
INFORMATICA, 2009, Vol. 20, No. 4, 555–578 555
© 2009 Institute of Mathematics and Informatics, Vilnius

On ASPECTJ and Composition Filters:
A Mapping of Concepts

Djamel MESLATI
LRI Laboratory, University of Annaba
BP 12, 23000 Annaba, Algeria
e-mail: meslati_djamel@yahoo.com

Received: 3 March 2006; accepted: 3 July 2007

Abstract. ASPECTJ and composition filters are well-known influential approaches among a wide
range of aspect-oriented programming languages that have appeared in the last decade. Although
the two approaches are relatively mature and many research works have been devoted to their en-
hancement and use in practical applications, so far, there has been no attempt that aims at comparing
deeply the two approaches. This article is a step towards this comparison; it proposes a mapping
between ASPECTJ and Composition filters that put to the test the two approaches by confronting
and relating their concepts. Our work shows that the mapping is neither straightforward nor one-
to-one despite the fact that the two approaches belong to the same category and provide extension
of the same Java language.
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1. Introduction

Both ASPECTJ (Kiczales et al., 1997) and composition filters (CF) (Aksit and Teknerdo-
gan, 1998a), are among the most well-known and mature aspect-oriented programming
(AOP) approaches available today. They seek new modularizations of software systems
by providing better concepts and mechanisms to appropriately separate concerns. Al-
though a large amount of literature is devoted to these approaches in particular and sepa-
ration of concerns (SOC) in general, so far, there has been no attempt that aims at deeply
comparing the two approaches. We believe that a direct comparative study which relates
the concepts of the two approaches will be helpful for their enhancement and emergence
of a unified approach to separation of concerns. As a step towards this goal, we have
achieved a mapping between ASPECTJ and CF which provide for each approach a partic-
ular translation that uses the concepts of the other. In a previous work we have focused on
the mapping from CF to ASPECTJ in a model-driven architecture context (Meslati et al.,
2006). In this article, our focus will be on a reverse translation that maps the ASPECTJ
concepts using the Composition Filters ones.

The motivation of the mapping between ASPECTJ and Composition Filters is twofold:

– The first is to directly relate concepts of the two approaches which can be used as
a basis to achieve a comparative study. The comparative study, which is out of the
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scope of this article, is worthwhile and has clear motivations such as enhancing
both CF and ASPECTJ, helping developers in choosing one approach or another,
developing new hybrid approaches with a synergy of CF and ASPECTJ features,
etc.

– The second is to allow the use of multiple SOC approaches in a model integrated
computing (MIC) environment (Meslati et al., 2006; Heidenreich et al., 2009).
The model integrated computing is an approach to system development that pro-
vides means for using models to direct the course of systems understanding, de-
sign, construction, deployment, operation, maintenance and modification (Gray
and Gokhale, 2004). Broadly speaking, MIC is an approach where models are first
class entities. A software system can be seen as a collection of models of various
abstraction levels (requirement, design artefact or even a program which has the
salient feature to be executable) where each describes the system from some view-
point and, consequently, most engineering tasks can be considered as modelling
and transforming models (Kleppe et al., 2003). MIC and SOC can be related in var-
ious ways and their integration is a promising issue. Since each SOC approach has
its own philosophy and concepts, an approach might be suitable from some view-
point but inappropriate from another. Consequently, providing a MIC environment
where multiple SOC approaches can be used simultaneously is a worthy goal. This
means that a developer may build, for instance, a model containing all the con-
cerns that are easily expressed in composition filters (e.g., synchronization), then
transform this model to an ASPECTJ one and finally add concerns that are better
expressed in ASPECTJ (e.g., exception handling). To achieve this goal we need first
considering each SOC language as a metamodel, and then supply transformations
(or mappings) between these metamodels. The use of multiple SOC approaches
in a MIC environment is a motivation that gives to the mapping proposed in this
article an intrinsic value.

The rest of this article is composed of five sections. Section 2 describes briefly the
ASPECTJ approach. Section 3 presents the CF approach and describes its concepts in
depth. Section 4 summarizes how CF concepts are mapped in ASPECTJ and then de-
scribes the mapping from ASPECTJ to CF. Section 5 discusses related work, and Section 6
is devoted to a conclusion and future work.

2. The AspectJ Approach

In many software applications, significant concerns are not easily expressed in a modular
way. Examples of such concerns are synchronization, security and persistence. The code
addressing these concerns is often scattered all over the application parts. ASPECTJ pro-
vides explicit language support for modularizing application concerns that crosscut the
application base code. By separating the base code from crosscutting concerns (called
aspects), the application source code becomes untangled and consequently becomes easy
to understand, maintain and reuse. To obtain the executable code, a special tool called
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weaver is used to combine the application base code and its specific aspects (Kiczales
et al., 1997, 2001).

ASPECTJ is a general-purpose AOP extension to Java that introduces four concepts:
Aspect, Pointcut, Advice and static crosscutting. An aspect is an entity that
looks like a class but models a concern that crosscuts object classes. Pointcuts are dec-
larations used in an aspect to identify principled points in the program execution and
source code locations where it can be involved. Principled points such as an access or
change of a field value, a method call or a method execution are called Join points.
Pointcuts are particular forms of predicates that use boolean operators and specific prim-
itives to capture join points and dynamic contextual information such as parameters
of a call statement. ASPECTJ supports eleven different kinds of join points: method
call, method execution, constructor call, constructor execution, field get, field set, pre-
initialization, initialization, static initialization, handler, and advice execution join points.
There are also nine kinded pointcut designators that match join points according to their
kind: call, execution, get, set, preinitialization, initialization,

staticinitialization, handler, and adviceexecution.
The aspect code is divided into blocks called advices. They are method-like mecha-

nisms used to declare that a certain code should execute before, after or around the code
corresponding to the join points captured by some pointcuts. Therefore, there are three
possible relationships that bind an advice to pointcuts: before, after and around. ASPECTJ
provides a rich set of primitive pointcuts to specify join points within an aspect; see Mes-
lati et al. (2006) or Laddad (2003) for more details.

The last concept of ASPECTJ is the static crosscutting which modifies a pro-
gram at compile time by specifying new members of a class (called introduction) or
specifying what a class extends or implements (called inter-type member decla-

ration).

3. The Composition Filters Approach

CF uses the conventional object model and considers an object as an entity that performs
some assigned functions (Aksit and Tekinerdogan, 1998a; Bergmans, 1994b). Within a
system, entities interact with each other to achieve a common task. In the object model,
most interactions are done by sending and receiving messages, that is where CF inter-
venes. It provides an object (which is then called Kernel) with an interface containing
filters that intercept and manipulate messages in various forms modifying their scope
and expected behaviours. The former consists of delegating messages to other objects
(i.e., changing targets), whereas the latter consists of substituting the message selectors.
By controlling messages (changing their targets and/or selectors) and through a well-
constructed interface, CF provides suitable solutions to many problems (Aksit and Tekin-
erdogan, 1998b). One of the CF approach strengths is the use of a uniform filtration
mechanism to resolve these problems. From this viewpoint, CF is easy to understand and
work with as it only adds few concepts to the object model.
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CF has been implemented as extension to several object-oriented languages and even
as an extension to the .Net platform (Garcia, 2003). The CF syntax used in this article is
that of ComposeJ which extends Java (Wichman, 1999). We justify this choice by the fact
that when dealing with the same language extensions (i.e., Java), we focus more on the
added concepts (i.e., those which deal with concerns) rather than the extended language
specific features.

CF adds to an object a wrapping layer called interface that traps incoming and outgo-
ing messages. Fig. 1 depicts the contents of an interface added to a kernel object.

An interface is composed of the following parts:

• Internal objects are combined with the kernel object to compose the state of the
CF object. A message received by a CF object can be delegated to internal objects
instead of the kernel object. Internal objects are encapsulated in the CF object and
cease to exist when the CF object is garbage collected.

• External object are almost like internal objects. However, they are supposed to ex-
ist on their own and their references are passed on to the CF class constructor dur-
ing instantiation. These references are assigned to the corresponding CF instance
variables.

• Methods: All the public methods of the kernel class.
• Conditions: Conditions are specific methods without parameters that supply in-

formation about the context of a call and the kernel state without changing them
(Bergmans, 1994b).

• Input filters: A set of declarative specifications that handle the incoming mes-
sages.

Fig. 1. Adding a CF interface to an object.
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• Output filters: A set of declarative specifications that handle the outgoing mes-
sages.

The signature of a CF-object is the set of message selectors that the object would
accept if all the conditions in the input filters would be true (Koopmans, 1995; see the
description of filter elements in the next page). This includes public methods of the kernel
class and public methods of the internal/external objects. Within a CF object, the kernel
and internal/external objects are called targets. The target of a message is determined by
the CF object itself when a message is received and becomes a data item accessible to
filters.

Filters are declared in ordered sets as declarative specifications. A call entering a CF
object is first reified (i.e., the method selector becomes accessible and target determined)
then passes each filter in the set until it is discarded or dispatched. A call is also discarded
when it passes the last filter in the filter set without being dispatched. Discarding a call
raises an exception whereas dispatching consists of:

• activating the corresponding method in the kernel or internal/external objects, or
• substituting it by a call to another method in the kernel or internal/external objects

and activating it.

Before discarding or dispatching a call, each filter through which the call passes can
accept or reject it. Depending on the semantics of the filter type, “accept” may consist
in dispatching or simply ignoring the message which then, passes to the next filter and
“reject” may consist in discarding a message, queuing it as long as the filter expression
results in a rejection or merely ignoring it (i.e., the message continues with the next fil-
ter, see Fig. 2). There are five commonly used filter types: Error, Dispatch, Wait,

Meta, and Realtime (Bergmans and Aksit, 2001). Each type deals with a certain cate-
gory of concerns, but in general a filter set contains more than one type. Wait is used to
model synchronization concerns, Meta allows the reification of a message so that access
to its arguments, sender, receiver, return value, becomes possible and Realtime deals
with timing constraints. Error and Dispatch are used alone or in combination with the
other filter types to allow modelling of various concerns.

All filter types can be used in input and output filters, except Dispatch which is used
only in input filters. In many CF articles, authors consider that output filters operate al-
most like input filters and do not require specific treatment. Moreover, object oriented

Fig. 2. Syntactical diagrams of filter elements (Meslati et al., 2006).
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paradigms tend to adopt a client/server model where the server responsibility is preva-
lent. Therefore, concerns are usually related to servers rather than scattered among sev-
eral clients (i.e., modelled in an input filter set rather than several output ones; Bergmans,
1994b). For these reasons, output filters are not considered in this article.

To enhance the descriptive power of CF, each filter is composed of several elements
called filter element (FE) and have the following form:

Filtername : Type = {FilterElement, FilterElement, . . .}

An incoming message passes through each filter element which accepts or rejects it.
Again, reject or accept meaning depends on the filter type (see Fig. 3). Each filter element
specifies a condition C and a list of pairs (matching part, substitution part). We call it
MSPList for short. A FE accepts a call if the condition is true and if the call matches
the MSPList. Fig. 2 depicts the syntactical diagrams corresponding to different forms of
filter elements.

To simplify the filter set specification, CF proposes two operators ⇒ and ∼> called
respectively inclusion and exclusion operators. C ⇒ MSPList means that when condition
C is true, all messages that match MSPList will be accepted. C ∼> MSPList means that
when the condition C is true, all messages, but those in MSPList, will be accepted. Notice

Fig. 3. The filter handler actions.



On ASPECTJ and Composition Filters 561

that the exclusion operator is not used for meta and realtime filters. In the same way, no
substitution is carried out when the exclusion operator is used.

Fig. 3 summarizes the acceptance and rejection meaning for a filter according to its
type. When a Dispatch filter accepts a message and if a new target and/or a new selector
are specified in MSPList, they are substituted in the accepted message, and then, the
message is sent to the new target. The remaining filters in the filter set are no longer
considered. If a Dispatch filter action result in a rejection, the message continues with the
next filter in the filter set.

With an Error filter, the accepted message continues with the next filter in the filter
set and in case of a rejection an exception is raised.

The accept action of the Wait filter allows a message to pass to next filter in the filter
set without achieving any substitution or delegation. When a message is rejected, it is
blocked until the condition corresponding to the matching part who matched the message
becomes true. The message is then re-evaluated by the Wait filter.

If a Realtime filter accepts a message it changes the attributes of the accepted mes-
sage, which then continues with the next filter. In case of a rejection, the message contin-
ues with the next filter in the filter set.

In a Meta filter, the accepted message is reified as an object of special class called
Message and sent to a meta object method as an argument.

The meta object is one of the internal or external objects (meta object and its method
are specified in the filter element that accepted the message). Within the meta object
method, it is possible to use three specific statements: continue, reply, and send

(Koopmans, 1995). When continue statement is used, the reified message is reactivated
and continues with the next filter in the filter set. When the reply statement is used,
the reified message is no longer considered and the sender receives the argument of the
reply statement. With the send statement, the reified message is reactivated (like con-
tinue statement) until it reaches the return statement, so that the meta object method
can have access to the return value of the message. The send statement is followed by
reply or continue statement. Substitutions are not carried out with meta filters.

Table 1 shows when a filter element accepts or rejects a message and the effect on
the filter level according to the condition value and the matching result; see Koopmans
(1995) and Bergmans (1994a) for more details. We consider that an incoming message
has T as target object and S as selector.

According to the value of the condition C of the FE, and if there is a matching with
MSPList, the effect on the filter element will be to accept/reject a call and, in turn, this
will have an effect on the whole filter which may accept or reject the call or merely let
the message continue with the next FE.

As an example, suppose that we have the following Dispatch FE C ⇒
{T1.S1 (NT1.NS1), . . ., Ti.Si(NTi,NSi), . . .}. If the condition C is false, then the
call T.S is rejected by the FE and will continue with the next FE in the current filter. At
the opposite, if the condition is true, then the handler actions depend on the matching pro-
cess. If there is a matching of T.S with one term in the MSPList {T1.S1(NT1.NS1),
. . ., Ti.Si(NTi,NSi), . . .}, then the FE accepts the call and, in turn, the current filter
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Table 1

Filter elements acceptance or rejection and their effect on the containing filter (Meslati et al., 2006)

Filter
type

Syntax used to specify the
filter element (T and S stand
for the target of an incoming
message and its selector
respectively. C is the condition
of the filter element)

C
value

T.S
matches
MSPList

Effect when ⇒
is used

Effect when ∼>
is used

On FE On filter On FE On filter

Dispatch C ⇒ {T1.S1(NT1.NS1), . . . ,
Ti.Si(NTi, NSi), . . .} or

C ∼ >{T1.S1, . . . , Ti.Si, . . .}

False False/
true

Reject Continue Reject Continue

MSPList is
{T1.S1(NT1.NS1), . . . ,

Ti.Si(NTi, NSi), . . .}
or {T1.S1, . . . , Ti.Si, . . .}

True False Reject Continue Accept Accept

NTi.NSi stands for the new
target and the new selector

True True Accept Accept Reject Reject

Error C ⇒ {T1.S1, . . . , Ti.Si, . . .} or
C ∼> {T1.S1, . . . , Ti.Si, . . .}

False False/
true

Reject Continue Reject Continue

No substitution or delegation
are carried out

True
True

False
True

Reject
Accept

Continue
Accept

Accept
Reject

Continue
Reject

Meta C ⇒ {T1.S1(MO1.MS1), . . . ,
Ti.Si(MOi.MSi), . . .}

MOi is the meta object and
MSi one of its methods

False
True
True

False
True
False
True

Reject
Reject
Accept

Continue
Continue
Accept

∼> is not used
with meta filter

Wait C ⇒ {T1.S1, . . . , Ti.Si, . . .} orFalse False Reject Continue Reject Reject

C ∼> {T1.S1, . . . , Ti.Si, . . .}
No substitution or delegation
are carried out

False True Reject Reject Reject Continue

True False Reject Continue Accept Accept

True True Accept Accept Reject Continue

Realtime C ⇒ {T1.S1(TC1), . . . ,
Ti.Si(TCi), . . .}

False False/
true

Reject Continue ∼> is not used
with real time

TCi is the timing constraint.
No substitution or delegation
are carried out

True
True

False
True

Reject
Accept

Continue
Accept

filter

accepts and dispatches it to the new target given in the term which matches T.S. If no
term in MSPList matches T.S then the FE rejects the call and the process continues with
the next FE in the current filter.

Now, suppose that we have the Dispatch FE C ∼> { T1.S1, . . ., Ti.Si, . . .} and C

is true. If one term of MSPList { T1.S1, . . ., Ti.Si, . . .} matches the call T.S then the
FE rejects the call and, in turn, the current filter rejects it, which means that the message
continues with the next filter in the filter set. If there is no match, then the FE accepts the
call and the current filter accepts and dispatches it to the target object T with the same
selector S.
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4. The Mapping of Concepts

The purpose of the mapping is to answer the question: Given an ASPECTJ (or CF) pro-
gram, what is the corresponding program in CF (respectively ASPECTJ)? Since the two
languages are extensions of Java, and hence are Turing machine equivalent programming
languages, we don’t expect them to fail to express each other.

The challenge is rather to avoid that the translation be an ordinary weaving which
produces a Java program. Indeed, by doing so, the resulting system is a tangled code that
precludes any comparison. What we want is to use as much as possible only concepts
dedicated to express concerns in each language. For instance, what filters correspond to
an aspect? What pointcuts correspond to a condition in a FE? Since our focus is on how
concerns are mapped, we constrained ourselves to preserve the base code unchanged
during the mapping.

Due to the above constraint, some concepts of CF and ASPECTJ like realtime filter,
get(), set(), are left unmapped. In the following, we describe shortly the CF to ASPECTJ
mapping; please see Meslati et al. (2006) for more details, then we give a complete de-
scription of the inverse mapping.

4.1. From CF to ASPECTJ

The mapping from CF to ASPECTJ consists of two processes, normalization and trans-
lation using a syntax-directed approach (Fig. 4). The goal of the normalization process
is to determine all the accessible methods of a CF class and put its filter elements in a
canonical form to facilitate the subsequent translation.

The normalization process translates filters to a canonical form so that:

• dispatch or meta filter elements have the form:
C ⇒ selector(NewTarget.NewSelector)

Fig. 4. CF to ASPECTJ translation steps.
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• wait filter elements have the form: C ⇒ Selector where C is a condition or a
conjunction of conditions

• error filter elements have the form:
C ⇒ { Selector1, Selector2, . . ., Selectori}

or C ⇒ Selector

There are seven normalizing rules to deal with various filter forms:

1) eliminating ‘*’ within a MSPList;
2) eliminating exclusion operator;
3) adding inclusion operator and condition;
4) adding substitution part in dispatch filter elements;
5) decomposition (doesn’t apply to error filters);
6) ignoring target in the matching part;
7) grouping wait filter elements having the same matching part.

The second translation process consists of translating the normalized CF programs
into ASPECTJ. For this sake, we use the syntax-directed translation approach described
in Aho et al. (1986) along with four filter translation templates and a structure
translation schema.

The syntax-directed translation is used as a method of transforming derivation trees
in the input grammar G1 into derivation trees in the output grammar G2. Given an input
sentence x, a translation for x is obtained by constructing a derivation tree for x, then
transforming the derivation tree into a tree in G2, and then taking the frontier of the
output tree as a translation for x (see Fig. 5). The translation of a normalized CF program
is characterized by a set of rules providing for each production rule a corresponding
translation element.

The translation process is complex and the syntax directed approach alone is not suffi-

Fig. 5. Example of a syntax directed translation.
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cient to generate an output ASPECTJ program that preserves the input CF program seman-
tics. For this reason, the translation process uses two artefacts: filter translation templates
and the structure translation schema.

In Meslati et al. (2006), we have proposed four filter translation templates that cor-
respond to Error, Meta, Wait and Dispatch filters. Each template gives exactly what cor-
responds to a given filter in a form of translation elements and directives. Hence, the
syntax directed translation gives as an output artefact an ASPECTJ program which con-
tains terminal symbols and directives, then, the directives are converted according to the
templates in a second phase.

In addition, the overall structure of a CF program is translated using a Structure trans-
lation schema. In this schema, Java interfaces and classes are kept unchanged in the final
ASPECTJ program while for each CF interface there is: one aspect for each filter in the
input filter set, one aspect called kernel_final (which captures non-dispatched calls
and raises an exception) and one aspect composed of inter-type members’ declaration
introducing internal/external instance variables and public methods into the class that
corresponds to the kernel class. These public methods have an empty implementation
body since the corresponding calls will be captured by aspects and delegated to inter-
nal/external objects.

From the behaviour point of view, aspects that correspond to filters are composed
of advices. For example, a normalized FE C ⇒ S(NT.NS) in a filter maps to an ad-
vice in the corresponding aspect. This advice is of type around and has three anony-
mous pointcuts (i.e., declared in the advice without names). The first pointcut is
call(* * inner.S()) which captures calls to S method in the inner class (the first wild-
card means any access modifier and the second, any return value type). The second and
third pointcut are target(obj) and args(parameterList) that make available the
target object and arguments of the call, which the advice body can use to perform its
computation.

The translation of the CF programs to ASPECTJ covers all CF interface constructs
including four filter types. Realtime filter type is not supported by the mapping since
ASPECTJ doesn’t provide specific concepts to deal with timing constraints. Concerning
the normalization process, it can be extended merely by adding new rules, to deal with
new filter forms.

Superimposition, which is a technique introduced in CF to deal with systemic cross-
cutting (see Bergmans and Aksit (2004) for more details), has not been covered in this
work. This is due to the fact that the superimposition introduces an important complexity
in the mapping as well as the lack of an implementation for Java that covers all the CF
concepts and the superimposition at the same time.

4.2. From ASPECTJ to Composition Filters

The mapping of ASPECTJ programs into CF programs must deal with various concepts
and three main features:
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©1 Static crosscutting: It mainly consists of specifying members that are added to
classes as well as specifying what a class extends or implements. These specifi-
cations change the base code classes at compile time.

©2 Dynamic crosscutting: It aims at changing the program behaviour at runtime by
using the join point model, advices, context exposure and precedence between ad-
vices.

©3 Aspect instantiation: Instance of an aspect can be attached to the whole program,
to only one object or to the control flow of some pointcut.

In the following, we first present an overview of the mapping and give the algorithm
that implements it, assuming that there is only one instance of each aspect and that each
pointcut is anonymous and includes either a Call() or Execution() primitive point-
cut. Second, we give an example of translation, and third, we generalize the translation
approach through discussions on how particular concepts are translated or justify why
they are not supported.

4.2.1. Overview
The overall mapping consists of transforming aspects, by projecting them on each base
code class, in order to find CF interfaces in terms of internal/external objects, and input
filters. The main idea is to get what is done by aspect advices done by external object
methods and to translate what an aspect introduces, in a class C, into an internal class
whose objects are associated with those of C. Fig. 6 shows an overview of the mapping
of an ASPECTJ program into a CF program when considering one class and one related
aspect.

To understand this mapping, consider an aspect As composed of <IntertypeDecl,
LocalDecl, Adv>, where IntertypeDecl are introductions of members, LocalDecl
are the aspect local members, and Adv are advices. The counterpart of As in CF, consid-
ering the base code class C, is a CF interface and two classes called C_As and As.

Fig. 6. Overview of the mapping.
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• Class C_As contains IntertypeDecl members that are introduced in C. Since
these members are specific to each object of C, we associate to each object of C an
object of C_As. Therefore, we declare within the internals part of the CF interface
of C one internal object of type C_As.

• Class As contains all LocalDecl members and for each advice in Adv, it contains
one method whose name is composed from the advice type name and a discrimi-
nating number. Since we have only one instance of aspect As, we have also only
one instance of class As, which is shared by all objects concerned by aspect As.
Therefore, we declare within the externals part of the CF interface of C one exter-
nal object of type As.

Each pointcut Pc associated with an advice can be decomposed into two parts: static
and dynamic. Static part can be evaluated at compile time whereas the dynamic part is
evaluated at runtime. For example, in the pointcut (call(* *.factorial(int)) &&

!cflowbelow(call(* *.factorial(int)))), the static part is call(* *.facto-

rial(int)) and the dynamic part is !cflowbelow(...). Depending on the user spec-
ification, a pointcut can be only static or only dynamic.

In our mapping, the static part of an advice pointcut is used to determine which class
and which method is concerned by the advice, and is no longer needed after that. The
dynamic part becomes a condition that is evaluated by the method corresponding to the
advice before executing.

The CF interface of class C contains, for each pair (m, Ad), where m is a method
in the base code class C and Ad an advice whose pointcut contains call(m()) or
execution(m()), a meta filter that reifies the call to m and sends it to a method mAd, in
class As, corresponding to Ad. The second filter in the input filter set is the dispatch fil-
ter true ⇒ *(inner.*) which accept all incoming messages (i.e., accepts any call to
methods of C). Notice that in some cases the pointcuts call() and execution() may
not contain a class name, but just a method signature. In such cases, we need to parse the
whole base code classes to find those having the methods that match the method signature
in the pointcut.

4.2.2. The Translation Algorithm
Fig. 7 shows an algorithm implementing our mapping. The left part deals with aspect
declarations that may contain introductions while the right part deals with advices and
pointcuts.

To preserve ASPECTJ semantics, the program generated by the algorithm of Fig. 7
must deal with two specific features: advice precedence and access to members. Proce-
dures that are concerned by precedence are: Get next aspect, Get next advice,
Add treatment corresponding to an advice and Add meta filter.

Procedures concerned by access control and translation of references are: Change
references, Add public variables, Transform advice to a meta method,
Transform parameter of advices to local variables. Detailed discussion
is given in 4.2.4.
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Fig. 7. ASPECTJ to CF translation algorithm.

4.2.3. Example
To illustrate the translation algorithm, we use the example given in Listing 1. It consists
of two base code classes C1 and C2, and two aspects A1 and A2. Aspect A1 declares
its precedence over A2 and introduces j, getj(), setj() and test() into C1. It also
declares h, seth() as local members. A1 contains 3 advices. The first specifies some
treatment (body 5) to do before any call to m1(). The second advice is an around advice
that may alter parameter value of the calls to m2() and returns two times whatever m2()
returns. The third advice concerns both C1 and C2, it specifies some treatment (body 6)
to execute after the call of m2().

Aspect A2 introduces f and m1() into C2 and s into C1. It also specifies two ad-
vices. Both have pointcuts with dynamic parts: (this(C1)||this(C2)) and cflow-

below(...).
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public class C1 {
public int i;
private Boolean b;
public void m1(String S) {
. . . /∗ Body 1 */ }

public int m2(int k) {
. . . /∗ Body 2 */}
. . .

}
public class C2 {
public int count;
public void m2() {
. . . /∗ Body 3 */ }
public void m3() {
. . . /∗ Body 4 */ }

}

aspect A1 {
declare precedence A1, A2;
private int h;
private void seth(int v) {h = v;}
public int C1.j;
public int C1.getj() { return j;}
public void C1.setj(int k) { j = k;}
public Boolean C1.test() { return i == j;}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
before(String s) : call(* C1.m1(String))
&&args(s) && target(C1)
{. . . // Body 5 }

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
int around(int k, C1 t) :
call(int C1.m2(k)) && target(t) {

if (t.test()) h = proceed();
else h = proceed(k-2);
t.setj (t.getj() + t.i);
return h*2; }

after() : call(* *.m2(..)) { . . . /∗ Body 6 */}
}

aspect A2 {
public float C2.f;
public Boolean C2.m1()
{ . . . /∗ Body 7*/ };
private String C1.s;

. . . . . . . . . . . . . . . . . . . . . . . . .
before() : call(* C2.m3())
&& ( this(C1) || this(C2))
{

. . . // Body 8
}
. . . . . . . . . . . . . . . . . . . . . . . . .

after() : call(* *.m2(..))
&&
!cflowbelow(call(**.m2(..))
{
. . . // Body 9
}

}

Listing 1. Example of an ASPECTJ program.

When applying the translation algorithm we get four classes A1, A2, C1_A1,
C2_A2 and two CF interfaces. A1 contains declarations of h, seth() and methods
mBefore_1(), mAround_2(), mAfter_3(). A2 contains only mBefore_1() and
mAfter_2(). C1_A1 contains members introduced by aspects A1 and A2, and C2_A2

contains only members introduced by A2 (see Listing 2). Additional discussion of this
translation is given in 4.2.4.

4.2.4. Discussion
In this subsection we discuss how some parts of the translation work and how ASPECTJ
features and semantics can be preserved.

Enforcing Advice Precedence. When multiple pieces of advice must be applied to the
same join point, deciding which one executes first is determined by the advice precedence
(Kniesel, 2009). In ASPECTJ, the precedence is governed by rules that take into account
the precedence declaration clause, aspect-subaspect relationship, and the declaration or-
der of advices within the same aspect.

ASPECTJ semantics state that when two pieces of advice are defined in different as-
pects, then three cases are possible:

• If aspect A is matched earlier than aspect B in some declare precedence form, then
all advice in concrete aspect A has precedence over all advice in concrete aspect B
when they are on the same join point.

• Otherwise, if aspect A is a subaspect of aspect B, then all advice defined in A has
precedence over all advice defined in B. So, unless otherwise specified with declare
precedence, advice in a subaspect has precedence over advice in a superaspect.
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public class A1 {
private int h;
private void seth(int v) {h = v;}
public void mBefore_1(Message mess){
private String s=
mess.target().getArgumentAsString(1);

// No dynamic part in the pointcut
. . .// Body 5
mess.continue();

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
public void mAround_2(Message mess){

private int k = mess.target().getArgumentAsInt(1);
private C1 t = (C1) mess.target();
if (t.obInt_A1.test(t)) h = mess.send();
else { mess.putArgument(1, Message.reifyInt(k-2));

h = mess.send();
}
t.obInt_A1.setj (t.obInt_A1.getj() + t.i);
mess.reply(h*2);

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
public void mAfter_3(Message mess){

mess.send();
. . .// Body 6
mess.continue();

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
public class C1_A1 {

public int j;
public int getj() { return j;}
public void setj(int k) { j = k;}
public Boolean test(C1 ob) { return ob.i == j;}
public String s;

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
public class C2_A2 {

public float f;
public Boolean m1() { . . . /∗ Body 7 */} }

public class A2 {
public void mBefore_1(Message mess){

if (DynamicPC.thisPc(mess.sender(),”C1”)||
DynamicPC.thisPc(mess.sender(),”C2”)){
. . . /*Body 8*/ }

mess.continue();
}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

public void mAfter_2(Message mess){
mess.send();
if (!DynamicPC.cFlowBelowPc(mess){ . . .

/*Body 9*/ }
mess.continue();

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
class C1 interface {
internals

public C1_A1 obInt_A1;
public C1_A2 obInt_A2;

externals
public A1 obExt_A1;

inputfilters
meta1 : meta ={ m1(obExt_A1.mBefore_1)}
meta2 : meta ={ m2(obExt_A1.mAround_2)}
meta3 : meta ={ m2(obExt_A1.mAfter_3)}
meta4 : meta ={ m2(obExt_A2.mAfter_2)}

}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
class C2 interface {
internals

public C2_A2 obInt_A2;
externals

public A1 obExt_A1;
public A2 obExt_A2;

inputfilters
meta1 : meta ={ m2(obExt_A1.mAfter_3)}
meta2 : meta ={ m3(obExt_A2.mBefore_1)}
meta3 : meta ={ m2(obExt_A2.mAfter_2)}

}

Listing 2. CF program generated by the translation algorithm.

• Otherwise, if two pieces of advice are defined in two different aspects, it is unde-
fined which one has precedence.

If the two pieces of advice are defined in the same aspect, then there are two cases:

• If either are after advice, then the one that appears later in the aspect has precedence
over the one that appears earlier.

• Otherwise, the one that appears earlier in the aspect has precedence over the one
that appears later.

Our translation algorithm deals with these rules in this way:
Get next aspect: gets aspects according to the declare precedence statement and

aspect-subaspect relationship.
Get next advice: gets advice that appears earlier in an aspect.
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Add treatment corresponding to an advice: inserts send(), continue()
or reply() in specific places reflecting the advice type. For example, in Listing 2,
mess.send() appears before body 6 in method mAfter_3(), this has the effect of
continuing the reified message which passes to the next filter. If the next filter repre-
sents an After advice the message will be sent again. When there is no other filters the
message is finally executed and instructions following mess.send() are executed in the
inverse order which corresponds to the above after advice precedence rule.

Add meta filter: adds filters, in the filter set, in an order that corresponds to ad-
vice precedence of the considered advice.

Preserving Access Control. Members are referenced within field access and method
invocation expressions. Position of the referencing expression and the referenced member
within an ASPECTJ program determines four access forms:

©1 Access between aspect local members such as access of seth() to h in example
of Listing 1.

©2 Access of advices to local members and access via context exposure to introduced
members and advised class members such as, respectively, access of around advice
to h, t.setj() and t.i in Listing 1.

©3 Access between introduced members and access of introduced functions to mem-
bers of the advised class such as access of getj() to j and test() to i in List-
ing 1.

©4 Access of members belonging to an aspect to member introduced, in some class,
by another aspect.

The translation algorithm splits each aspect into many internal classes and one exter-
nal class. Consequently, two problems arise: how to maintain references between expres-
sions and members? What is the access modifier used to declare a member? Whenever the
expression and the referenced member are in the same class, we do not need to change
references and the original access modifier is used. This is the case of ©1 . In the same
way, since advices are translated to methods in the external class, they have access to
local members without any change.

Access of advices via the context exposure to introduced members is translated to
an access of the corresponding method within the external class to members of the in-
ternal classes. Since there is one internal object for each base code class object, access
is done by using identifier of the base code object and its corresponding internal object.
The former is obtained using the target() method of class Message, and the latter is
obtained using the CF interface. In the generated program of Listing 2, mAround_2()
uses mess.target() to get object identifier and t.obInt_A1, which is added by the
CF interface of C1, to access the introduced members. Notice that access to members of
advised classes uses only mess.target(). Access between introduced members does
not require any change since they are in the same internal class. However, access to ad-
vised class members requires adding the advised object identifier as a parameter to each
introduced method that accesses these members. The actual parameter is transmitted by
advices using the target() function of class Message (see test() in class C1_A1 and
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its use in mAround_2()). The access form cited in ©4 does not require any change since
all internal objects are accessible using variables declared in the internals part. Fi-
nally, a member declared by an aspect preserves its original access modifier unless it is
referenced from outside the internal/external class where it is declared; in this case, public
access modifier is used. The algorithm doesn’t support translation of privileged aspect
access to private or package-protected members, nor supports the translation of pointcuts
associated with private and package-protected members such as a call of a private
function.

The updating of references proposed in our algorithm relies on two features of CF
approach. First, internal and external variables are considered as if they were declared in
the base code class. Second, the class Message allow us to consider reified messages as
objects on which we can apply functions that allow access to arguments, target, selector in
addition to the specific functions already used: continue(), reply() and send(). In
Listing 2, we use a JAVA-like reflective methods such as getArgumentAsString(pos),
getArgumentAsInt(pos), etc, to transform message primitive type arguments to val-
ues corresponding to the advice parameters. Pos gives the argument position. When
the type of the argument is not primitive, we use getArgument(pos). We also use
putArgument(pos, obj) to change the parameter in position pos with obj.

Determining if a Method is Concerned by an Advice. As previously suggested,
pointcuts bring two types of information: static and dynamic. Static information
is used by the translation algorithm to determine which class and which method
is concerned by an advice. Primitive pointcuts execution(signature_pattern)

or call(signature_pattern) in the heading of an advice indicate if it advises
a method and of which class. In the case where signature_pattern matches
several classes, we use pointcuts this(...) or target(...) to determine pre-
cisely which ones are concerned. Notice that among the frequently used combi-
nations are call(...)&&target()&&this()... or execution()&&target()&&

this()... . In the two cases, target is statically used to determine which class is con-
cerned. In the first case this() is only used as a dynamic information to allow exe-

cution of an advice only when a call is issued by the type specified by this(). In
the second case, i.e., during any execution, this() and target() designate the same
object. Pointcut within() plays almost the same role of this() when combined with
call() and execution() except that this() includes sub-types but not nested types
while within() captures nested types and ignores sub-types. Pointcut args() is used
to establish a link between the arguments of an advice and those of a call. Since the
CF approach deals only with messages, we have considered in the translation algorithm
that advice pointcut contains a call() or an execution(). However ASPECTJ allows
capturing other pointcuts which cannot be supported by the translation algorithm with-
out altering the base code. These pointcuts are: set(), get(), adviceexecution(),
initialization(), preinitialization(), staticinitialization(), han-

dler(), and withincode(). In the same way, join points corresponding to the exe-
cution of aspects themselves are not supported.
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Dynamic information comes from pointcuts cflow(), cflowbelow(), this(),
within() and if(). This means that this() and within() may play a static and
a dynamic role at the same time. In the translation algorithm, if() is inlined within
the method corresponding to an advice, while the remaining pointcuts are inlined
as a call to static methods of a class (called DynamicPC), we have added. Dynam-
icPC.cFlowBelowPc(...) and DynamicPC.thisPc(...) used in Listing 2, com-
putes the dynamic pointcuts they correspond to. Except if(), the four pointcuts are
computed by consulting the current thread stack.

Translating Advices. Listing 2 shows how advices are translated into methods in a way
that preserves their precedence. For before advices, the corresponding meta method first
executes the advice code then resumes the reified message using mess.continue().
In around advice, we replace proceed() and return statements with, respectively
mess.send() and mess.reply(). For after advices, the corresponding meta method
first lets the message continue using mess.send(), then executes what corresponds to
the advice code, and then lets the message finish using mess.continue(). Notice that,
since send() is the first statement in the meta method, the message continues with the
next filter of filter set before executing the advice code which gives precedence to other
advices.

There can be three interpretations of after advice: after the execution of the
join point completes normally (after() returning), after it throws an exception
(after() throwing), or after it does either one (after). The translation algorithm
doesn’t support after-returning or after-throwing join points since CF doesn’t provide a
means to know which one occurred. Even if, the statement mess.send() in the meta
method can be wrapped within a try-catch statement, the code whose call has been
reified needs to throw or re-throw an exception so that it can be dealt with in the meta
method level.

Aspect Associations. Aspect instances can be associated with the whole program, with
target or this objects of a pointcut, or with control flow of a pointcut. The first case
is the default. The second case is obtained using the declarations perthis(pc) or per-
target(pc) after the aspect name (pc is a pointcut). The third case is obtained by using
one of the two declarations: percflow(pc) or percflowbelow(pc). The algorithm
given in Fig. 7, deals only with the default case. The use of pertarget(pc) means that
there will be as many aspect instances as target objects of the pointcut pc. Hence there
will be also distinct field values for each aspect instance. To cope with this case, rather
than splitting an aspect into two classes (C_As and As in Section 4.2.1), we use only one
class whose objects are internal objects associated, each one, with the target class objects.
The same is true for perthis aspects but only when target and this objects are the
same (i.e., when pc contains the primitive pointcut execution(...)). The other cases
cannot be dealt with without affecting the base code.

Translating Named Pointcuts. The named pointcuts declared in advice headings can be
translated into anonymous pointcuts so that only primitive ones are used. The elimination
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of named pointcuts is an easy task but we need to change their parameters. To under-
stand this let us consider a base class Point having two integer fields (x and y) and two
methods setX(int newX) and setY(int newY) to update respectively the x and y

coordinates of class Point objects’. Now suppose that we need to capture the call to
these two methods to ensure that some constraints are satisfied before setting the x/y

coordinate. The following code will do the task.
Pointcut setter(Point p1, int newVal) :

target(p1) && args(newVal) && (call(void setX(int)) ||

call(void setY(int)));

before (Point p, int nVal): setter (p, nV) { /* Advice body */}

The elimination of a named pointcut can be done by two steps that must be achieved
for each advice:

1. Replace the parameters in the pointcut declaration with those appearing in the ad-
vice. When considering the setter pointcut we get:

Pointcut setter(Point p, int nV) :

target(p) && args(nV) && (call(void setX(int)) ||

call(void setY(int)));

2. Replace the specification of the named pointcut in the advice by the body of its
declaration. The advice become:

before (Point p, int nVal):

target(p) && args(nV) && (call(void setX(int)) ||

call(void setY(int))) {

// The advice body

}

Dealing with Superimposition. Rather than creating repeatedly a CF interface for each
concerned class in the base code, the superimposition mechanism allows the declara-
tion of a concern in one module consisting in three optional parts: the filter modules
specification, the superimposition specification and the implementation of the behaviour
(Bergmans and Aksit, 2004). While the filter module specifies how the calls are han-
dled, the superimposition specification selects to which classes the filter module is added
(Caro, 2001). The translation algorithm given in Fig. 6 does not deal with superimposi-
tion; however, it can be adapted as follows:

1. Rather than having one CF interface for each class, we split it in multiple CF inter-
faces where each corresponds to one aspect in the source program.

2. For each pair (CFI, C), where CFI is a CF interface (determined in the previous
step) and C the concerned class, create a CF concern module with CFI as the filter
module part and an expression selecting C in the superimposition specification part.

3. Merge CF concern modules (CFC1, CFC2, . . .) having the same filter module part
into one CF concern module (CFC). The latter has as superimposition specification
part, the union of the superimposition specification parts of CFC1, CFC2, . . . .

Obviously the third step is the most difficult. It can be optimized through an appro-
priate naming of the constructs generated by the algorithm of Fig. 6. For instance, the
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external class name must not be dependent of base class. Notice that this adaptation does
not allow getting a unique corresponding concern module for each aspect. We expect this
goal to be very difficult to achieve and will require a total reformulation of our algorithm.

Unmapped Concepts. Due to the constraint of keeping the base code unchanged, some
concepts had been left unmapped. Concerning the static crosscutting, the translation al-
gorithm deals with the most important concept which is the introduction of members.
The other concepts, not described in this article, such as declare warning, declare
soft, declare parent, can be dealt with easily by changing the base code.

Concerning the dynamic crosscutting, we have proposed a mapping that deals with
the most used concepts. Primitive pointcuts that are not supported or used are set(),

get(), adviceexecution(), initialization(), preinitialization(),

staticinitialization() and handler(). set() and get() can be easily trans-
formed into call(. . .) by providing advised fields with getter and setter methods and re-
placing field access or field assignment with calls to these methods, and then intercept
the calls by filters. However, this cannot be achieved without altering the base code.

The translation algorithm covers three advice types and context exposure using reifi-
cation and class Message. It also deals with precedence by using meta filter and order
of filters within a filter set. However, it doesn’t deal with multiple precedence declaration
statements that produce a cycle in the precedence graph, such as As1 precedes As2 that
precedes As3 . . . that precedes As1. Finally, the translation algorithm doesn’t cope with
access of advices to base code class private members nor copes with join points related
to private and package protected members.

5. Related Work

Because CF and ASPECTJ are relatively new paradigms and since they are continually
evolving, only a limited amount of research work is devoted to their assessment and com-
parison. In our context, the closest related works are those concerning implementation
of AOP concepts and weaving techniques (Garcia, 2003; Hilsdale and Hugunin, 2004;
Wichman, 1999). In Garcia (2003), the author proposes a specific implementation of CF
upon the .Net platform. More specifically, the .Net extension is composed of a runtime
system for the interpretation of CF specifications that are added to new applications as
well as to legacy systems. The work in Hilsdale and Hugunin (2004) is dedicated to the
weaving approach used for ASPECTJ and particularly the concepts and mechanisms used
to weave the advices. The work described in Wichman (1999) consists of an implemen-
tation of the CF approach called ComposeJ. The author shows how successive source
code transformations, directed by the composition filter specification, produce pure Java
statements.

Despite the fact that these works do not have a comparison goal, they have some sim-
ilarities with the work presented in this article. Indeed, in our work, each translation pro-
poses a specific algorithm that implements one approach using the other. Moreover, we
have achieved a particular weaving of the main concepts under a challenging constraint:
that of preserving base code classes unchanged.
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6. Conclusion

Aspect oriented programming is a new paradigm that seeks better decomposition of soft-
ware systems. Although ASPECTJ and CF are among the most well-known and mature
AOP technology available today, there is no attempt that aims at comparing deeply the
two approaches. As a step towards this goal, we presented a mapping of the two ap-
proaches. The originality of this work lies in the fact that it puts to the test the two ap-
proaches by directly confronting their concepts. Consequently, our mapping can be used
as a basis for a comparative study of the two approaches as well as a tool for transforming
concerns in a model integrated computing environment where coexist ASPECTJ and CF.

Throughout this work, it appears that even though each approach can be expressed
using the other, neither subsumes the other. In all the practical software cases studied,
a straightforward mapping was not possible; it seems also that achieving a one-to-one
mapping is impossible given that, at least, an aspect in ASPECTJ may concern many
classes whereas an input filters set concerns only one class.

There are several perspectives to this work. Those currently in progress are map-
pings between other SOC languages, the development of a metamodel transformation
tool dedicated to a model integrated computing environment where ASPECTJ and CF are
considered as two metamodels, and finalizing a comparative study of ASPECTJ and CF.
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ASPECTJ ir kompozicijos filtr ↪u s ↪avok ↪u sugretinimas

Djamel MESLATI

AspectJ ir kompozicij ↪u filtrai yra dvi pačios svarbiausios aspektinio programavimo kalbos,
sukurtos per pastar ↪aj↪i dešimtmet↪i. Nors abi šios kalbos yra palyginti brandžios ir j ↪u tobulinimo
bei praktinio panaudojimo klausimams yra skirta daug mokslini ↪u tyrim ↪u, kol kas nebuvo rimtesni ↪u
bandym ↪u palyginti jas tarpusavyje. Straipsnyje žengta šia linkme. Jame pasiūlyta kaip vienos kal-
bos s ↪avokas atvaizduoti ↪i kitos kalbos s ↪avokas, kas sudaro galimybes tas s ↪avokas sugretinti ir pa-
lyginti tarpusavyje. Straipsnyje parodyta, kad nors abi kalbos yra Java kalbos plėtiniai ir priklauso
tai pačiai programavimo kalb ↪u kategorijai, atvaizdis nėra nei griežtas, nei vienareikšmis.


