
INFORMATICA, 1991, VoL2, No,4, 524-538

CONTINUATION TRANSFORMATION AND

REDUCTION

K~stutis URBAITIS

Institute of Mathematics and Informatics,
Lithuanian Academy of Sciences.
2600 Vilnius, Akademijos StA, Lithuania

Abstract. The continuation transformation, its application
for recursion removal and relation with reduction algorithms is ana
lyzed. The reduction algorithm for expressions in continuation form
is presented.

Key words: continuations, control, reduction, recursion.

1. Il1troiduction. Continuation is a device which is used
in formalizing the notion of control flow in programming lan
guages and their semantics. It represents the formal notion of
a current point. 'in a computation. Contrary to t.he lower level
notiolls of a return address and return address st.ack, continua
tions capture control environment in full and use higher-orcler
functions to achieve this.

Oi.-igitially continuations where invented in de~lOtational
semantics to describe control structures, such as goto opera
tors, exits, nonlocal jumps, label values (Strachey a.nd '\\fads
worth, 1974). The metalanguage of denotational descriptions
is purely functional, based on the A-calculus. Denotational
equations are usually written in continuation-passing style and
map various 'nonfunctional constructions of the object lan
gnage into pure A-calculus.

K.Urbaitis 525

In case of imperative languages, where there is an e:-"'Pllcit.
sequence of operators, a continuation in a certain point of a
program represents the rest of the operators from that point,
that is the remaining part of th~ program.

in applicativ.e expression languages programs have a tree
structure. Oontinuations represent a certain point in a tree by
splitting it into a subexpression and the rest of the tree above
it, or context. A continuation is a special representat.ion of a
context.

Continuations can be used not only in metalanguage, but
on the object level as well. Any function can be translated into
continuation-passing form by using continuation transforma
tion. Every continuation-passing function receives an addi
tional continuation parameter. Instead of simply returuing,
the function either passes its result directly to this continua
tion, or passes this continuation, possibly nested into a new
larger expression, to some other function.

Functions in continuation form get explicit access to their
dynamic context. They may use this access.in different ways:
instead of returning to dynamic context, as usual, they can
throw it away, thus implementing escape, or change it, thus
performing nonlocal jump. By manipulating continuations it
is possible to implement complex sequential control structures:
recursion, backtracking, nonlocal jumps, escapes, intet'rupts,
coroutines. This possibility to process continuations explicitly
aUmvs to translate languages, extended with non-functional
control constructs into purely functional continuation-passing
programs.

An algorithm based on continuation transfonnation can
be used for recursion removal in fUllctional programs: it trans
forms any recursive program into contil~uation form, which
is tail-recursive, i.e. iterative. The transformation does not
change the algorithm of the program and· does not reduce its
complexity, only makes recursive control explicit.

526 Continuation transformation and reduction

We shall be interested in continuation transfonnation for
purely functional expression languages, based on ,\-~alculus.

A-expressions are built from variables by application and
A-abstraction operations:

variable: v is A-expression, if t' - variable,
application: M N is A-expression, if J.VI, N - A-expres

SIons,
absiraction: Av.A! is A-expression, if v - 'variable, 1\;1 -

A-expression.
Expressions have a structure of trees, complex expres··

sions contain subexpressions. Every subexpression has a con
text, which is the part of the expression surrounding it. Con
text. can be defined as an expression with a hole in it and will
be denoted C[]. vVhen the hole of context C[] is filled with
subexpression N it will be written C[N].

Continuation transformation can be generalized for A
calculus. Contexts can be interpreted as functions with one
parameter, where the parameter replaces the hole in the con
text:

j Cr V---4 AV.C[V].
The con~ext controls how the computation will continue

in the absence of explicit control transfers. It expects to re
ceive the val~e returned by the subexpression, with which it
will continue the computation.

A continuation 0: a A-expression is this special functional
encoding for its context. Informally, a continuation is an addi
tional argument of a function and continuation transformation
replaces the context of a subexpression by its functional en
coding which is passed to the <;ubexpression as an additional
argument:

C[_iW] ---4 MAV.C[V],
where the original expression can be reconstructed by applying
the continuation of a subexpression to the subexpressiop.},tself.

In g' ueral case, the expression to be transformed already

K. Urbaitis 52i

has initial continuation k, and transfol1l1ation rule then be
eomes:

C[ft1] k -io 4\1 (>.v.k C[v]) (Tr!)
This transfonnation step must be applied recursively to

remaining subexpressions. If we denote the transformed image
of Al as AI, the transfonnation rule can be written as equation:

. C[.M} k;; Ai (Av. C[vJ k) (TrP)
COIIl}Jutation is modelled in .\-cftkulus by red!~ction. Re

duction relations may be defined in several stages. The basic
relation is the rule of p-reduction:

{3
()..x.A1) N -d1[x :;: N] (p)

where the left side is a p-redex and the right side means sub
stituting N for variahle x in 11{, renaming other variables, if
necessary, to avoid variable name capture.

Next. t.he one st.ep p-reduction relation -io {3 is defined as
, 'bl' f t3 tne compah e closure 0 -:

lvI~1\l => ftl -{3 N
Al -{3 N ~ Z},I-j3 ZN (Cl')
Al--{3 N =? AIZ -+8 NZ (Cl)
Ai -{3 N ==:::> Ax.AI ---tp Ax.N (0

Usually, in implementations of functional Ijrogramming
languages, the rule (e) is omitted. This rule would require to
reduce bodies of defined functions eVen before they are called,
which is unnatural in practical applications. ,a-reduction
without the (e) rule is called weak reduction.

Finally, the p-reduction relation --* {3 is defined as the
reflexive, transitive closure of --{3:

AI -*{3 AI (Ref)
M ---:,. {3 Z, Z --* {3 N ===? M --* (3 N (Tran)

Different strategies may be used to reduce A-expressions.
The two most common and simple are innermost and out
ermost. In programming, the innermost strategy is called
'by-value', the outermost - 'by-name'. Both strategies have

528 Continuation transformation and redu.ction

special meaning when weak reduction is used. ,'7", shall fur
ther suppose the use of the innermost weak reduction strategy.
A-abstractions and variables will be called values.

2. Continuation transformation for recursion re
moval. \Ve shall introduce continuation transfonnation by
examples of recursion removal (\Vand, 1978; \Vand, 1980).

Continuation transformation can be used to transform
recursive functions into tail-recursive, or iterative functions.
The idea is to split function body into context a.nd subexpres
si on so that recursive call would be on the top of the subexpres
sion. The context is transformed into a cDntinuation which is
passed to the fUllction as an additional argument in the r(>Cllr
sive call. As a result of this transformation the recur::;iH: call
is lifted from the inside of the function body to the top level
and function definition becomes tail-recursive, or iterative.

The transrormation can be demonst.rated by the following
example of list reversal:

Example 1. The naive list reverse function:
rev t J = []
rev I[m : n} = apj>end (rev n)[m],

where [m : n] 'denotes a list with the head 1n and tail n, append
is list concatenation function. vVe define functions by equa.
tions with pattern matching, whid~ call be ea.sily translat.ed
into A-calculus. vVe shall use -, + and * as the usual arith
m~tic illfix operators. The same function in continua.tion form
gets an additional continuation parameter k:

rev' [] k = k(]
retl [m: 71.] k = rev' n(Av. J, (append v[m))).

By induction the following property can be proved:
rev' 71. ,,~ = k (rev n).

So we can define the original function by providing the
transformed function wit.h the initial continua.tion-identity
function I:

rev n = revl n 1.

K. Urbaitis 529

Programs in continuation form can be further transform
ed and optimized. One of the methods of optimization is to
replace continuations by data structures. In the previous ex
ample cont.inuation can be replaced by a list, and the expensive
call to append ('1'\11 be deleted:

1'ev" [J a = a
. ,,, r . J "r] ret, lm. n Q = rev n l111 : Q •

",(can prove by induction:
rev" :r Q = append (rev .~) a
reu" :r [)=)'(V x.

The transformed functions have the property that they
are tail-recursive, or iteratiw. They have explicit access to
their context t.hrough their cont.inuations, which they invoke
instead of the usual return to th(-' context from recursive call
i ~ the original functions.

The factorial function is transformed similarly:
Example 2. Factorial:

fac 0= 1
fac n= n * (fac (n - 1)).

After transfomlation:
fac' 0= >'k.k 1
fac' n=)'k.fac' (n -1) ().v.k (v * n)).

The functio;l calculating Fibonacci numb('rs has .double
recursion and requires to apply the transfonnation t,"ice:

Example 3. Fibonacci numbers:
fib 0= 1
fib 1 = 1
fib n= fib (n - 1) + fib (n - 2).

After transfonnation:
fib' 0 = >'k.k 1
fib l 1 =).~·.k 1
Jib' n=).k.Jib' (n -l)().Vl.fib' (n - 2)().V2.k (VI + V2))):

Next we shall reformula.te continuation transfonnatioll in
equ.ational style, by eliminating).-abstractions.

530 Continuation transformation and reduction

It is possible to write continuation functions without us
ing A-abstractions in a purely applicatin' equational notation
by using local definitions. The factorial function ('an be rewrit
ten in the follmving way:

fae 0 k = I.: 1
f ac n J... = f ae (n - 1) J..: 1 ,

where k1 v == k (v * n).
Local definitions can be made global by lifting their non

local variables. The following replacement must be made in
factorial:

This technique is known in functional programming HS

A - lifting or SupfTcombinator abstraction algorithm. For
factorial function we get:

fac 0 k = k 1
fac n 1,: = fac (n - 1) (Cl n /.:)
Cl n k V= I.: (v * n).

Applying the same transformations to Fibonacci function
I -

gIves: !

fi~ 0 I.: = k 1
fi'.J 1 1.: = k 1
fibn k=fib(n-l) (Cl n I.:)
clno1~ VI = fib (n - 2) (C2 n 1.: VI)

C2 11. k VI V2 = J..: (VI + V2).
It is possible to define continuation transformation 111

equational form directly, instead of lifting transformed A-ex
preSSlOns.

Let the function definition be given by the following equa-
tion:

f x y ... z = T,
where T - applicative expression.

Let. T have the form T = etA!]. Continuation transfor
mation produces from this equation the following equation by
introducing continuation function c:

K. Urbaitis .531

f'xy ... zk=lvi(cxy ... zk)
and additional equation is generated, defining continuation
function c:

c:r y ... z k v = k C[v].
This tra1.1sformation exactly corresponds to rule (Tr 1),

introduced earlier.
When transformation is used for recursion rel1l0\'al, fac

torizat.ion is performed as earlier described for subexprcssions
starting with recursive ('aIls. Tnmsformation st.ep is repeated
for all equations, including the new ones, until all recursion is
removed.

3. General continuation transformation. Continu
ation transfoITnation can be generalized for A-expressions by
applying factorization to all applications. ,\-expr('ssions are
transformed into continuation form by the following algorithm
(MeyeI' and \Vand, 1978):

Algorithm 1. Continuation transformation:
:r =)"k.kx (Var)
)...1:.11,1=)"k.h· ()..;r:.A1) (Ab8)
!'vI .LV =)..J..·.Af ()..m.N (An.m n k)) (App)

The additional .\-abstract.ions which arc introduced on
the right are continuations and varia ble /..~ is the initial con
tinuation for the transformed expression. Because every ;\1 is
an abstraction, the transformation introduces UC'\\" 3-redexes.
By reducing these redexes we get a simplified representation
of transformed expression. As a result of these reductions the
variables and A-abstractions which are initially factored· out
get back into their original positions .and the continuations of
applications are concatenated. In future we shall assume this
simplification implicitly. It is easy to notice that continuation
transformat.ion is a generalization of rule (Tr P) .

. The main property of the transformation is that it re
moves nested function applications by fa.ctoring t.hem out. The
absence of nested applications is preserved under ,B-reduction.

532 Continuation transfonnation and reduction

There is at most one redex which is not inside the SCODe of

a A-abstraction. Thus by-value and by-name weak reductions
coincide.

It is possible to develop the algorithm ·which produces the
simplified transformation directly by factoring out the nested
applications only.

Algorithm 2. Continuation transformation by rewriting:
It starts by introducing the initial continuation k:

Al N ~ AJu\1 N k (Ini)
Next, the following rewrite rules are applied to such re

dexes that. k contains /..: until possible:
Ak.(l\1 L) N J{ ---t >'k.f;! L (Av.v N]{) (Fl)
Al.:.A! (.N L) J{ ~ Ak.N L (Av.A! v K) (Fl)

where t' is a new variable. The algorithm is applied recnrsiycly
to the bodies of A-expressions.

The recursion removal algorithm described in the previ
ous section can be generalized for A-expressions in the fonow
mg way:

Algorithm 3. Equivalent continuation transformation:
;r : = >'k.k x (Var) = ->'.r.JI= >.k.'ij>.x.A1.l
AI N = >'k.Al (>.tH.N (>.n.k (1'n n)))

It can be proved by p-conversion ap cl induction:

J1 = >'l.:.k .k!
AI 1= M.

Algorithm 3 corresponds to rule (TrI).

(Abs)

(A.pp)

Algorithms 1 a.nd 3 differ only in the third rule (A.pp) a.nd
in generalEoduce nonequivalent expressions:

AI:I XI
i.H :I >'l.:J: Al.

The aim of the next section is to construct the reduction
algorithm for expressions \vith continuations All which pro
duces the SC'-fl1e result as the ordinary i)-reduction algorithm
for lvI.

K. Urbaitie 533

4. Reduction. \Ve shall investigate the algorithms
of ~-expression reduction. The usual by-value or leftmost
innermost algorithm of weak reduction will be used (Felleisen
and Friedman, 1986), that is, function application will be re
duced by first reducing its function part, next reducing its
argument part and then proceeding to reduce the body of the
A-abstraction, after performing the substitution. Variables
and A-expressions reduce to themselves.

The semantics of A-expressions is usually denotationally
defined by means of a function [], which takes additional
parampter-environrnellt. Environment is a function mapping
yariable names to their values.

[I] f = e I
[AI .. M] e = AV.P.!] e[I := ~)]
[AI N] e = [AI] e ([N] e).

This description is called direct semantics. It can be
tranSfOrITed into continuation, or indirect semantics by ap
plying continuation· transfonnat.ion to function [] :

[ID ek=k(ex)
[Ax.AI] e k = 1.~ ().vk.[~Vf] C[X := v] k)
[AI N] e k = [NI] e (Am. [S] e (An. m n k)).

We shall not be iaterest.ed in environment manipulation,
but only in expression traversal, so we may omit enyironment
parameters:

(x] k=kx
[Ax .. M] 1.: = k (,\X"~.[Af] /,.) = k (A.t.[JI])

: [111 N] k = [Ai] (Am. [N] (.An. 171 n k))

(Var')
(Abs)
(A.pp)

This semantic function is very similar to continuation
transformation of A-expressions. After replacing A-abstrac
tions .. vith local definitions, the rule for application can be
rewritten:

[Af N] /,~ = [kI] kl'
where kl m = [N] /';2, k2 n = m n J.:.

The local definitions of continuation fUllctions 1.:1 and k2

534 Continuation transformation and reductio?!

can be made global by A-lifting their non10ca1 variahles. mak
ing following replacements:

I..~l ----t X~l]V 1..:
k2 ----t 1..~2 m k.

'VYith these changes the rule for application can be re-
placed by three rules:

[Af N] /..~ = [AI] (1..'1 N k)
/..'1 N km = [.LV] (/..:2 m l.:)
k2 m k n = m n k

(App)

(S'.cap)
(B eta)

Next we shall analyze the \yeak bY-"\'alue reduction algo
rithms of .A-expressions.

Algorithm, 4- Reduction of .A-expressiom; (recursin'i:
.r ----t :r.

.A.r .Af ----t .A.r . AI.
Al iV ----t T[.r := RJ ~ Al ----+ .Ax.T~ N -- R.

(I' ar)

(.4.b8\

(App)

This algorithm is recursive and corresponds to direct se
mantics. Our aim is to construct a non-recursive reduction
machine. tHe transitions of which constitut-e a tail-recursive
rewriting $ystem. Contrary to reductions, transitions are al
ways applied to the whole expression. Reductions can be per
formed on s~lbexpressions, because the one-step reduction re
lation -13 is defined as a compatible closure of -.8 . To
eliminate recursion the continuation transformation can be
applied to Algorithm 4. The resulting algorithm corresponds
to the function of continuation semantics.

The classical SEeD ma.chine implements recursion by
means of a stack. The SECD reduction machine uses en,-iron
ment register E for accumulating delayed substitutions and
stack register S for context saving during expression traver
sal. ,Ve present one version of the SEeD machine without
environment. It contains two registers: C - Control ... for cur-·
rent expression, and S - Stack. Stack grows to the left. its
elements are separated by dots '.' .

K. Urbaitis

Algorithm 5. SECD reduction machine:

Control Stack Control Stack
x S ~ - x.S

(Ax.lvf) S ~ - (AX.l\1).S
(At ~V) S ~ Pr1 (_ N).S ,

m.{_ N).S --+ N (m _).S
n.(Ax.m _).S ~ m[x:= n] S

535

(Far')

(A.bs)
(App)
(Swa.p)
(Beta)

Variables and A-abstractions pre loaded on st.ack unre
d uced (Far a.nd Abs).

For application Al N both operands, function 111 and ar
gument]V, are first. reduced and then substitution performed.
There are three rules for application: for reductioll of .Jf
(App), reduction of N (S'wap) and substit.ution (Beta). \Vhen
application],,1 N is encountered. machine transf(>rs to reduce
;.'vI. Argument JY is loaded on st.ack in the form (_ .Y). which
shows that]V is an unreduced argument. vVhen Al is reduced.
its value m is .loaded on stack by (Far) or (Ab8) and then
swapped with]V by (Swap). m is saved on sta.ck in t.he form
(m _), which shows that m is a reduced function. Finally,
the values of both opera.nds are on stack and substit.ut.ion is
performed by (Beta). .

It can be easily noticed that SECD machine transfer rules
correspond one to one with the semant.ic equations in lifted
cont.inuation form and Stacl..~ corresponds to continuatiolls in
semantic equations. When Stack is in continua.tion form it can
be combined with Control into one expression, the Control
becoming the top of Stack. .

SEeD machine always performs (Swop) or (Beta) after
rules (1/ ar) or (A.bs). In continuation form rules (1/ ar) a.nd
(A.bs) may be eliminated, because it is not necessary to trans
fer values from Control to the top of Stack:

Algorithm 6. Reduction with continuations (tail-recursi-
ve):

536 Continuation transformation and reduction

A[N k ---+ AI (AV.V N I.:)
m (,\v.v N k) ---+ N (Av.m v k)

m - value: variable or A-abstraction
11 ('\r.{,\.r.m) t' I.:) ---+ m[.r:= n] k

n - value: variable or A-abstraction.

(App)
,Swap)

(Beta)

The reduction starts with the reducible expression .Al ap
plied to the initial continuation I, which corresponds to the
empty stack. The successful reduction ends with the value m.
applied to I :

1'1 I -* m I.
Now we come to our main obseryation that reduction

algorithm in continuation form incrementally transforms the
reducible expression itself into continuation form. The differ
ent steps are interleaved: rules (App), (Stoap) correspond to
continuation transformation (rules (Fl). (F1') in Algorithm 2
and rules (Cl), (Cr) in the definition of ,6-reduction) and rule
(Beta) corresponds to usual ;3-reductioll step.

vVhat happens if expression is transformed to continu
ation form b~i Algorithm 1 before reducing? It is clear that.
rules (App), (S tl'ap) become unnecessary and can be elim-

f
inated. Rulci (Beta) must be slightly changed because the
continuation 'of a A-abstraction must be concatellated to the
current contiim.ation. But concatenation is also performed by
j3-reduction, thus rule (Beta) is a double /3-reduction. The
rule for values (Far' - A.bs) applies continuation to the value.

Alg01'ithm 7. Reduction of expressi(.:r:..s with continua
tions:
(}.xl.:'.A1) N 1\---+ A,f[x := lV, k':= It] (Beta)
lvl(>.v.S) -S[t):=.iH), Al - value (Vm·-A.bs)

Algorithm 6 and 7 produce the same result for expression
M and its continuation transformation AI correspondingly:

j\tI I -*m I {=::? Ai I -~rn I.
6 j

If expression AI is closed, i.e. does not contain free vari-
ables, rule (Far - Abs) becomes unnecessary and Jl can be

K. Urbaitis 537

reduced to its value by pure j1-reduction.

Conclusions. We have investigated continuation trans
formation and its rela.tion to reduction algorithms. Reduction
algorithms with explicit control perform incremental continu
ation transfonnation. This observation was the basis for de
veloping the reduction algorithm of functions in continuation'
form.

Continuation transformation is related to flattening and
the reduction algorithm of transfomlcd expressions corres
ponds to resolution. used to implement. equat.ional programs
(Beilia and Levy, 1986).

Continuations are also rela ted to difference lists, used ill
Prolog programming, because they both contain a variable in
the list's tail.

REFERENCES

Bellia, Iv1., and G.Levy (1986). The relation between logic and func
tional languages: a survey. The Journal of Logic Programming,
3,217-236 .

Felleisen, l\L, and D.P.Friedman (1986). Control Opemtors, the
SECD-Machine, and the ,\-Ca.lcul1L1~. Indiana University TR,

No.197.

Meyer, A.R., and M.Wand (1978). Continuat.ion SemantiC!'; in
Typed Lambda-Calculi. In Lecture Notes in Computer Science.
Springer.

Strachey, C., and C.P.Wadsworth (1974). Continuat'ions: A Math
ematical Semantics for Handling Pull Jumps. Oxford University
PRG-ll.

Wand, M., and D.P.Friedman (1978). Compiling lambda-expres-
sions using continuations and faciorizatioI1s. Computer lan-
guages, 3, 241-263.

538 Continuation transforrnaiion and Y'i;dudion

\Yand, r...f (1980). Continuation-based program tra,nsforma.t1on
strategies. JACM, 27(1),164-180 .

Received Sept.ember 1990

K. Urba.itis received the Degree of Candidate of
Technical Sciences from the Institute of Cyberner.ics of Es
tonia11 AC3demy of Sciences in 1988. He is a researcher at HiP
D,.-partment of 1iIanagement Systems in the Institute of 1\larh
t'lHkltics and Informatics of Lithuania11 Academy of Sciellres.
His !"('sf:'arch interests include the foundations and integration
of higher-order programming paradigms and langtw.ges.

