. We consider an adversary who chooses corrupted signing parties
at the beginning of each time period and may cause corrupted players to divert from
the protocol in any way. Such an adversary is said to be static and malicious.

3.2. Framework of ID-Based Threshold Signature

DEFINITION 3. An identity-based signatures scheme I D S is a collection of the follow-
ing four algorithms:
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• Setup. This algorithm is run by the trusted party called PKG on input a security
parameter, and generates the public parameters params of the scheme and a master
secret. PKG publishes params and keeps the master secret to itself.

• Extract. Given an identity ID , the master secret and params, this algorithm gener-
ates the private key DID of ID .

• Sign. Given a message m, an identity ID , a private key DID and params, this
algorithm generates the signature σ of ID on m.

• Verify. Given a signature σ, a message m, an identity ID and params, this algo-
rithm outputs 1 if σ is a valid signature on m for identity ID , or 0 otherwise.

In addition to the above algorithms, an ID-based (t, n)-threshold signature scheme
I D T S based on the I D S has two additional algorithms as follows:

• ShareKey. Given a private key DID associated with an identity ID , the size of
signature generation players n and the threshold parameter t (1 < t < n), this
algorithm generates a share DID,i of DID for each player Pi, i = 1, 2, . . . , n. At
least t + 1 shares can be used to reconstruct DID . Sometimes, it also publishes
some information that can be used to check the validity of each share of the private
key.

• TSign. Given the common parameter params and a message m, n players, each
of them (Pi) holding a share DID,i of DID , jointly generate a signature σ of ID
on m.

Besides the natural requirement on correctness, i.e., the signature generated by more
than t signers must be valid, the security definition for an ID-based threshold signature
scheme includes unforgeability and robustness (Baek and Zheng, 2004).

DEFINITION 4 (unforgeability). Let A be an attacker assumed to be a probabilistic Tur-
ing machine taking a security parameter k as input. Consider the following game in which
A interacts with the “Challenger” C:

• Phase 1. A corrupts t players which, without loss of generality, are assumed to be
P1, . . . , Pt. (That is, the attacker is assumed to be static; Gennaro et al., 2001.)

• Phase 2. When A issues a private key extraction query on an identity ID , C runs
Extract taking ID as input and returns the private key DID to A.

• Phase 3. When A submits a target identity ID ∗, C runs Extract to get a private key
DID∗ for ID ∗. Subsequently, it runs ShareKey to share DID∗ among P1, . . . , Pn.

• Phase 4. When A issues a signature generation query for a message m, C plays the
role of the uncorrupted players, in the execution of TSign to collectively generate
the signature σ on m. Note that in this phase, A is allowed to issue private key
extraction queries (identities) except for ID ∗.

• Phase 5. A outputs (ID ∗, m∗, σ∗), where σ∗ is a signature with respect to the
message m∗ and the identity ID ∗. A restriction here is that A must not make a
private key extraction query for ID ∗ or a signature generation query for m∗.

We define A’s success by

AdvUF−IDTS−CMA
I D T S,A (k) = Pr

[
Verify(σ∗, m∗, ID ∗, params) = 1

]
.
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The ID-based threshold signature scheme I D T S is said to be UF–IDTS–CMA secure if
for any polynomial-time attacker A, AdvUF−IDTS−CMA

I D T S,A (k) is negligible in k.

DEFINITION 5 (robustness). An ID-based (t, n)-threshold signature scheme is (t′, n)-
robust if it computes a correct output even in the presence of a malicious attacker that
makes t′ corrupted players deviate from the normal execution.

Motivated by Gennaro et al.’s (2001) methodology for proving the security of thresh-
old signature, Baek and Zheng (2004) defined simulatability of I D T S . The following
definition, which is a slight extension of that in Baek and Zheng (2004), is actually a
stronger property than the above definition of unforgeability.

DEFINITION 6. An ID-based threshold signature scheme I D T S is simulable if the fol-
lowing properties hold:

• The protocol ShareKey is simulatable. That is, there exists a simulator SIM1 that,
on input the public parameter params and the identity ID , can simulate the view
of the attacker on an execution of ShareKey of I D T S for distributing the private
key DID .

• The protocol TSign is simulatable. That is, there exists a simulator SIM2 that, on
input the public parameter params, the identity ID and the message m, t shares
DID,1, . . . , DID,t, and the public outputs (including the signature σ and other pub-
lic information) of TSign of I D T S , can simulate the view of the adversary on an
execution of TSign for generating a signature σ′ of ID on the message m.
Note that σ′ is not required to be the same to the input σ while in Baek and Zheng
(2004), Gennaro et al.’s (2001) it is required that σ′ = σ.

In the full paper of Baek and Zheng (2004) the authors indeed proved that if the un-
derlying ID-based signature scheme is unforgeable and the ID-based threshold signature
is simulatable, then the ID-based threshold signature scheme is unforgeable.

4. Construction

4.1. ID-Based Threshold Signature Scheme

First, we present the construction of the underlying ID-based signature scheme I D S ,
which is a tuple of (Setup, Extract, Sign, Verify) as follows:

• Setup. The Private Key Generator (PKG) generates the public parameters and mas-
ter secret as follows:

1) generates groups G1 and G2 of prime order q with bilinear pairing e: G1 × G1

→ G2;
2) chooses an arbitrary generator P ∈ G1;
3) picks a random s ∈ Z

∗
q and sets Ppub = sP ;
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4) chooses cryptographic hash functions H1, H2: {0, 1}∗ → G1. The PKG’s pub-
lic parameter is params = (G1, G2, e, q, P, Ppub, H1, H2); its master secret is
s ∈ Z

∗
q .

• Extract. The signer with identity ID receives the value DID = sQID from the
PKG as its private key, where QID = H1(ID) ∈ G1. Additionally, the signer with
identity ID himself selects a random number xID ∈ Z

∗
q and computes B = xIDP ,

C = xIDQID + DID .
• Sign. For the given message m, the signer with the identity ID first computes Pm =

H2(ID , m) and then sets the signature σ ← (A, B, C), where A = xIDPm.
• Verify. Let (A, B, C) be the signature on the message m with respect to ID and

Pm = H2(ID , m). The verifier checks that

e(A, P ) = e(Pm, B), e(QID , Ppub + B) = e(C, P ).

We now give some remarks on our I D S . First, as shown in Theorem 1 (see later
in Section 5), our I D S is existential forgery under an adaptive chosen ID and message
attack in the random oracle model. Nevertheless, it is not strong existential forgery, since
given a valid signature (A, B, C) on a message m, one can trivially derive a new signature
(A′, B′, C ′) for the same message m as follows: By selecting a random x, set A′ =
A + xPm, B′ = B + xP , and C ′ = C + xQID . Second, in usual cases our I D S is less
efficient than the existing schemes in Hess (2002): (a) The signature in our I D S consists
of three elements, while both schemes in Hess (2002) need two elements; and (b) To
generate and verify a signature, our I D S requires to carry out four bilinear mapping,
while this number is two in Hess (2002). However, our I D S will perform better and
has comparable efficiency as the schemes (Hess, 2002) in the scenarios, where the signer
needs to issue multiple signatures to the same recipient. The reason is that in such cases,
B and C can be transferred and verified just for one time (not multiple times!). Actually,
this property may have independent interest. Most importantly, as our main contribution,
we notice that our I D S can be used to construct efficient threshold signature scheme,
while it seems that there exist no analogous threshold solutions for I D S in Hess (2002).
The reason is that in our I D S , we can simply use Feldman’s verifiable threshold secret
sharing scheme (Feldman, 1987) to distribute the secret key xID , and during the threshold
signing procedure, our scheme does not require n players to generate a random element
in G1 collectively, as shown below.

To construct the corresponding ID-based threshold signature scheme I D T S for the
above I D S , we design the following two algorithms:

• KeyShare. The private key DID of the dealer with the identity ID can be distributed
among n parties P1, P2, . . . , Pn as follows:

1. The dealer selects a random number xID ∈ Z
∗
q and broadcasts B = xIDP ,

C = xIDQID + DID . To check the validity of the public information (B, C),
each party Pi checks the equation e(QID , Ppub + B) = e(C, P ).

2. The dealer distributes xID ∈ Z
∗
q using the well-known verifiable (t, n)-

threshold secret sharing scheme due to Feldman (1987) as follows. First, the
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dealer selects a random polynomial f(x) = a0 +a1x+ · · · +atx
t ∈ Z

∗
q [x] such

that f(0) = a0 = xID , while other ai’s are random numbers selected from Zq.
Next, the dealer broadcasts a0P, a1P, . . . , atP . Then, the dealer secretly sends
each party Pi the private key share xID,i = f(i) ∈ Z

∗
q . To verify the validity of

his share (xID,i), each party Pi checks the equation

xID,iP =
t∑

j=0

ij(ajP ).

Here note that DID is not directly but indirectly distributed to the n parties: the
shared xID can be used to immediately derive the private key DID =C −xIDQID .

• TSign. Let m be an message to be signed. The n players P1, . . . , Pn jointly generate
the signature as follows.

1. Each Party Pi generates his partial signature Ai = xID,iPm and then broad-
casts Ai, where Pm = H2(ID , m) ∈ G1. The validity of the signature share Ai

due to player Pi can be publicly verified by checking

e(Ai, P ) = e

(
H2(ID , m),

t∑
j=0

ij(ajP )
)

.

2. Each party locally reconstructs the full signature as follows. He first finds
t + 1 valid signature shares using the above verification equation. Suppose
that Φ is the set of indices of t + 1 honest players who generated valid sig-
nature shares. The resulting signature is set as σ = (A, B, C) by computing
A =

∑
i∈Φ LΦ,i(0)Ai, where LΦ,i(0) is the appropriate Lagrange coefficient

such that xID =
∑

i∈Φ LΦ,i(0)xID,i. It is easy to see the correctness of this
threshold signature scheme. In fact

A =
∑
i∈Φ

LΦ,i(0)Ai =
∑
i∈Φ

LΦ,i(0)
t∑

j=0

(aji
j)H2(ID , m)

=
∑
i∈Φ

LΦ,i(0)f(i)H2(ID , m) = xIDH2(ID , m).

4.2. Adding Proactive Security

The idea of the proactive approach is to periodically renew shares of a secret such that
information gained by an adversary learning some number of shares (less than a thresh-
old) in one time period will be useless for the adversary’s next attacks in the future time
periods when all shares are renewed. Proactive secret sharing algorithm PSS has been
proposed in Herzberg et al. (1995). In Herzberg et al. (1995), the authors prove that
the security of the robust threshold signature scheme will be preserved when used with
PSS protocol if it is a discrete log based robust threshold signature scheme, in which
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threshold key generation protocol implements Shamir’s secret sharing of the secret sig-
nature key x corresponding to the public key y = gx and outputs verification information
(gx1 , . . . , gxn), where (x1, . . . , xn) are secret shares of the players and if the threshold
signature protocol is simulatable. As it is easy to note that our ID-based threshold signa-
ture scheme meets all these requirements. Thus the above ID-based threshold signature
scheme can be proactivized using PSS and methods of Herzberg et al. (1995).

5. Security Analysis

In this section, we first prove the security of the underlying ID-based signature scheme.
Then we prove that the two algorithms KeyShare, TSign is simulatable. At last, the secu-
rity of the proposed ID-based threshold signature scheme is immediately derived. For the
formal definition of ID-based signature scheme, we refer the readers to Cha and Cheon
(2003).

Theorem 1. If there is no t′-time algorithm which can solve the bilinear Diffie–Hellman
problem on (G1, G2) with probability at least ε′, then the ID-based signature scheme
on (G1, G2) is (t, qE , qS , qH1 , qH2 , ε)-secure against existential forgery under an adap-
tive chosen ID and message attack in the random oracle model, where the adversary’s
execution time t and advantage ε satisfying

ε � e2(qS + 1)(qE + 1)ε′, t � t′ − 4cG1(qH1 + qH2 + 3qS + 2qE).

Here cG1 is a constant that depends on G1, e is the base of the natural logarithm, and
qE , qS , qH1 , qH2 are respectively the numbers of queries that the forger F can ask to the
extract oracle, the signing oracle, the H1 oracle and the H2 oracle.

Proof. Suppose that F is a forger algorithm that (t, qE , qS , qH1 , qH2 , ε)-breaks the pro-
posed ID-based signature scheme. We will show how to construct a t′-time algorithm A
that solves the Bilinear Diffie–Hellman problem with probability at least ε′.

Let G1, G2 be groups of prime order q, P be a generator of G1 and e: G1 × G1 → G2

be a bilinear pairing. A is given X, Y, Z ∈ G1, where X = xP, Y = yP, Z = zP ∈
G1, x, y, z ∈R Z

∗
q . A’s goal is to compute e(P, P )xyz . A simulates the challenger and

interacts with forger F as follows

• Setup. A first provides F with the public parameter (e, G1, G2, q, P, Ppub), where
Ppub = X .

• H1-queries. To respond to these queries, A maintains a list of tuples (ID i,

H1(ID i), ai, bi, ci, Bi, Ci) as explained below. We refer to this list as H1-list. The
list is initially empty. When F queries the oracle H1 at an identity ID i, A responds
as follows.

1. If the query ID i already appears on the H1-list in a tuple (ID i, H1(ID i), ai, bi,

ci, Bi, Ci), then A responds with H1(ID i).
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2. Otherwise, A generates a random coin ci ∈ {0, 1} such that Pr[ci = 0] =
1/(qE + 1). Then A randomly selects ai, bi ∈R Z

∗
q .

3. If ci = 0, A sends H1(ID i) = aiY to F . Then, A computes Bi = biP − X ,
Ci = biaiY . Next, A appends the tuple (ID i, H1(ID i), ai, bi, ci, Bi, Ci) to the
H1-list.

4. If ci = 1, A sends H1(ID i) = aiP to F . Then A computes Bi = biP , Ci =
biH1(ID i)+aiX . Next, A appends the tuple (ID i, H1(ID i), ai, bi, ci, Bi, Ci).

• Extract queries. Suppose that F makes a extract query on the identity ID i. A an-
swers this query as follows:

1. A runs the above algorithm for responding to H1-queries to obtain H1(ID i).
Let (ID i, H1(ID i), ai, bi, ci, Bi, Ci) be the corresponding tuple on the H1-list.

2. If ci = 0, then A reports failure and terminates.
3. If ci = 1, A sends to F the private key DIDi

= xH1(ID i) = aiX .

• H2-queries. To respond to these queries, A maintains a list of tuples in the form
(ID i, mi, diP + (1 − ei)Z, di, ei) as explained below. We refer to this list as
H2-list. The list is initially empty. When F queries the oracle H2 at an ID-message
pair (ID i, mi), A responds as follows.

1. If the query (ID i, mi) already appears on the H2-list in a tuple (ID i, mi, diP +
(1 − ei)Z, di, ei), then A responds with H2(ID i, mi) = diP + (1 − ei)Z.

2. Otherwise, A generates a random coin ei ∈ {0, 1} such that Pr[ei = 0]
= 1/(qs + 1). Then A randomly selects di ∈ Z

∗
q , sets H2(ID i, mi) = diP +

(1 − ei)Z and sends it to F . Additionally, A adds the tuple (ID i, mi, diP +
(1 − ei)Z, di, ei) to the H2-list.

• Signature queries. Suppose that F chooses the identity ID i and the plaintext mi

and wants to obtain the signature on mi with respect to the identity ID i. A answers
this query as follows.

1. A runs the above algorithm for responding toH2-queries to obtainH2(ID i,mi),
and the algorithm for responding to H1-queries to obtain H1(ID i). Let
(ID i, mi, diP + (1 − ei)Z, di, ei) be the corresponding tuple on the H2-list,
and (ID i, H1(ID i), ai, bi, ci, Bi, Ci) be the corresponding tuple on the H1-list.

2. If ei = 1 and ci = 0, A sends to F the signature σi = (Ai, Bi, Ci), where
Ai = di(biP − X). We can easily see that the simulated signature can pass the
verification, since

e(Ai, P ) = e
(
di(biP − X), P

)
= e(diP, biP − X) = e

(
H2(ID i, mi), Bi

)
,

e
(
H1(ID i), X + Bi

)
= e

(
H1(ID i), biP

)
= e

(
biH1(ID i), P

)
= e(Ci, P ).

3. If ei = 1 and ci = 1, A sends to F the signature σi = (Ai, Bi, Ci), where Ai =
dibiP . We can easily see that the simulated signature can pass the verification,
since

e(Ai, P ) = e(dibiP, P ) = e(diP, biP ) = e
(
H2(ID i, mi), Bi

)
,
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e
(
H1(ID i), X + Bi

)
= e

(
H1(ID i), X + biP

)
= e

(
(x + bi)H1(ID i), P

)
= e

(
xaiP + biH1(ID i), P

)
= e

(
aiX + biH1(ID i), P

)
= e(Ci, P ).

4. If ei = 0, A reports failure and terminates.

• Outputs. Eventually algorithm F produces a identity-message-signature tuple
(IDf , mf , σf ), where σf = (Af , Bf , Cf ), no signature query was issued for
(IDf , mf ) and no extract queried was issued for IDf . To compute e(P, P )xyz ,
A proceeds as follows.

1. If there is no tuple on the H2-list containing (IDf , mf ) then A issues a query
itself for H2(IDf , mf ) to ensure that such a tuple exists. If there is no tuple
on the H1-list containing IDf then A issues a query itself for H1(IDf ) to
ensure that such a tuple exists. Let (IDf , mf , dfP + (1 − ef )Z, df , ef ) be
the corresponding tuple on the H2-list and (IDf , H1(IDf ), af , bf , cf , Bf , Cf )
be the corresponding tuple on the H1-list.

2. If σf is not a valid signature with respect to the ID-message pair (IDf , mf ),
then A reports failure and terminates.

3. If cf = 1 or ef = 1, then F reports failure and terminates.
4. If cf = 0 and ef = 0, F outputs

e(P, P )xyz = e(Z + dfP, a−1
f Cf )e(dfX + Af , −Y ).

Below, we show the correctness of the above formulation for computing e(P, P )xyz.
Since (Af , Bf , Cf ) is a valid signature with respect to (IDf , mf ), we have

e(Af , P ) = e
(
H2(IDf , mf ), Bf

)
, e

(
H1(IDf ), X + Bf

)
= e(Cf , P ).

So, if we suppose Bf = xIDf
P , then we have

Af = xIDf
H2(IDf , mf ), Cf = (x + xIDf

)H1(IDf ).

Since H2(IDf , mf ) = Z + dfP , H1(IDf ) = afY , we have

e(Z + dfP, Cf ) = e(Z + dfP, (x + xIDf
)afY )

= e(Z, xY )af e(dfP, afxY )e(Z + dfP, afxIDf
Y )

= e(P, P )af xyze(dfxP, Y )af e
(
xIDf

(Z + dfP ), Y
)af

= e(P, P )af xyze(dfX + Af , Y )af .

Next, we have

e(P, P )xyz = e
(
Z + dfP, Cf )a−1

f e(dfX + Af , Y
)−1

= e(Z + dfP, a−1
f Cf )e(dfX + Af , −Y ).
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This completes the description of algorithm A. It remains to show that A solves the
given instance of the BDH problem on (G1, G2) with probability at least ε′. To do so, we
analyze the four events needed for A to succeed:

• E1: A does not abort as a result of any of F ’s extract queries.
• E2: A does not abort as a result of any of F ’s signature queries.
• E3: F generates a valid message-signature forgery (IDf , mf , σf ).
• E4: Event E3 occurs, cf = 0 for the tuple containing IDf on the H1-list, and

ef = 0 for the tuple containing (IDf , mf ) on the H2-list.

F succeeds if all of these events happen. The probability Pr[E1 ∧ E2 ∧ E4] is

Pr[E1 ∧ E2 ∧ E4] = Pr[E1 ∧ E2] Pr
[
E3|E1 ∧ E2

]
Pr

[
E4|E1 ∧ E2 ∧ E3

]
.

The following claims give a lower bound for each of these terms.

Lemma 1. The probability that algorithm A does not abort as a result of F ’s extract
queries or F ’s signature queries is at least 1

e2 . Hence, Pr[E1 ∧ E2] � 1
e2 .

Proof. Without loss of generality we assume that F does not ask for the signature
of the same ID-message pair twice. We prove by induction that after F makes i sig-
nature queries, the probability that A does not abort is at least (1 − 1

qS+1 )i. The
claim is trivially true for i = 0. Let (ID i, mi) be A’s ith signature query and let
(ID i, mi, diP + eiZ, di, ei) be the corresponding tuple on the H1-list. Then prior to
issuing the query, the bit ei is independent of F ’s view – the only value that could be
given to F that depends on ei is H2(ID i, mi), but the distribution on H2(ID i, mi) is the
same whether ei = 0 or ei = 1. Therefore, the probability that this query causes F to
abort is at most 1/(qS + 1). Using the inductive hypothesis and the independence of ei ,
the probability that A does not abort after this query is at least (1 − 1/(qS + 1))i. This
proves the inductive claim. Since F makes at most qS signature queries the probability
that A does not abort as a result of a signature query is at least (1 − 1/(qS +1))qS � 1/e.
Similarly, we can prove that the probability that A does not abort as a result of an extract
query is at least (1 − 1/(qE + 1))qE � 1/e. So we prove that Pr[E1 ∧ E2] � 1

e2 .

Lemma 2. If algorithm A does not abort as a result of F ’s extract queries or signa-
ture queries, then algorithm F ’s view is identical to its view in the real attack. Hence,
Pr[E3|E1 ∧ E2] � ε.

Proof. The public parameters given to F are from the same distribution as a public key
produced by algorithm Setup. Responses to H2-queries and H1-queries are as in the
real attack since each response is uniformly and independently distributed in G1. All
responses to signature queries and extract queries are valid. So, F will produce a valid
message-signature pair with probability at least ε. Hence, Pr[E3|E1 ∧ E2] � ε.

Lemma 3. The probability that algorithm A does not abort after F outputs a valid
forgery is at least 1

(qS+1)(qE+1) . Hence, Pr[E4|E1 ∧ E2 ∧ E3] = 1
(qS+1)(qE+1) .
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Proof. Given that events E1, E2 and E3 happened, algorithm A will abort only if F
generates a forgery (IDf , mf , σf ) for which the tuple (IDf , mf , dfP + efZ, df , ef ) on
H2-list has ef = 1 or the tuple (IDf , H1(IDf ), af , bf , cf , Bf , Cf ) on the H1-list has
cf = 1. At the time F generates its output, it knows the value of ei for those (ID i, mi)
for which it issued a signature query. All the remaining ei’s are independent of A’s view.
Indeed, if F did not issue a signature query for (ID i, mi) then the only value given to
F that depends on ei is H2(ID i, mi), but the distribution on H2(ID i, mi) is the same
whether ei = 0 or ei = 1. Since F could not have issued a signature query for (IDf , mf )
we know that ef is independent of A’s current view and therefore Pr[ef = 0|E1 ∧ E2 ∧
E3] = 1/(1 + qS) as required. Similar, we can prove that Pr[cf = 0|E1 ∧ E2 ∧ E3] =
1/(1 + qE). So we have Pr[E4|E1 ∧ E2 ∧ E3] = 1

(1+qS)(1+qE) .

Using the bounds from the above lemmas shows that A produces the correct answer
with probability at least ε/(e2(qS +1)(qE +1)) � ε′ as required. Algorithm A’s running
time is the same as F ’s running time plus the time it takes to respond to (qH1 + qS + qE)
H1-hash queries, (qH2+qS) H2-hash queries, qE extract queries and qS signature queries.
Each query requires at most four exponentiations in G1 which we assume takes time cG1 .
Hence, the total running time is at most t+4cG1(qH1 +qH2 +3qS +2qE) � t′ as required.
This completes the proof of Theorem 1.

Theorem 2. The proposed threshold ID-based signature scheme is simulatable.

Proof. First, to prove the simulability of the private key distributing algorithm ShareKey,
we construct the simulator SIM 1 as follows. Without loss of generality, assume that the
parties indexed 1, 2, . . . , t have been corrupted by the simulator SIM 1. SIM 1 is given
the public parameter params = (G1, G2, e, q, P, Ppub, H1, H2) and the identity ID .

• SIM 1 selects a random c ∈ Z
∗
q and sets C = cH1(ID), B = cP − Ppub. Then,

SIM 1 broadcasts B, C.
• SIM 1 selects t random number xID,1, . . . , xID,t ∈ Z∗

q , and sets B0 = B, B1 =
xID,1P, . . . , Bt = xID,tP . For B0, B1, . . . , Bt, there is only one t-degree polyno-
mial f(x) = a0 +a1x+ · · · +atx

t such that B0 = f(0)P, B1 = f(1)P, . . . , Bt =
f(t)P . SIM 1 computes and broadcasts such a0P, a1P, . . . , atP . Then SIM 1 sends
xID,i to the corrupted party indexed by i, for i = 1, . . . , t. Below, we show
the computability of the values a0P, a1P, . . . , atP . We have (B0, B1, . . . , Bt) =
(a0P, a1P, . . . , atP )T , where T is an invertible matrix as follows:

⎛
⎜⎜⎜⎜⎝

1 10 20 . . . t0

0 11 21 . . . t1

0 12 22 . . . t2

. . . . . . . . . . . . . . .

0 1t 2t . . . tt

⎞
⎟⎟⎟⎟⎠ .

Hence, SIM 1 can compute

(a0, a1P, . . . , atP ) = (B0, B1, . . . , Bt)T −1.
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Second, to prove the simulability of the threshold signing protocol, we construct
the simulator SIM 2 as follows. Suppose that SIM 2 is given a common parameter
params = (G1, G2, e, q, P, Ppub, H1, H2), an identity ID , a message m, and a sig-
nature σ = (A, B, C) on m, t shares xID,1, . . . , xID,t of the corrupted signature gener-
ation servers, and the public outputs of KeyShare. SIM 2 computes the signature shares
A1 = xID,1H2(ID , m), . . . , At = xID,tH2(ID , m), then sets Ai =

∑t
j=0 LΦ,j(i)Aj ,

for i = t + 1, . . . , n, where A0 = A and LΦ,j(i) is the corresponding Lagrange coeffi-
cients. Then SIM 1 plays the role of Pi to broadcasts Ai, for i = t + 1, . . . , n.

It is obvious that the simulated view of the t corrupted parties is completely same to
that for the real running of KeyShare, TSign.

As we mentioned before, Baek and Zheng (2004) proved that if the underlying ID-
based signature scheme is unforgeable and the threshold signature is simulatable, then
the ID-based threshold signature scheme is unforgeable. Hence, from Theorems 1, 2, the
following theorem is immediately derived.

Theorem 3. The proposed ID-based threshold signature scheme is UF-IDTS-CMA se-
cure in the random oracle model, under the assumption the bilinear Diffie–Hellman prob-
lem is intractable.

Since the validity of each signature share can be publicly verified, and hence at least
t + 1 valid signature shares can be obtained, we easily have the following theorem.

Theorem 4. The proposed ID-based threshold signature scheme is (t, n)-robust, for any
t such that n � 2t + 1.

6. Efficiency Analysis

In this section, we roughly compare the efficiency of our proposed ID-based threshold
signature with the other two exiting ID-based threshold signature schemes: Beak–Zheng’s
(2004) scheme (denoted by the BZ scheme) Baek and Zheng (2004) and Chen et al.’s
(2004) scheme (denoted by the CZKK Scheme) which are both provably secure in the
random oracle model.

First, we simply compare the BZ ID-based threshold signature scheme and the CZKK
ID-based threshold signature scheme. In fact, the purpose of the CZKK scheme is to solve
the key escrow problem of the ID-based threshold signature scheme. In other words, if
this additional property is not taken into account, the CZKK scheme and the BZ scheme
are very similar. One of the main differences between the BZ scheme and the CZKK
scheme is in the sub-protocol of collective generation of the random element: the BZ
scheme uses the timing-consuming protocol called distributed key generation protocol
based on the bilinear map, while in the CZKK, the random element is simply the sum of
all the random elements of all signing players. This difference brings the difference of the
robustness property: in the CZKK scheme, the threshold signing protocol will not output
a valid signature until all signature shares are valid (the validity of the signature share can
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be publicly verified). However, the robustness of the BZ scheme is “true”: if n � 2t + 1,
the threshold signing protocol always outputs a valid signature when the number of the
invalid signature shares is not more than t. So we can say that the CZKK scheme achieves
better efficiency at the cost of loss robustness.

Now, we roughly compare the efficiency of our scheme with the BZ threshold sig-
nature scheme. In the our scheme, every signing party just broadcasts a signature share,
then finds t + 1 valid signature shares and combines these t + 1 shares into a valid sig-
nature. However, in the BZ scheme, before computing the signature share, all the parties
need to collectively generate a random element using the sub-protocol (Distributed Key
Generation Protocol Based on the Bilinear Map (DKPBM; Baek and Zheng, 2004) in
which every party runs a sub-protocol (Unconditionally Secure Verifiable Secret-Sharing
Scheme Based on the Bilinear Map; Baek and Zheng, 2004) to share a random element
chosen by himself. By avoiding the expensive sub-protocol of DKPBM, our ID-based
threshold signature scheme achieves the following advantages:

• Optimal Round Complexity. The threshold signing protocol of our schemes is one
round (and hence the round complexity is optimal), while the threshold signing
protocol of the BZ scheme is multi-round.

• Reduced Computation Complexity. Of course, the sub-protocol for collectively
generating the random element is the major time-consuming component in the BZ
scheme. So the efficiency of our ID-based threshold signature scheme is much bet-
ter than that of the BZ scheme.

• Optimal Communication Model. In the DKPBM, a private channel between each
other is required. However, in our scheme, what every signing party does is just
to broadcast his signature share and collects more than t valid signature shares.So
the private channels among all players are not needed any more. In the private key
distributing procedure KeyShare, however, a private channel between the dealer
and each party is needed.

Also note that the robustness of our scheme is same to that of the BZ scheme.

7. Conclusion

In this paper, based on the bilinear Diffie–Hellman assumption, we proposed a new ID-
based robust threshold signature scheme which is provably secure (unforgeable and ro-
bust) in the random oracle model in the presence of t malicious players if the total number
n � 2t + 1. We shown that its efficiency is much better than the Baek–Zheng ID-based
threshold signature scheme which is also provably secure in random oracle model.
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Vieno ciklo identifikatoriumi pagr ↪ista slenkstinio parašo schema
naudojanti bitiesin ↪i poravim ↪a

Wei GAO, Guilin WANG, Xueli WANG, Zhenguang YANG

Pasiūlyta nauja identifikatoriumi pagr↪ista slenkstinio parašo schema, naudojanti bitiesinio po-
ravimo metod ↪a, kuri yra saugi, kai tenkinamos Diffie–Hellman bitiesinės s ↪alygos. Šioje schemoje
privatusis raktas yra susietas su vartotojo tapatybe ir, palyginus su Baek ir Zheng metodu, turi
tokius privalumus: (1) slenkstinio parašo protokolo sudėtingumas yra optimalus, nes pasirašymo
procedūros metu kiekvienas dalyvis siunčia tik vien ↪a pranešim ↪a, (2) perdavimo kanalas yra opti-
malus, nes nereikalingas papildomas privatusis kanalas, (3) ši schema yra efektyvesnė skaičiavi-
m ↪u sudėtingumo prasme, nes privatusis raktas yra išplatinamas tam tikro skaičiaus pagalba, todėl
nereikia vykdyti sudėtingo skaičiavimo prasme rakt ↪u generavimo protokolo.


