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Abstract. The continuation transformation, its application 
for recursion removal and relation with reduction algorithms is ana
lyzed. The reduction algorithm for expressions in continuation form 
is presented. 
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1. Il1troiduction. Continuation is a device which is used 
in formalizing the notion of control flow in programming lan
guages and their semantics. It represents the formal notion of 
a current point. 'in a computation. Contrary to t.he lower level 
notiolls of a return address and return address st.ack, continua
tions capture control environment in full and use higher-orcler 
functions to achieve this. 

Oi.-igitially continuations where invented in de~lOtational 
semantics to describe control structures, such as goto opera
tors, exits, nonlocal jumps, label values (Strachey a.nd '\\fads
worth, 1974). The metalanguage of denotational descriptions 
is purely functional, based on the A-calculus. Denotational 
equations are usually written in continuation-passing style and 
map various 'nonfunctional constructions of the object lan
gnage into pure A-calculus. 
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In case of imperative languages, where there is an e:-"'Pllcit. 
sequence of operators, a continuation in a certain point of a 
program represents the rest of the operators from that point, 
that is the remaining part of th~ program. 

in applicativ.e expression languages programs have a tree 
structure. Oontinuations represent a certain point in a tree by 
splitting it into a subexpression and the rest of the tree above 
it, or context. A continuation is a special representat.ion of a 
context. 

Continuations can be used not only in metalanguage, but 
on the object level as well. Any function can be translated into 
continuation-passing form by using continuation transforma
tion. Every continuation-passing function receives an addi
tional continuation parameter. Instead of simply returuing, 
the function either passes its result directly to this continua
tion, or passes this continuation, possibly nested into a new 
larger expression, to some other function. 

Functions in continuation form get explicit access to their 
dynamic context. They may use this access.in different ways: 
instead of returning to dynamic context, as usual, they can 
throw it away, thus implementing escape, or change it, thus 
performing nonlocal jump. By manipulating continuations it 
is possible to implement complex sequential control structures: 
recursion, backtracking, nonlocal jumps, escapes, intet'rupts, 
coroutines. This possibility to process continuations explicitly 
aUmvs to translate languages, extended with non-functional 
control constructs into purely functional continuation-passing 
programs. 

An algorithm based on continuation transfonnation can 
be used for recursion removal in fUllctional programs: it trans
forms any recursive program into contil~uation form, which 
is tail-recursive, i.e. iterative. The transformation does not 
change the algorithm of the program and· does not reduce its 
complexity, only makes recursive control explicit. 
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We shall be interested in continuation transfonnation for 
purely functional expression languages, based on ,\-~alculus. 

A-expressions are built from variables by application and 
A-abstraction operations: 

variable: v is A-expression, if t' - variable, 
application: M N is A-expression, if J.VI, N - A-expres

SIons, 
absiraction: Av.A! is A-expression, if v - 'variable, 1\;1 -

A-expression. 
Expressions have a structure of trees, complex expres·· 

sions contain subexpressions. Every subexpression has a con
text, which is the part of the expression surrounding it. Con
text. can be defined as an expression with a hole in it and will 
be denoted C[ ]. vVhen the hole of context C[ ] is filled with 
subexpression N it will be written C[N]. 

Continuation transformation can be generalized for A
calculus. Contexts can be interpreted as functions with one 
parameter, where the parameter replaces the hole in the con
text: 

j Cr V---4 AV.C[V]. 
The con~ext controls how the computation will continue 

in the absence of explicit control transfers. It expects to re
ceive the val~e returned by the subexpression, with which it 
will continue the computation. 

A continuation 0: a A-expression is this special functional 
encoding for its context. Informally, a continuation is an addi
tional argument of a function and continuation transformation 
replaces the context of a subexpression by its functional en
coding which is passed to the <;ubexpression as an additional 
argument: 

C[_iW] ---4 MAV.C[V], 
where the original expression can be reconstructed by applying 
the continuation of a subexpression to the subexpressiop.},tself. 

In g' ueral case, the expression to be transformed already 
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has initial continuation k, and transfol1l1ation rule then be
eomes: 

C[ft1] k -io 4\1 (>.v.k C[v]) (Tr!) 
This transfonnation step must be applied recursively to 

remaining subexpressions. If we denote the transformed image 
of Al as AI, the transfonnation rule can be written as equation: 

. C[.M} k;; Ai (Av. C[vJ k) (TrP) 
COIIl}Jutation is modelled in .\-cftkulus by red!~ction. Re

duction relations may be defined in several stages. The basic 
relation is the rule of p-reduction: 

{3 
()..x.A1) N -d1[x :;: N] (p) 

where the left side is a p-redex and the right side means sub
stituting N for variahle x in 11{, renaming other variables, if 
necessary, to avoid variable name capture. 

Next. t.he one st.ep p-reduction relation -io {3 is defined as 
, 'bl' f t3 tne compah e closure 0 -: 

lvI~1\l => ftl -{3 N 
Al -{3 N ~ Z},I-j3 ZN (Cl') 
Al--{3 N =? AIZ -+8 NZ (Cl) 
Ai -{3 N ==:::> Ax.AI ---tp Ax.N (0 

Usually, in implementations of functional Ijrogramming 
languages, the rule (e) is omitted. This rule would require to 
reduce bodies of defined functions eVen before they are called, 
which is unnatural in practical applications. ,a-reduction 
without the (e) rule is called weak reduction. 

Finally, the p-reduction relation --* {3 is defined as the 
reflexive, transitive closure of --{3: 

AI -*{3 AI (Ref) 
M ---:,. {3 Z, Z --* {3 N ===? M --* (3 N (Tran) 

Different strategies may be used to reduce A-expressions. 
The two most common and simple are innermost and out
ermost. In programming, the innermost strategy is called 
'by-value', the outermost - 'by-name'. Both strategies have 
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special meaning when weak reduction is used. ,'7", shall fur
ther suppose the use of the innermost weak reduction strategy. 
A-abstractions and variables will be called values. 

2. Continuation transformation for recursion re
moval. \Ve shall introduce continuation transfonnation by 
examples of recursion removal (\Vand, 1978; \Vand, 1980). 

Continuation transformation can be used to transform 
recursive functions into tail-recursive, or iterative functions. 
The idea is to split function body into context a.nd subexpres
si on so that recursive call would be on the top of the subexpres
sion. The context is transformed into a cDntinuation which is 
passed to the fUllction as an additional argument in the r(>Cllr
sive call. As a result of this transformation the recur::;iH: call 
is lifted from the inside of the function body to the top level 
and function definition becomes tail-recursive, or iterative. 

The transrormation can be demonst.rated by the following 
example of list reversal: 

Example 1. The naive list reverse function: 
rev t J = [ ] 
rev I[m : n} = apj>end (rev n)[m], 

where [m : n] 'denotes a list with the head 1n and tail n, append 
is list concatenation function. vVe define functions by equa.
tions with pattern matching, whid~ call be ea.sily translat.ed 
into A-calculus. vVe shall use -, + and * as the usual arith
m~tic illfix operators. The same function in continua.tion form 
gets an additional continuation parameter k: 

rev' [ ] k = k( ] 
retl [m: 71.] k = rev' n(Av. J, (append v[m))). 

By induction the following property can be proved: 
rev' 71. ,,~ = k (rev n). 

So we can define the original function by providing the 
transformed function wit.h the initial continua.tion-identity 
function I: 

rev n = revl n 1. 
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Programs in continuation form can be further transform
ed and optimized. One of the methods of optimization is to 
replace continuations by data structures. In the previous ex
ample cont.inuation can be replaced by a list, and the expensive 
call to append ('1'\11 be deleted: 

1'ev" [ J a = a 
. ,,, r . J "r ] ret, lm. n Q = rev n l111 : Q • 

",( can prove by induction: 
rev" :r Q = append (rev .~) a 
reu" :r [ )= )'(V x. 

The transformed functions have the property that they 
are tail-recursive, or iteratiw. They have explicit access to 
their context t.hrough their cont.inuations, which they invoke 
instead of the usual return to th(-' context from recursive call 
i ~ the original functions. 

The factorial function is transformed similarly: 
Example 2. Factorial: 

fac 0= 1 
fac n= n * (fac (n - 1)). 

After transfomlation: 
fac' 0= >'k.k 1 
fac' n= )'k.fac' (n -1) ().v.k (v * n)). 

The functio;l calculating Fibonacci numb('rs has .double 
recursion and requires to apply the transfonnation t,"ice: 

Example 3. Fibonacci numbers: 
fib 0= 1 
fib 1 = 1 
fib n= fib (n - 1) + fib (n - 2). 

After transfonnation: 
fib' 0 = >'k.k 1 
fib l 1 = ).~·.k 1 
Jib' n= ).k.Jib' (n -l)().Vl.fib' (n - 2)().V2.k (VI + V2))): 

Next we shall reformula.te continuation transfonnatioll in 
equ.ational style, by eliminating ).-abstractions. 
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It is possible to write continuation functions without us
ing A-abstractions in a purely applicatin' equational notation 
by using local definitions. The factorial function ('an be rewrit
ten in the follmving way: 

fae 0 k = I.: 1 
f ac n J... = f ae (n - 1) J..: 1 , 

where k1 v == k (v * n). 
Local definitions can be made global by lifting their non

local variables. The following replacement must be made in 
factorial: 

This technique is known in functional programming HS 

A - lifting or SupfTcombinator abstraction algorithm. For 
factorial function we get: 

fac 0 k = k 1 
fac n 1,: = fac (n - 1) (Cl n /.:) 
Cl n k V= I.: (v * n). 

Applying the same transformations to Fibonacci function 
I -

gIves: ! 

fi~ 0 I.: = k 1 
fi'.J 1 1.: = k 1 
fibn k=fib(n-l) (Cl n I.:) 
clno1~ VI = fib (n - 2) (C2 n 1.: VI) 

C2 11. k VI V2 = J..: (VI + V2). 
It is possible to define continuation transformation 111 

equational form directly, instead of lifting transformed A-ex
preSSlOns. 

Let the function definition be given by the following equa-
tion: 

f x y ... z = T, 
where T - applicative expression. 

Let. T have the form T = etA!]. Continuation transfor
mation produces from this equation the following equation by 
introducing continuation function c: 
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f'xy ... zk=lvi(cxy ... zk) 
and additional equation is generated, defining continuation 
function c: 

c:r y ... z k v = k C[v]. 
This tra1.1sformation exactly corresponds to rule (Tr 1), 

introduced earlier. 
When transformation is used for recursion rel1l0\'al, fac

torizat.ion is performed as earlier described for subexprcssions 
starting with recursive ('aIls. Tnmsformation st.ep is repeated 
for all equations, including the new ones, until all recursion is 
removed. 

3. General continuation transformation. Continu
ation transfoITnation can be generalized for A-expressions by 
applying factorization to all applications. ,\-expr('ssions are 
transformed into continuation form by the following algorithm 
(MeyeI' and \Vand, 1978): 

Algorithm 1. Continuation transformation: 
:r =)"k.kx (Var) 
)...1:.11,1= )"k.h· ()..;r:.A1) (Ab8) 
!'vI .LV = )..J..·.Af ()..m.N (An.m n k)) (App) 

The additional .\-abstract.ions which arc introduced on 
the right are continuations and varia ble /..~ is the initial con
tinuation for the transformed expression. Because every ;\1 is 
an abstraction, the transformation introduces UC'\\" 3-redexes. 
By reducing these redexes we get a simplified representation 
of transformed expression. As a result of these reductions the 
variables and A-abstractions which are initially factored· out 
get back into their original positions .and the continuations of 
applications are concatenated. In future we shall assume this 
simplification implicitly. It is easy to notice that continuation 
transformat.ion is a generalization of rule (Tr P) . 

. The main property of the transformation is that it re
moves nested function applications by fa.ctoring t.hem out. The 
absence of nested applications is preserved under ,B-reduction. 
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There is at most one redex which is not inside the SCODe of 

a A-abstraction. Thus by-value and by-name weak reductions 
coincide. 

It is possible to develop the algorithm ·which produces the 
simplified transformation directly by factoring out the nested 
applications only. 

Algorithm 2. Continuation transformation by rewriting: 
It starts by introducing the initial continuation k: 

Al N ~ AJu\1 N k (Ini) 
Next, the following rewrite rules are applied to such re

dexes that. k contains /..: until possible: 
Ak.(l\1 L) N J{ ---t >'k.f;! L (Av.v N ]{) (Fl) 
Al.:.A! (.N L) J{ ~ Ak.N L (Av.A! v K) (Fl) 

where t' is a new variable. The algorithm is applied recnrsiycly 
to the bodies of A-expressions. 

The recursion removal algorithm described in the previ
ous section can be generalized for A-expressions in the fonow
mg way: 

Algorithm 3. Equivalent continuation transformation: 
;r : = >'k.k x (Var) = ->'.r.JI= >.k.'ij>.x.A1.l 
AI N = >'k.Al (>.tH.N (>.n.k (1'n n))) 

It can be proved by p-conversion ap cl induction: 

J1 = >'l.:.k .k! 
AI 1= M. 

Algorithm 3 corresponds to rule (TrI). 

(Abs) 

(A.pp) 

Algorithms 1 a.nd 3 differ only in the third rule (A.pp) a.nd 
in generalEoduce nonequivalent expressions: 

AI:I XI 
i.H :I >'l.:J: Al. 

The aim of the next section is to construct the reduction 
algorithm for expressions \vith continuations All which pro
duces the SC'-fl1e result as the ordinary i)-reduction algorithm 
for lvI. 
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4. Reduction. \Ve shall investigate the algorithms 
of ~-expression reduction. The usual by-value or leftmost
innermost algorithm of weak reduction will be used (Felleisen 
and Friedman, 1986), that is, function application will be re
duced by first reducing its function part, next reducing its 
argument part and then proceeding to reduce the body of the 
A-abstraction, after performing the substitution. Variables 
and A-expressions reduce to themselves. 

The semantics of A-expressions is usually denotationally 
defined by means of a function [ ], which takes additional 
parampter-environrnellt. Environment is a function mapping 
yariable names to their values. 

[I] f = e I 
[AI .. M] e = AV.P.!] e[I := ~)] 
[AI N] e = [AI] e ([N] e). 

This description is called direct semantics. It can be 
tranSfOrITed into continuation, or indirect semantics by ap
plying continuation· transfonnat.ion to function [ ] : 

[ID ek=k(ex) 
[Ax.AI] e k = 1.~ ().vk.[~Vf] C[X := v] k) 
[AI N] e k = [NI] e (Am. [S] e (An. m n k)). 

We shall not be iaterest.ed in environment manipulation, 
but only in expression traversal, so we may omit enyironment 
parameters: 

(x] k=kx 
[Ax .. M] 1.: = k (,\X"~.[Af] /,.) = k (A.t.[JI]) 

: [111 N] k = [Ai] (Am. [N] (.An. 171 n k)) 

(Var') 
(Abs) 
(A.pp) 

This semantic function is very similar to continuation 
transformation of A-expressions. After replacing A-abstrac
tions .. vith local definitions, the rule for application can be 
rewritten: 

[Af N] /,~ = [kI] kl' 
where kl m = [N] /';2, k2 n = m n J.:. 

The local definitions of continuation fUllctions 1.:1 and k2 
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can be made global by A-lifting their non10ca1 variahles. mak
ing following replacements: 

I..~l ----t X~l ]V 1..: 
k2 ----t 1..~2 m k. 

'VYith these changes the rule for application can be re-
placed by three rules: 

[Af N] /..~ = [AI] (1..'1 N k) 
/..'1 N km = [.LV] (/..:2 m l.:) 
k2 m k n = m n k 

(App) 

(S'.cap) 
(B eta) 

Next we shall analyze the \yeak bY-"\'alue reduction algo
rithms of .A-expressions. 

Algorithm, 4- Reduction of .A-expressiom; (recursin'i: 
.r ----t :r. 

.A.r .Af ----t .A.r . AI. 
Al iV ----t T[.r := RJ ~ Al ----+ .Ax.T~ N -- R. 

(I' ar) 

(.4.b8\ 

(App) 

This algorithm is recursive and corresponds to direct se
mantics. Our aim is to construct a non-recursive reduction 
machine. tHe transitions of which constitut-e a tail-recursive 
rewriting $ystem. Contrary to reductions, transitions are al
ways applied to the whole expression. Reductions can be per
formed on s~lbexpressions, because the one-step reduction re
lation -13 is defined as a compatible closure of -.8 . To 
eliminate recursion the continuation transformation can be 
applied to Algorithm 4. The resulting algorithm corresponds 
to the function of continuation semantics. 

The classical SEeD ma.chine implements recursion by 
means of a stack. The SECD reduction machine uses en,-iron
ment register E for accumulating delayed substitutions and 
stack register S for context saving during expression traver
sal. ,Ve present one version of the SEeD machine without 
environment. It contains two registers: C - Control ... for cur-· 
rent expression, and S - Stack. Stack grows to the left. its 
elements are separated by dots '.' . 
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Algorithm 5. SECD reduction machine: 

Control Stack Control Stack 
x S ~ - x.S 

(Ax.lvf) S ~ - (AX.l\1).S 
(At ~V) S ~ Pr1 (_ N).S , 

m.{_ N).S --+ N (m _).S 
n.(Ax.m _ ).S ~ m[x:= n] S 
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(Far') 

(A.bs) 
(App) 
(Swa.p) 
(Beta) 

Variables and A-abstractions pre loaded on st.ack unre
d uced ( Far a.nd Abs). 

For application Al N both operands, function 111 and ar
gument ]V, are first. reduced and then substitution performed. 
There are three rules for application: for reductioll of .Jf 
(App), reduction of N (S'wap) and substit.ution (Beta). \Vhen 
application ],,1 N is encountered. machine transf(>rs to reduce 
;.'vI. Argument JY is loaded on st.ack in the form (_ .Y). which 
shows that ]V is an unreduced argument. vVhen Al is reduced. 
its value m is .loaded on stack by (Far) or (Ab8) and then 
swapped with ]V by (Swap). m is saved on sta.ck in t.he form 
(m _), which shows that m is a reduced function. Finally, 
the values of both opera.nds are on stack and substit.ut.ion is 
performed by (Beta). . 

It can be easily noticed that SECD machine transfer rules 
correspond one to one with the semant.ic equations in lifted 
cont.inuation form and Stacl..~ corresponds to continuatiolls in 
semantic equations. When Stack is in continua.tion form it can 
be combined with Control into one expression, the Control 
becoming the top of Stack. . 

SEeD machine always performs (Swop) or (Beta) after 
rules (1/ ar) or (A.bs). In continuation form rules (1/ ar) a.nd 
(A.bs) may be eliminated, because it is not necessary to trans
fer values from Control to the top of Stack: 

Algorithm 6. Reduction with continuations (tail-recursi-
ve): 
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A[ N k ---+ AI (AV.V N I.:) 
m (,\v.v N k) ---+ N (Av.m v k) 

m - value: variable or A-abstraction 
11 ('\r.{,\.r.m) t' I.:) ---+ m[.r:= n] k 

n - value: variable or A-abstraction. 

(App) 
,Swap) 

(Beta) 

The reduction starts with the reducible expression .Al ap
plied to the initial continuation I, which corresponds to the 
empty stack. The successful reduction ends with the value m. 
applied to I : 

1'1 I -* m I. 
Now we come to our main obseryation that reduction 

algorithm in continuation form incrementally transforms the 
reducible expression itself into continuation form. The differ
ent steps are interleaved: rules (App), (Stoap) correspond to 
continuation transformation (rules (Fl). (F1') in Algorithm 2 
and rules (Cl), (Cr) in the definition of ,6-reduction) and rule 
(Beta) corresponds to usual ;3-reductioll step. 

vVhat happens if expression is transformed to continu
ation form b~i Algorithm 1 before reducing? It is clear that. 
rules (App), (S tl'ap) become unnecessary and can be elim-

f 
inated. Rulci (Beta) must be slightly changed because the 
continuation 'of a A-abstraction must be concatellated to the 
current contiim.ation. But concatenation is also performed by 
j3-reduction, thus rule (Beta) is a double /3-reduction. The 
rule for values (Far' - A.bs) applies continuation to the value. 

Alg01'ithm 7. Reduction of expressi(.:r:..s with continua
tions: 
(}.xl.:'.A1) N 1\---+ A,f[x := lV, k':= It] (Beta) 
lvl(>.v.S) -S[t):=.iH), Al - value (Vm·-A.bs) 

Algorithm 6 and 7 produce the same result for expression 
M and its continuation transformation AI correspondingly: 

j\tI I -*m I {=::? Ai I -~rn I. 
6 j 

If expression AI is closed, i.e. does not contain free vari-
ables, rule (Far - Abs) becomes unnecessary and Jl can be 
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reduced to its value by pure j1-reduction. 

Conclusions. We have investigated continuation trans
formation and its rela.tion to reduction algorithms. Reduction 
algorithms with explicit control perform incremental continu
ation transfonnation. This observation was the basis for de
veloping the reduction algorithm of functions in continuation' 
form. 

Continuation transformation is related to flattening and 
the reduction algorithm of transfomlcd expressions corres
ponds to resolution. used to implement. equat.ional programs 
(Beilia and Levy, 1986). 

Continuations are also rela ted to difference lists, used ill 
Prolog programming, because they both contain a variable in 
the list's tail. 
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