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Abstract. Many electronic cash systems have been proposed with the proliferation of the Internet
and the activation of electronic commerce. E-cash enables the exchange of digital coins with value
assured by the bank’s signature and with concealed user identity. In an electronic cash system,
a user can withdraw coins from the bank and then spends each coin anonymously and unlinkably. In
this paper, we design an efficient anonymous mobile payment system based on bilinear pairings, in
which the anonymity of coins is revocable by a trustee in case of dispute. The message transfer from
the customer to the merchant occurs only once during the payment protocol. Also, the amount of
communication between customer and merchant is about 800 bits. Therefore, our mobile payment
system can be used in the wireless networks with the limited bandwidth. The security of the new
system is under the computational Diffie–Hellman problem in the random oracle model.
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1. Introduction

A variety of on-line businesses are rapidly emerging over the Internet, which is believed
to be one of the most efficient and convenient ways to provide all electronic services.
An efficient and secure electronic cash system plays an important role to support these
businesses safely as a trustful payment over the Internet. Real money using traditional
means of payment has potential security problems such as counterfeiting and forgeability.
E-cash also exhibits similar drawbacks, but properly-designed e-cash system can provide
more secure and flexible service for non-face-to-face exchange of digital goods than real
money. After Chaum (1983) introduced the anonymity of an e-cash using blind signature,
numerous researches have been done in the field of e-cash system. Whether the bank is
required to be on-line or not in the processing of an electronic transaction, Chaum et
al. (1990) suggested an anonymous on-line e-cash system and Chaum et al. (1989) pro-
posed an anonymous off-line e-cash system, which satisfies double-spending prevention
with the cut-and-choose method. The e-cash systems by Okamoto and Ohta (1982, 1992)
satisfy the divisibility and transferability in addition. Their schemes overcome some lim-
itations of previous e-cash systems and provide more efficient features than real money.
Brands (1993) proposed an efficient e-cash system with single-term method which is
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more efficient compared with the cut-and-choose method. Brands’ scheme has been used
as a basic model by other researchers. However, Solms and Naccache (1992) raised the
issue of perfect crime by abusing the anonymity of the e-cash system. Recently, Wang
et al. (2005) have proposed an off-line payment scheme providing scalable anonymity.
Besides the basic participants, a third party, the named Anonymity Provider agent, is
involved in the scheme. The Anonymity Provider agent helps the consumer to get the
required anonymity, but is not involved in the purchase process. The Anonymity Provider
agent gives a certificate to the consumer when he/she needs a high level of anonymity.
The authors claim that their scheme can prevent a consumer from spending a coin more
than once, since after a double-spending the identity of the consumer is revealed. Ca-
menisch et al. (2005) proposed an off-line e-cash scheme where a user can withdraw a
wallet containing 2l coins each of which she can spend unlinkably. Their e-cash scheme
provides traceable and divisible e-coins without a trusted third party. That is, once a user
has double spent one of the 2l coins in her wallet, all her spendings of these coins can
be traced. The e-cash scheme in Camenisch et al. (2005) is secure in the random oracle
model. The revocable e-cash system (Popescu, 2004, 2006; Popescu and Oros, 2004) and
(Lee et al., 2002) (or fair payment system) in which anonymity can be revoked when
needed, becomes one of the active research areas of preventing such misuses. In the revo-
cable e-cash scheme, the identification of an illegal user can be traced by the cooperation
of a trustee and a bank.

Since the mobile device first introduced in the world, there has been rapid develop-
ment of new functions, improvement of services and the enhancement of the computing
power of mobile devices make M-commerce more profitable and promising. The main
problem is that mobile payments face with a number of problems from not only perfor-
mance but also security points of view.

Two approaches have been done to the mobile payment systems up to date: by mo-
bile agent (Romao and Da Silva, 1998, 2001; Wang et al., 1999) and by mobile device
(Paybox, 2001; Mobilix, 2002). The schemes in Romao and Da Silva (1998, 2001), Wang
et al. (1999), employing mobile agent technique has accommodated SET protocol (SET,
1997) in which several public key computations are followed for payment. On behalf
of a customer, the mobile agent performs all processes necessary in SET protocol (SET,
1997) with the customer’s confidential data. The authors in Paybox (2001) and Mobilix
(2002), use the mobile device as an authentication tool to confirm customer’s payment
information and approval by sending secret short key over the air. Also, Ham et al. (2002)
proposed a mobile payment system which does not provide: the anonymity of the cus-
tomers, security against tracing a honest customer by the bank and security against money
laundering.

In this paper, we present an efficient anonymous mobile payment system based on
bilinear pairings. In order to construct our electronic cash system, we use the group sig-
nature of X. Chen et al. (2006) and the group blind signature of Zhong and He (2006). We
note that only the connection between the customer and the merchant is set up through the
wireless channel. Comparing with e-cash system proposed by Ham et al. (2002), our mo-
bile payment system provide the anonymity of the customers and security against tracing
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a honest customer by the bank and money laundering. The overall efficiency is improved
in our electronic cash system compared to Lee et al.’s (2002) system, Camenisch et al.’s
(2005) and Wang et al.’s (2005) e-cash system in terms of the storage space.

The remainder of this paper is organized as follows. In the next section, we review
the properties of bilinear pairings and the model of the mobile payment system necessary
in the subsequent design of our mobile payment system. Then, we present our mobile
payment system in Section 3. Furthermore, we discuss some aspects of security and effi-
ciency in Section 4. Finally, Section 5 concludes the work of this paper.

2. Preliminaries

In this section, we review some cryptographic assumptions and introduces the building
blocks necessary in the subsequent design of our mobile payment system.

2.1. Bilinear Pairings

In this section we review the properties of bilinear pairings necessary in the subsequent
design of the proposed system. Let G1 be a cyclic additive group generated by P of
order a prime q, G2 be a cyclic multiplicative group of the same order q. Let a, b ∈ Z∗

q .
We assume that the discrete logarithm problems in both G1 and G2 are hard. A bilinear
pairings is a map e: G1 × G1 → G2 with the following properties:

1. Bilinear. e(aP, bQ) = e(P, Q)ab.
2. Non-degenerate. There exists P, Q ∈ G1 such that e(P, Q) �= 1.
3. Computable. There is an efficient algorithm to compute e(P, Q) for all P, Q ∈ G1.

Let G1 a cyclic additive group generated by P , of order q. We first introduce the
following problems in G1:

1. Discrete Logarithm Problem (DLP). Given 2 elements P , Q find an integer r ∈ Z∗
q

such that Q = rP .
2. Computational Diffie–Hellman Problem (CDHP). Given P , aP , bP to compute

abP for a, b ∈ Z∗
q .

3. Decisional Diffie–Hellman Problem (DDHP). Given P , aP , bP , cP decide weather
c ≡ ab mod q for a, b, c ∈ Z∗

q .

We call G1 a gap Diffie–Hellman group if DDHP can be solved in polynomial time
but there is no polynomial time algorithm to solve CDHP or DLP with non-negligible
probability. Such a group can be found in supersingular elliptic curve of hyperelliptic
curve over finite fields and the bilinear parings can be derived from Weil or Tate parings.
For more details, see Boneh and Franklin (2001), Hess (2002).

2.2. Anonymous Mobile Payment System Model

Our mobile payment system consists of five protocols: Setup, Customer Join, Withdrawal,
Payment, Deposit and Tracing. Note that Withdrawal, Deposit and Tracing protocols are
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Fig. 1. Mobile payment system model.

performed over a secure wired channel and only Payment protocol is done through the
mobile networks. The customer has a mobile device like a mobile phone and the merchant
provides corresponding mobile services. When the customer and the merchant interacts
with the bank, private information such as account information or password and even
money itself are transferred into the other end. The other two connections, between the
customer and the bank, and between the merchant and the bank, are assumed to be es-
tablished through the secure wired channel by using the SSL protocol (SSL, 1996). The
model of our mobile payment system is presented in Fig. 1.

3. The Proposed Mobile Payment System

The system is modelled by four types of participants: customers, merchants, banks and
trusted parties. The customers honestly withdraw money from the bank and pay money to
the merchant. The merchants get money from customers and deposit it in the bank. The
banks manage customer accounts, issue and redeem money. The bank can legally trace a
dishonest customer with the help of the trusted parties. An e-cash system is anonymous
if the bank in collaboration with the merchant cannot trace the coin to the customer. The
system is off-line if during payment the merchant does not communicate with the bank.
All customers who open a bank account form a group and a trusted party is the group
manager. When a customer, wants to withdraw an electronic coin c from his account, the
bank applies a group blind signature protocol to c and decreases appropriate amount from
the customer’s account. Everyone including the merchant can verify the validity of group
blind signature with the public key of the group. In our mobile payment system, we use
the group signature of X. Chen et al. (2006) and the group blind signature of Zhong and
He (2006).
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3.1. The Setup Protocol

The setup protocol is performed by the group manager. Let G1 be a Gap Diffie–Hellman
group generated by P , whose order is a prime q, G2 be a cyclic multiplicative group of
the same order q. A bilinear pairings is a map e: G1 × G1 → G2. We define two ideal
hash functions H1: {0, 1}∗ × G1 → Zq, H2: {0, 1}∗ × G1 → G1.

The group manager chooses a random number s ∈ Z∗
q and sets Ppub = sP .

The group manager keeps s as his master-key and publishes group public key
Y = {G1, G2, e, q, P, Ppub, H1, H2}.

3.2. The Customer Join Protocol

Any customer who wants to join the group has to interact with the group manager and
obtains membership certificate to generate the group signature:

1. The customer submits his/her identity information ID to the group manager. Also,
chooses a random number r ∈ Z∗

q as his long-term private key and sends rP to the
group manager.

2. The group manager computes SID = sH2(ID | |T, rP ), where T is the life of the
customer’s long-term private key r, and sends SID to the customer. The symbol | |
denotes the concatenation of two strings.

3. The customer randomly chooses xi ∈ Z∗
q , i = 1, k. He then sends rxiP , xiP , rP ,

ID , SID to the group manager.
4. If SID = sH2(ID | |T, rP ) and e(rxiP, P ) = e(rP, xiP ), the group manager

sends Si = sH2(T, rxiP ), i = 1, k to the customer.
5. The customer’s member certificates are (Si, rxiP ) and his private signing keys are

rxi, i = 1, k.
6. The group manager adds rxiP , xiP , rP and ID to the customer list.

3.3. The Withdrawal Protocol

The withdrawal protocol involves the customer and the bank. When a legitimate customer
wants to withdraw a coin c from his account, the bank applies the following group blind
signature protocol to sign the coin c:

1. The bank chooses a random a ∈ Z∗
q and computes U = aH2(T, rxiP ). The bank

sends U to the customer.
2. The customer chooses a random b ∈ Z∗

q and computes U ′ =U +bP and H2(c, U ′).
The customer sends U ′ and H2(c, U ′) to the bank.

3. The bank computes V = aH2(c, U ′) and sends it to the customer.
4. The customer computes V ′ = V + bP and h′ = H1(c, U ′ + V ′) then sends h′ and

Si to the bank.
5. The bank computes W = (a + h′)Si and sends it to the customer.
6. The customer computes W ′ = W + bPpub.
7. The resulting group blind signature of the coin c is (U ′, V ′, W ′, T, rxiP ).
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The bank cannot link the blind coin with the identity of the customer. The customer
gets the coin c from his account.

3.4. The Payment Protocol

The payment protocol involves the customer and the merchant. Our mobile payment sys-
tem is off-line because during payment the merchant does not communicate with the
bank.

1. The customer chooses a random z ∈ Z∗
q and computes

U1 = zH2(T, rxiP ). (1)

2. The customer computes:

U2 = rxiH2(c, U1), (2)

h = H1(c, U1 + U2), (3)

U3 = (z + h)Si. (4)

3. The customer sends the signature (U1, U2, U3, T, rxiP ) of the coin c to the mer-
chant.

4. The merchant verifies the signature (U1, U2, U3, T, rxiP ) of the coin c as follows:

(a) Computes H2(T, rxiP ), H2(c, U1) and h = H1(c, U1 + U2).
(b) Tests if the following equations hold:

e(U3, P ) = e
(
U1 + hH2(T, rxiP ), Ppub

)
. (5)

If Eq. (5) fail, the merchant terminates the transaction.

3.5. The Deposit Protocol

The deposit protocol involves the merchant and the bank as follows:

1. The merchant sends to the bank the signature (U1, U2, U3, T, rxiP ) of the coin c.
2. The bank verifies the validity of the signature (U1, U2, U3, T, rxiP ) using the same

operations as the merchant (see Step 4 from Subsection 3.4).
3. If the signature (U1, U2, U3, T, rxiP ) of the coin c is valid and the coin c was not

deposited before, the bank accepts the coin c and then the merchant sends the goods
to the customer.

If the same coin c was deposited before, double spending is found and the bank re-
quests the group manager that the identity of the dishonest customer to be revealed.
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3.6. The Tracing Protocol

The bank can legally trace the customer of a paid coin with the help of the group manager.
The group manager can easily identify the customer from the following equations:

e(rxiP, P ) = e(xiP, rP ), (6)

e(SID , P ) = e
(
H2(ID | |T, rP ), Ppub

)
. (7)

The group manager search through the group customer list to get the identity of the cus-
tomer.

4. Security and Efficiency Analysis

In this section we discuss some aspects of security and efficiency of our mobile electronic
cash system. The following theorem prove the anonymity of our system.

Theorem 1. Assuming that the group signature scheme and the group blind signature
scheme are computationally secure our electronic cash system is secure against tracing
a honest customer by the bank.

Proof. The identity of a honest customer is anonymous and cannot be linked with the
e-cash. However, the customer who makes a double spending will be traced only by the
group manager. For a honest customer, the group blind signature will be used when he
withdraws the coin c from the bank, so that the bank know nothing about the coin c and
cannot trace the e-cash from the deposit protocol. Since xi is randomly chosen, then rxiP

reveals no information about the customer’s identity to anyone except the group manager.
Also, since the group blind signature (U ′, V ′, W ′, T, rxiP ) of the coin c cannot give any
information for the coin c, the bank cannot link the blind coin with the identity of the
customer.

Theorem 2. Security against forgery of the coin c: if the group signature scheme and the
group blind signature scheme are secure against forgery attacks and the hash function
H2 is collision-resistant, the mobile e-cash system is secure against forgery of the coin c.

Proof. Since the group blind signature is secure against existential forgery, this allows
only the legal bank to generate the signature for the coin c. As the hash function has
the feature of collision free, the customer cannot find a value c′ �= c with H2(c′, U ′) =
H2(c, U ′). Thus, the system satisfies unforgeability of coins.

Theorem 3. Security under the assumption of computational Diffie–Hellman problem:
our mobile electronic cash system is secure under the assumption of computational
Diffie–Hellman problem in the random oracle model.
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Proof. Consider the following game: the adversary A forges a valid tuple (ID , SID , rP,

S, rxiP ) with non-negligible probability ρ through the following process. First, the ad-
versary A queries the hash function H2 adaptively, then outputs a tuple (ID , SID , rP, S,

rxiP ) in which ID , rP and rxiP were not queried. If the tuple (ID , SID , rP, S, rxiP )
is valid, it must satisfy the Eq. (7):

e(SID , P ) = e
(
H2(ID | |T, rP ), Ppub

)
.

Let H2(ID | |T, rP ) = aP and Ppub = bP . Then, by running the adversary, we solved
Computational Diffie–Hellman Problem in G1 for SID = abP or S = abP with non-
negligible probability ρ.

Theorem 4. Security against money laundering: assuming that the group signature
scheme and the group blind signature scheme are computationally secure, the mobile
e-cash system is secure against money laundering.

Proof. Since the group manager knows the relation between customer’s identification
and his secret key, money laundering is prevented. When money laundering happens, the
group manager reveals the identity of dishonest customer using the tracing protocol.

We discuss the performance of our system in terms of computation and communi-
cation which are main interests in the mobile payment systems. We suppose that the
bank and the merchant have enough powerful computational resources to execute several
modular multiplications. We only take into consideration on the customer’s computa-
tional capability during the payment protocol. Since the withdrawal protocol is carried
out through the wired channel and the customer can use a personal computer for with-
drawal, several modular multiplications to obtain a blind coin c is not expensive. As the
main computational overheads, we consider modular multiplications (denote by MM –
see Table 1).

We compare the e-cash systems proposed by Wang et al. (2005), Camenisch et al.
(2005), Lee et al. (2002), Ham et al. (2002) with our mobile e-cash system (see Table 1).
Suppose that the size of q is 160 bits and the hash functions H, H1 and H2 of 160
bits for five systems. In our mobile payment system, during the payment protocol, the
customer stores and sends to the merchant only a group signature about 800 bits long.
The signature in the system of Ham et al. is about 520 bits. The messages σc and
(cu, U1, U2, U3, T, rxuP ) in the payment protocol is 1144 bits in Lee et al.’s system and
the message (m, e, u, v, t1) in the payment protocol of Wang et al. is 1282 bits. In the
payment protocol of Camenisch et al. (2005), a customer needs to compute 7 multi-base
exponentiations to build the commitments and 11 multi-base exponentiations to carry out
the proof (approximative 18432 bits).

The advantage of the proposed e-cash system is that the overall efficiency is improved
in our electronic cash system compared to Lee et al.’s (2002) system, Camenisch et al.’s
(2005) e-cash scheme and Wang et al.’s (2005) e-cash system in terms of the storage
space. However, the authors in De Santis et al. (2008) show that in Wang et al.’s (2005)
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Table 1

Comparison of the mobile payment systems

Ham Wang Lee Camenisch Our

Hash functions 160 bits 160 bits 160 bits 160 bits 160 bits

Modulus q 160 bits 160 bits 160 bits 160 bits 160 bits

Sig. in Payment Protocol 520 bits 1282 bits 1144 bits 18432 bits 800 bits

Binary length of computation 12 MM 15 MM 22 MM 26 MM 9 MM

Divisibility YES NO NO YES NO

Off-line communication YES YES YES YES YES

TTP requirement NO YES YES NO YES

Anonymity NO YES YES YES YES

Unlinkability NO NO NO YES YES

Double spending prevention NO NO YES YES YES

scheme, given a valid coin and without knowing any secret information, everyone is able
to spend the coin as many times as he wants. In particular, they show how a cheater,
using only public information, can construct a faked proof of ownership of the coin with-
out running any risk of being discovered. Also, the system of Ham et al. (2002) is not
provably secure against tracing a honest customer by the bank and money laundering.
Furthermore, their system does not provide the anonymity of the customers. But, our mo-
bile electronic cash system is resistant against tracing a honest customer by the bank and
money laundering. Also, the proposed mobile payment system provide the anonymity of
the customers.

5. Conclusions

In this paper we proposed an anonymous mobile payment system based on bilinear pair-
ings. The security of the new system is under the computational Diffie–Hellman problem
in the random oracle model. The overall efficiency is improved in our electronic cash
system compared to the e-cash systems proposed in Lee et al. (2002), Ham et al. (2002),
Camenish et al. (2005), and Wang et al. (2005). Also, our mobile payment system pro-
vide security against tracing a honest customer by the bank, money laundering and the
anonymity of the customers. The amount of communication between customer and mer-
chant is about 800 bits. So, the proposed mobile payment system can be used in the
wireless networks with the limited bandwidth due to the low communication between the
customer and the merchant.
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Anoniminė mobili mokėjimo sistema paremta bitiesiniu porinimu

Constantin POPESCU

Daugelis elektronini ↪u pinig ↪u sistem ↪u buvo pasiūlyta norint paskatinti internetin ↪e elektronin ↪e
komercij ↪a. E-pinigai, kuriuos išduoda bankas, patvirtindamas juos savo parašu, leidžia atlikti
monet ↪u skaitmeniniame pavidale cirkuliacij ↪a. Tuo tarpu tokioje monetoje yra neatskleidžiama var-
totojo tapatybė. Vartotojas gali paimti e-pinig ↪u iš banko ir išleisti kiekvien ↪a monet ↪a anonimiškai ir
nesusiejant j ↪a su savo tapatybe.

Šiame straipsnyje mes sukūrėme gana efektyvi ↪a, anonimin ↪e mobilaus mokėjimo sistem ↪a,
paremt ↪a bitiesiniu porinimu, kurioje monet ↪u anonimiškumas yra atskleidžiamas tuo atveju, jei yra
sukčiavimas, tam pasitelkiant treči ↪a patikim ↪a šal↪i. Pranešimas tarp vartotojo ir pardavėjo siunčia-
mas tik vien ↪a kart ↪a, vykdant mokėjimo protokol ↪a. Perduodamas informacijos kiekis tarp vartotojo
ir pardavėjo yra apie 800 bit ↪u. Todėl mūs ↪u mobili mokėjimo sistema patogi naudoti belaidžiuo-
se tinkluose su ribota pralaidumo juosta. Šios sistemos saugumas paremtas skaičiuotina Diffie–
Hellman’o problema atsitiktinio oraklo modelyje.


