INFORMATICA, 2009, Vol. 20, No. 3, 397-416 397
© 2009 Institute of Mathematics and Informatics, Vilnius

Dynamic Generation of Web Services for Data
Retrieval Using Ontology

Ivan MAGDALENIC, Danijel RADOSEVIC

Faculty of Organization and Informatics, University of Zagreb
Pavlinska 2, HR-42000 Varazdin, Croatia
e-mail: ivan.magdalenic @foi.hr

Zoran SKOCIR
Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, HR-10000 Zagreb, Croatia

Received: September 2007; accepted: July 2009

Abstract. Semantic Web is envisioned as semantic description of data and services enabling un-
ambiguous computerized interpretation. Thanks to semantic description, computers can perform
demanding tasks such as automation of discovery and access to heterogeneous data sources. Al-
though this is possible with the existing technologies, combination of web services technology,
ontologies and generative programming methods makes this simpler and more efficient. This paper
presents the model for dynamic generation of web services for data retrieval from heterogeneous
data sources using ontologies. Emphasis is on dynamic generation of web services customized to a
particular user based on the request defined by ontology. The paper also describes a prototype of the
model implementation. Some advantages of our approach over other approaches are also provided.

Keywords: web services, data retrieval, ontology, generative programming.

1. Introduction and Motivations

The original Web can be described as a range of documents and links between the doc-
uments where the publishers create the content and the people browse for information.
Web 2.0 can be called the Service Web because it involves a new approach where the
interaction, user creations and shaping of content become the most important issues. The
next step is a Semantic Web, where semantic data description allows computers to dis-
cover and retrieve information. This paper presents how semantics can play an active role
in data retrieval by following the architecture described in Magdalenic er al. (2006). Let
us consider the following scenario: a user needs an application that automatically discov-
ers web services and uses them for data retrieval. Until now, this scenario required the
following steps: search of UDDI registers or Internet for web services, reading of a web
service description and metadata in order to familiarize with their functionality, creation
of client code for every chosen service and integration into the existing application. The
problems immediately identified are finding the appropriate web service which returns

398 1. Magdalenic et al.

the desired data, and use of that particular web service. Both problems are addressed to
the user instantaneously and the user must know how to solve them. It is important to
know that the user is not interested in web services; he seeks data that can be obtained by
them. The difference between a service and a web service is well-known and described
in Baida et al. (2004). Technological solutions must meet the user’s needs without the as-
sumption that the user has profound knowledge of the applied technologies. Identification
of the appropriate web service can be facilitated by adding semantic annotations to web
service description. We are introducing new semantic annotations joined to the existing
description of the web service and adopted for data retrieval from heterogeneous data
sources. The same semantic annotations are being used for web service description and
for description of the user’s request. We believe that the use of web service technology
can be improved and made easier if a service interface is customized to a particular user.
Currently, user must create client code for every service because it is hard to expect equal
interfaces for services of same functionality. If a service interface can be customized to
a particular user then only the location of a new service must be added to the client’s
application. We propose the use of generative programming to solve service interface
customization. We are also introducing a model for creation of web services for data re-
trieval from heterogeneous data sources, and for customization of a web service interface
to the user’s request defined by ontology. For model realization we used the web service
technology, ontology and generative programming methods. The paper is organized as
follows: related work is presented in Section 2. The model for web service creation and
customization to the user’s request is presented in Sections 3—10. Sections 11 and 12 de-
scribe implementation of the model presented in Sections 3—10. The conclusion is given
in Section 13.

2. Related Work

This paper draws upon topics found in several research areas. The first research area
refers to data retrieval from heterogeneous data sources; the second one refers to seman-
tic description of the web service; the third one refers to interoperability and web services
orchestration; finally, there is the research area of generative programming. A significant
project in the area of data retrieval with web services is OGSA DAI. This is a middle-
ware product that allows access to heterogeneous data sources, such as relation or XML
databases using the web services technology. OGSA DAI web services allow execution
of the queries upon data as well as retrieval of information about the services themselves.
Its infrastructure consists of the server’s and the client’s part. The messages have the
XML structure and use the web service technology for communication (Karasavvas et
al., 2005). The important advantage of this approach is a unique way of data manage-
ment of different kinds of sources. The sessions are supported, thus extending the core
web services functionality (Atkinson et al., 2005). Having a client part written in Java is
a restriction which brings many advantages and additional functionality, yet it gets along
with basic principles of platform and language independence of web services. OGSA-
DATI uses metadata to describe the web services. The web services must be semantically

Dynamic Generation of Web Services for Data Retrieval Using Ontology 399

described in order to ensure unambiguous interpretation of their contents, which is indis-
pensable for the automated binding. The problem with semantic description of web ser-
vices here is whether the basic program agents are able to locate, identify and combine
these services. If this is done efficiently, dynamic binding of web services during run-
time is of higher importance. Many researchers believe that the vision of a semantic web,
which provides computers with unambiguous interpretation of the web content, addresses
and solves this problem (Wang et al., 2004; Cardoso, 2007). Ontologies are widely ac-
cepted state-of-the-art knowledge representations and have, thus, been identified as the
central enabling technology for the Semantic Web. Their extensive usage allows semanti-
cally enhanced information processing as well as interoperability support (Roman et al.,
2007). Ontologies can assist in communication between humans, achieve interoperability
among software systems and improve design and quality of software systems (Cardoso,
2007). Lately, ontologies have become the focus of research in several other areas, in-
cluding knowledge engineering and management, information retrieval and integration,
agent systems, the Semantic Web, and e-commerce. Availability of formal ontologies is
crucial for the success of the Semantic Web (Benslimane et al., 2007). There are several
researches aiming to create ontology of a specific domain, e.g., the business process do-
main (Ciuksys and Caplinskas, 2007). In the area of semantic enrichment of the web ser-
vice description, the most significant projects are OWL-S (Martin et al., 2007), WSMO
(Roman et al., 2007) and METOR-S (Sheth et al., 2007). OWL-S describes the architec-
ture and the markup language for supporting web services and the Semantic Web. Web
services provide business logic and the Semantic Web provides unambiguous and under-
standable content. OWL-S tries to express web services in the language understandable to
computers in order to enable automation of various aspects, such as discovery, invocation
and composition. Semantic description of web services comes in separate files and is co-
vered by three classes: Service Profile describes the service and gives information about
its content; Service Model describes the service process decomposed into sub processes
and Service Grounding describes concrete details of how to invoke the service. OWL-S
offers a good way to express semantics of web services, which can be of a great benefit
to understanding the web service. A good semantic description achieved by the OWL-S
standards has taken significant effort. We believe that some domains, like data retrieval
from the heterogeneous data sources, can be covered by a simpler method, and thus by a
more efficient, semantic description. In addition to specification, WSMO, unlike OWL-S,
offers supporting tools. In order to describe ontology and the web services, it defines the
language called the Web Service Modelling Language (WSMO) (Scicluna, 2007). In the
domain of data retrieval it shows the same advantages and disadvantages as OWL-S. As a
part of METEOR-S project, a framework for describing semantic annotations in WSDL
definitions of the web services (Patil et al., 2004) has been developed. In the evolution-
ary approach to the existing WSDL specification, semantic annotations are added to give
semantic meaning (Sivashanmugam et al., 2003). A great advantage of this approach is
reliance on the existing specification, which is beneficial for wide acceptance of this stan-
dard. It is the best solution for the enclosed domain where annotations are sufficient to
give the whole semantic picture of the web service. This approach is also used in our

400 1. Magdalenic et al.

work. There are two conditions that must be satisfied in order to achieve efficient web
services orchestration. The first one addresses functionality and the second addresses
interfaces. The former one is solved in the context of ontology and the Semantic Web
(Sattanathan et al., 2006). The latter can be solved by developing the framework and sim-
ple language as a middleware between the services (Skrobo et al., 2005). Orchestration
of web services is much simpler if the same data is reached through different interfaces.
User can then choose the interface most appropriate to his/her needs and expedite the
development of a distributed application. It is even better if the web service interface
is accommodated to special requirements of each end user. This can be performed only
for a specific area, e.g., access to data. Generative programming is a discipline of auto-
matic programming which started, under that name, in the late 90’s. According to the
definition, generative programming represents ... designing and implementing software
modules which can be combined to generate specialized and highly optimized systems
fulfilling specific requirements” (Eisenecker, 1997). Aspiration to programming code op-
timization makes, according to Eisenecker (1997), the main specific difference to other
techniques of automatic programming. The main goals of generative programming are,
according to Czarnecki and Eisenecker (2000):

e to decrease the conceptual gap between program code and domain concepts (known
as achieving high intentionality);

e to achieve high reusability and adaptability;

e to simplify managing many variants of a component; and

e to increase efficiency (both in space and execution time).

Generative programming was the result of aspiration to increase software-producing
productivity by producing it in a way comparable with industrial production. Due to
some weaknesses, observed by Guerraoui (1996) and Ousterhout (1998), current object-
oriented programming is not able to fully fulfil these aspirations. For this reason, some
new disciplines of programming were developed in the middle of 90’s, hoping to succeed
the object paradigm. One of these disciplines is the so-called Aspect Oriented Program-
ming (AOP) (Guerraoui, 1996), which is one of the basic generative programming dis-
ciplines (along with metaprogramming, generic programming, object-oriented program-
ming and domain engineering; according to Czarnecki (1999). Generative programming
was originally considered mostly as a discipline of object-oriented programming. But,
as announced by Sells (2001), there were some attempts to connect generative program-
ming with scripting languages. Several design projects for specialized scripting languages
aimed at generative programming also appeared. Two of them are Open Promol (Stuikys
and Damasevicius, 2000) from Lithuania and Codeworker (Lemaire, 2007) from France.

3. The Model for Dynamic Generation of Web Services for Data Retrieval from the
Heterogeneous Data Sources Using Ontologies

Fig. 1 describes the model for dynamic generation of web services for data retrieval from
heterogeneous data sources and for interface adjustment to user’s request described by
ontology.

Dynamic Generation of Web Services for Data Retrieval Using Ontology 401

, Heterogeneous data
User request
sources
2, Ontological request 1. Ontological data
processing Ontology sources processing
(automaric) (manual)

3. Request to data
SOUrces mapping
{automatic)

1

4. Generation of Web Web service Web services's

service specification specification templates

Source code of class for
data retrieval

l

5. Generator

; Execution code of class 7. Generation of WSDL
6. Compiler .
for data retrieval file

e N
Sceleton source code
of Web service

i\ J
I

8. Generation of
k— sceleton source code
of Web service

WSDL file

9, Compiler Web service'
execution code

(Web container)
10. [)eplo)f to web WEB SERIVCE >
container (

Fig. 1. The model for dynamic generation of web services for data retrieval from the heterogeneous data sources
and for interface adjustment to user’s request described by ontology.

Parts of the model and their functionality are described as well. The purpose of the
model is to create programmable framework which will enable simple and efficient data
retrieval by the web services technology. Special emphasis is on the usage by users un-
familiar with the web service technology. A short description of the model is given first,
and a detailed functionality description given in later sections. Data sources are described
in the first step. Basic information about data sources is stored in the internal database.
Columns or nodes of data sources to ontology are mapped. In the second step the user’s
request is analyzed, which is actually the WSDL file enriched by semantic annotations.
Next we have the user’s request and data sources described by the common language-
ontology. If the items from the user’s request exist as items from registered data sources,
an appropriate web service can be made (Step 3). Interface information is extracted from

402 1. Magdalenic et al.

the WSDL file. Interface information and a semantically defined request are the basis
for generation of a web service specification (Step 4). The web service specification is
used by a source code generator to generate web service source code (Step 5). The source
code has to be compiled (Step 6) and it is the input for generation of the WSDL file
(Step 7). The skeleton code of the web service is generated upon the WSDL file (Step 8)
and then compiled (Step 9). The final step is a web service deployment to a web container
(Step 10). URL of the web service WSDL file is returned to the user as a final outcome
of the whole process.

4. Semantic Processing of the User’s Request

Industrial standard for web service description is the Web Service Description Language,
which has several releases. Although the latest release of specification is 2.0, our model
is based upon a specification version 1.2 (Chinnici et al., 2003) because it is supported
by most applicable software. WSDL defines the model and XML the format for the web
service description. Description of the web service consists of two parts: abstract descrip-
tion of functionality and concrete description of details as to where to find the service and
how to invoke it. Service description in the WSDL format can be stored in UDDI reg-
isters so that the service can be located. UDDI search mechanisms are not good enough
for automatic locating because they lack the semantics in service descriptions. Intro-
duction of semantics into the web service description is the aim of several projects. A
detailed comparison between them is given by Verma et al. (2003). The closest approach
to our work is the one from the METEOR-S project where the Web Service Sematics
model — WSDL-S is developed. The WSDL-S approach is evolutionary; it consists of
adding the semantic annotation to the existing WSDL standard. The same approach is
also supported in this work, all be it with some important differences. We believe that
semantic annotations from the WSDL-S are not sufficient to support dynamic service
generation for data retrieval. WSDL-S has the attribute named “modelReference” used
for connection of the WSDL element with the external semantic element. That element
cannot cover the instances where concepts of the external world are described by classes
and where the concept attributes are described by properties. A concrete example is in
the area of the relation database description. It is recommended that the relations (ta-
bles) are described by classes and the attributes of relations (columns) are described by
properties (Peter Alesso and Craig, 2005). Thus we propose the new elements which
will cover the concepts and the concept attributes and enable unambiguous connection
of the WSDL elements with the external semantic elements. The external semantic ele-
ments refer to elements contained in a different domain ontologies, taxonomies or other
semantic annotations. We use a primary OWL which supports the vocabulary of a con-
crete domain and the relation of equivalency. Relation of equivalency enables binding
the same elements within different domain ontologies. The following namespace is intro-
duced (Table 1):

Dynamic Generation of Web Services for Data Retrieval Using Ontology 403

Table 1

Namespace definition

Prefix Namespace

dwsg http://www. foi.hr/xmlns/DynamicWebServiceGeneration/

The following elements and attributes for semantic description are introduced:

e extension attribute modelClass, to handle one-to-one mapping of the schematic
elements to the concepts in a semantic model;

e extension attribute modelProperties, to handle one-to-one mapping of the sche-
matic elements to the concept properties in a semantic model;

e extension attribute filterOperator, to carry the comparison operator which will
be used for data filtering. Accepted values are: equal, notEqual, greaterThen,
greaterOrEqual, lessThen, lessOrEqual, contains, startsWith, endsWith;

e extension attribute responseType, to carry the information about a response for-
mat. Accepted values are: single — for response with single value, complexXml —
for a response with more values packed in the XML format;

e new element response, specified as a child element of the message element. A re-
sponse element is used if the response must have two or more elements packed in
the XML format;

e attribut name (extension attribute name, to carry the information for name of the
responded XML element); and

e extension attribute dataSourceChoice, to carry the information which will be used
in making the source choice. Accepted values are: new — for selecting the latest
source (the last registered source), all — for selecting all acceptable sources in
one service, separate — for creating more services (one service per acceptable data
source), optimal — choice of selection of only one data source is left to the server’s
internal logic.

XSD definition of the introduced extensions is shown in Fig. 2.

Fig. 3 shows a part of the WSDL file with examples of introduced extension elements

and attributes.

The example given in Fig. 3 shows the semantically described all important parts of
the WSDL file which give unambiguous information for data exchange to computers. Be-
cause the application domain is data retrieval from heterogeneous data sources, semantic
description is made on the input and output messages. The input message is carrying
information about the filtered data and filtering operation. The information about the se-
mantic is carried by the attributes dwsg:modelClass and dwsg:modelProperty, and filter
operation is carried by the attribute dwsg:filterOperator. Data type can be extracted from
the WSDL attribute type. The same attributes are used to describe the output message
with the addition of the element dwsg:response, used if a response contains more then
one piece of data. In that case the return value is the XML element which consists of
sub-elements, each semantically described by the dwsg:response element.

404

1. Magdalenic et al.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
targetNamespace="http://www.foi.hr/xmlns/
DynamicWebServiceGeneration/"
xmlns:dwsg=" http://www.foi.hr/xmlns/DynamicWebServiceGeneration/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<attribute name="modelClass" type="anyURI" use="optional"/>
<attribute name="modelProperties" type="anyURI" use="optional"/>
<attribute name="filterOperator" type="anyURI" use="optional"/>
<attribute name="responseType" type="anyURI" use="optional"/>
<attribute name="dataSourceChoice" type="anyURI" use="optional"/>
<element name="response">
<complexType>
<complexContent>
<extension base="wsdl:documented">
<attribute name="name" type="anyURI" use="optional"/>
<attribute name="modelClass" type="anyURI" use="optional"/>
<attribute name="modelProperties" type="anyURI" use="optional"/>
</extension>
</complexContent>
</complexType>
</element>
</schema>

Fig. 2. DWSG scheme.

<wsdl:message name="mlRequest">

<wsdl:part name="in0" type="xsd:float"
dwsg:filterOperator="lessOrEqual" dwsg:modelProperty="http://
www . foi.hr/dynamicweb/Yahoo.owl#priceCash"
dwsg:modelClass="http://www.foi.hr/dynamicweb/
Yahoo.owl#Computers">

</wsdl:part>

</wsdl:message>

<wsdl:message name="mlResponse'>

<wsdl:part name="mlReturn" type="soapenc:string"”
dwsg:responseType="complexXml'">

<dwsg:response dwsg:modelClass="http://www.foi.hr/dynamicweb/
Yahoo.owlfiComputers" dwsg:modelProperty="http://www.foi.hr/
dynamicweb/Yahoo.owlfcode" dwsg:name="elementName"/>
<dwsg:response dwsg:modelClass="http://www.foi.hr/dynamicweb/
Yahoo.owl#iComputers" dwsg:modelProperty="http://www.foi.hr/
dynamicweb/Yahoo.owl#priceCash" dwsg:name="elementName" />
</wsdl:part>

</wsdl :message>

<wsdl:portType name="AllSources" dwsg:dataSourceChoice="all">
wsdl:operation name="ml" parameterOrder="in0">

<wsdl:input name="mlRequest" message="impl:mlRequest">
</wsdl:input>

<wsdl:output name="mlResponse" message="impl:mlResponse'>
</wsdl:output>

</wsdl:operation>

</wsdl:portType>

Fig. 3. An example of the semantic annotations in the WSDL file.

Dynamic Generation of Web Services for Data Retrieval Using Ontology 405

SemanticServiceModel

-serviceName ~SiEMethiod . -isPartOr
LserviceMethods i 1
-dataSorecChoice 1

SemanticServiceMethod

tmethodName
FreturnType
Hresponse Type
FmethodElements

SemanticMcethodElement

elementName
HelementType
-modelClass
-modelProperty 1 ~hasElement
-filterOperator -isPartOf

HilterResponse

Fig. 4. The UML class diagram of request defined by ontology.

The service interface enriched by the semantic annotations must be parsed, after
which a semantic model of the request is created. A semantic request model described
by the UML classes is shown in Fig. 4. A semantic model consists of three classes. Se-
manticServiceModel contains the data about a service name and has a list of methods. Se-
manticServiceMethod gives the information about a method name, return type, response
type as described by the attribute dwsg:responseType and has a list of elements. Seman-
ticMethodElement contains the information about a method attributes and information
about the response data.

5. Semantic Processing of Data Sources

When the request is semantically described, data sources also must be described using the
same language in order to enable the search for the required data. In the past few years
several languages for semantic description have been developed and some are still under
development (e.g., RDF, OIL, DAML + OIL, OWL etc.). The Web Ontology Language
(OWL) is the latest markup language for writing ontology and is our first choice for our
model implementation. The area of mapping data sources to ontology is still the focus
of research and literature covers it using various approaches. The main problem is that
the domain covered by the table is not always the same as the domain covered by the
ontology concept. The domains can overlap only partially. The problem with automated
mapping of data sources to ontology is that browsing the content is often insufficient to
show what is actually represented. For example, the columns containing numbers can
represent column identification, cash price, price for payment with credit cards, discount,
etc. There are some solutions for mapping relational databases to ontology, as described
in Barrasa et al. (2004). There is also the approach of building personalized ontologies
by analyzing HTML pages generated from data from relational databases (Benslimane
et al., 2007). Because there is no uniform solution for all data sources we recommend
manual mapping of data sources to ontology. For that purpose we have developed the
web interface.

406 1. Magdalenic et al.

KW I Data Source 1

concept_11

it

column_13

‘Ontology Request

concept_rl concept_13

Data Source 2

(e

{ Ontology 2

property_r3

property_22 noder 29

| Data Sources |

column_31 node 2n

property_

JREla

is equivalent

column_32

l column_34

Fig. 5. The search for data sources by ontology.

property_24

[

_____/_l7/_______

6. Mapping User Requests for Data Sources

When the user’s request and data sources are described by ontology, the search can be
made through data sources in order to decide which best suits the user’s request. Fig. 5
describes one of such search cases. The principle of search is as follows:
1. Every data source is being searched to see if it contains all items from the user’s
request. The equivalent classes and properties must be considered.
2. If a data source has every item from the user’s request (data sources 2 and 3, Fig. 5)
the internal database is queried for the given service.
If the service already exists, its URL is returned to the user. If the service does not
exist, one or more services will be generated, depending on the value of the attribute
dwsg:dataSourceChoice.

7. Source Code Generation

A source code generator is described by the Scripting model guidelines, introduced by
Radosevic (2006). The Scripting model was originally developed for generative program-
ming based on the scripting languages (Radosevic, 2005). Unlike the object model, it is
oriented towards defining specified aspects of future applications within a specified prob-
lem domain, rather than on all application functionalities, as these are defined on the
lower level, in the program code templates (within the scripting model these are called

Dynamic Generation of Web Services for Data Retrieval Using Ontology 407

the metascripts). The aspects, according to Kiczales et al. (1997), represent the features
not strictly connected to organizational units of an individual program, like functions or
classes; therefore, they can appear within different application parts. Consequently, the
crosscutting concerns that cannot be expressed by entities can be abstracted and encap-
sulated in the aspects (Yao et al., 2005). However, a connection model is needed to im-
plement the aspects. Principally, the offered model is a type of a join point model (Kandé
et al., 2002). Join points are well-defined points during program execution, around which
extra aspectual code can be executed (Pengcheng and Lieberherr, 2005). Furthermore, a
scripting model is not based on types, i.e., it is a type-free system (Albano et al., 1989),
because the connecting points in a scripting model do not represent classes and their
objects, only connections (they have their names only, but not the property) between
the metaprograms and the properties defined in the application specification (Radosevic,
2005). The fact that the connection points do not have properties makes graphical rep-
resentation of a join points model easier. A scripting model consists of two graphical
diagrams (or of the equivalent textual specifications). Consequently, it is simpler than the
models based on UML (Radosevic, 2005). The first diagram is called the specification
diagram. It defines the structure of the application specification within the generation
system (Fig. 7). The generation system generates the application within its problem do-
main, which is designated by the program code templates (metascripts). The rules for
connecting metascripts to application specification are defined in the second diagram —
the metascripts diagram (Fig. 10); (Radosevic, 2005).

8. Steps for Building a Source Code Generator

The following steps are necessary for building a source code generator:
e detailed analysis of the specific problems which appear by data retrieval;
e building of the web services prototypes for data retrieval;
e building of the source code generator by the following steps:
1) analysis of web services prototypes,
2) detachment of common aspects,
3) separation of the concerns according to the guidelines of aspect-oriented pro-
gramming (AOP),
4) design of the source code templates and of the specification elements.
A web service generator generates a source code using the application specification
and appropriate code templates as shown in Fig. 6. A generated source code is compiled
and made ready to expose as a web service.

9. Generator Specification

Web services generator specification has four levels, as shown in Fig. 7.

Marks package and serviceName refer to the generated application as a whole (all
web services contain these elements). Some methods have their specific properties, de-
fined as the repeated sequences of marks under the mark methodName. The mark return-
Type gives the information about return type and is specified on the level of a particular

408 1. Magdalenic et al.

Problem i
ob ‘f Generator Solutl{m
domain domain
Generator
Specification (joins Source code

specification)

f

Code templates
(metascripts)

I [
| |
I |
| |
of web services _:-. metascripts to T (Java class)
| |
| [
I |
I [
| |

Fig. 6. Generator of web services.

[I I

package l serviceName melhcer.}hlama
]
[I I |
argumentType responseType returnType dataSourceType
[1
| I
[[[[I [I]
argument ﬂl[tfr path ras;:[n;nsa driver | | username pas:wor c°"":g°t5"' sourceName
I [
J l I]] I xpath
‘ filterOperator filteritam argument responseNS responseName xmiEfen;entNam

Fig. 7. The specification diagram.

method. Method’s arguments are specified under the mark argumentType. Each argument
has its own type (argumentType) and value specified by the mark argument. The mark re-
sponseType gives the information about a response type, e.g., if it is about a simple or
a complex response. Data sources are defined by the mark dataSourceType under which
there are relevant information for the access to a data source defined by: path, driver,
username, password, connectString, sourceName and xpath. Data filtration is defined by
marks filter;, filterOperator, filterName and argument. Mark argument is here used for
binding the input argument of methods with a particular column or a node of data source.
Return data are defined by marks responseName, responseNS and the name of a node
in XML format defined by xmlElementName. An example of a specification according
to the diagram from Fig. 7 is shown in Fig. 8. The specification from Fig. 8 specifies
a class with one method which fetches the values from two different data sources. The
first data source is the XML file and the second data source is a table from the relational
database. A generated class integrates the data from two data sources and returns them to
the user.

Dynamic Generation of Web Services for Data Retrieval Using Ontology 409

package:s491

serviceName:AllSources —{ class

methodName :ml

responseType:complexXml

argumentType:float [method

argument:0

dataSourceType:xml —

path:C:\\Tomcat 5.5\\webapps\\axis\\
WEB-INF\\files\\Infolab.xml

sourceName:Infolab.xml

filter:null

filterName:price

argument:0

filterOperator:lessOrEqual

xpath://pricelist//row

response:0

responseNS:null =

responseName : code

xmlElementName : code

response:l

responseNS:null

responseName:price

xmlElementName:price

dataSourceType:oracle

driver:oracle. jdbe.driver,OracleDriver

username :dw

password:dw

connectstring:jdbc:oracle:thin

:@127.0.0.1:1521:crazgl

sourceName : TEST VEMIL

filter:3

argument:0

filterOperator:lessOrEqual

response: 0

xmlElementName : code

response:3

xmlElementName:price

returnType:String

argument

response

datasource

Il

response

o
\\

Fig. 8. An example of the specification for source code generator.

10. Metascripts Diagram

A metascripts diagram defines binding of the source code templates to the properties
defined in the application specification. Fig. 10 shows a metascript diagram of the web
services generator which defines the relationship between the metacsripts and application.
Basic elements used in the diagram are shown in Fig. 9.

A metascript is a template used in generation of its implementation — program code
in the target programming language. It is represented by a rectangle. Metascripts contain
replacing tags — tags replaced by designated data or a program code. The tags are desig-
nated within the metascripts diagram by the link element. A link connects a metascript to
a replacing source and (optionally) to one or more metascripts of the lower level that are
used to generate a replacing code. It is represented by a triangle, with one of the angles
pointing downwards, containing the name of the replacing tag. A code can be replaced in

410 1. Magdalenic et al.

<name=>
[/f<comment>]

metascript

<source>

[<output code>]

#replacing tag#)
link

<source> source

i

Fig. 9. Elements of the metascripts diagram.

one of the following two ways:

e through direct replacement of a tag by the source data (if there are no metascripts
of the lower level) and

e by replacement of a tag by a metascript of the lower level (which also contains its
own links and sources).

A source represents a particular parameter defined by an appropriate tag in a diagram
of the application specification parameters. Sources can be defined as group parameters
(having a tree-like structure), in which case their further use must be defined on lower lev-
els of the metascripts diagram (by specifying particular sources). Let us return to Fig. 10.
The metascript on the first level is called CLASS and represents a template of the whole
class to be generated. The links #serviceName#, #package# i # sourceld# are directly re-
placed by appropriate values from the specification. The metascript METHOD is on the
second level and represents the template of a particular method. The number of method
arguments is gratuitous and replacement of the link #arguments# is defined on the next
level by usage of the metascript ARGUMENTS. Some parts of these methods depend on
the type of data source. Implementations of access to different types of sources are settled
to the metascripts SOURCES. The link to metascript sources is dataSourceType. Some
other details depend on the specification and the type of data sources. Finally, there are
five levels of templates.

11. Example of a Source Code Generation

An example of a generated source code is presented in Fig. 11. Source code is generated
according to the specification from Fig. 8. Fig. 11 shows only a part of the whole class,
specifically access to data source through the XML type. The generated source code is
JAVA class named SourceXML .java in the package service/s491/. Generated JAVA class
contains the method m/ which has one argument of the type float and returns the value
of the type String.

Dynamic Generation of Web Services for Data Retrieval Using Ontology

LEVEL1 LEVEL 2 LEVEL 3
M ARGUMENTS
FmethodName? arguments.met |
ascript
<
(argumentType [1) Hpath#
C O
Fethodsk
CLASS ani
| @orosemey e
class.metascri W
pt dataSourceType []
_________ (oD
[serviceName]. fina di
java -uw =
SOURCES
METHOD ey
PR pe).metascript
method.metas W
-
FILTERS
"""""
Responses
‘
#xmIToString# XMLtoSTRING
[responseType
]metascript
fire & e RETURNTYPE
w n ‘ CORRECTION
o
[returnTypel.m
etascript
LEVEL 4
FILTERS fiterName
T
[dataSourceTy
pe].metascript
LEVEL 4 LEVEL S
RESPONSES [=~dourceName# | RESPONSES_
% XML
[Ty sourceName W
pe]_[resp
) I y
Typel.r;‘etascn #responseti—" bl metasirnt (" responseNs)
(reeponss’) cesponsoNape

Fig. 10. The metascripts diagram.

411

412 1. Magdalenic et al.

package service,s491; package
import org.jdom.*;

import org.jdom.output.*;

import hr.foi.dynamicweb.util.*2
public class AllSources

public String ml floatk
String returnValue="";
Elerent rows=new Element (“rows");

{
daoxmrl.DaoxmlSoapBindingStub d;

serviceName
methodName

argumentType

try | path
d = ({daoxml,DaoxrlScapBindingStub}
new daoxml,DAOXmlServiceLocator (}.qetdao fitterName
d.setTimeout (6CO00C) ; filterOperator

int sessionld = d.open();
d.setConnectionParameters {sessjefi
"C:\\Tomcat 5.5\\webapps\\axis\\ INF\\filgs\\Infolab.xml");
d.setFilter (sessionld, null,"price”,ind, "lessOrEqual"):;

d.executeQuery(sessionld, " //p:imllst/i:k
while (d.hasNext (sessionid) = 1} {

Element row=new Element ("row"); *paih
row.setAttribute ("sourcelama”™, "Infolab.xml") ;

Element e0=new Element ("code™): T sourceName
e0.addContent (d.getValue {(sessionld, null,"code"));
row.addContent (eC) ; >— responseName
Element el=new Element ("price"):

el.addCentent (d.getValue (565518
row.addContent.{el) ;
rows.addContent (row) ; xmiElementName ~

catch (javax.xml._rpe. ServiceException jre)

log.error ("JAX-RPC ServiceException caught: ", jre);

catch (Exception s)

log.error ("Exception: ", s):

nuall, "price"));

next datasource

XMLOatputter xo = new XMLOutputter (Format.getPrettyFormat());
returnValue = xo.outputString(rows});
return returnValue;

Fig. 11. Generated Java class.

Finally, some properties from the specification end up in the generated source code
directly. Some specification properties implicate the rules of binding the specification to
appropriate templates of the source code, as defined in the metascripts diagram (Fig. 10).

12. Model Prototype

Prototype of the model was built using the programming language JAVA. We used the
following third party products: Tomcat 5.5 as web container, Axis 1.3 as software for
generation of web service’s skeleton code and for creation of WSDL files, Jena 2.4 for
managing WSDL files. Web interface for our implementation was built using JSP technol-
ogy and Oracle RDBMS was a database for storage of all internal data. The web interface

Dynamic Generation of Web Services for Data Retrieval Using Ontology 413

Create Web . o
Creat;l ‘Si::u'ow Service from ?:;?s:;':{:: Reg'::i:ggsdah Source-ontology Sour‘c’ieng;tgoloqy Deployed services Client
DataSource
Service name: DataRetrival Data source choice: all
Create WSDL file WSDL directory: C'\Tumcgl 5 5\welza£>ps\a: file name: BntReques! wgdl 7\
Create Method Methed name : |method2 | Return type | double | Response type ‘m_;’
Method name: method1; Return type: String; Response Type: complexXml;
Delete method
Method arguments:
Ontology node Ontology domain Filter operator Element type
http:/ /www.foi.hr/dynamicweb/Yahoo.owl#name http:/ /www.foi.hr/dynamicweb/Yahoo.owl#Computers contains String
Method response:
- Element Element
Ontology node Ontology domain SR e
http:/ /www.foi.hr/dynamicweb/Yahoo.owl#code http:/ /www.foi.hr/dynamicweb/Yahoo.owl#Computers code String
http:/ /www .foi.hr/dynamicweb/Yahoo.owl#priceCash http:/ /www.foi.hr/dynamicweb/Yahoo.owl#Computers price String
Search ontology for filter: ECOd - ‘ Search

Filter operator | Contains | Filter type | String ¥ Add to filter
Response name |elementName J Response type | String ¥ | Add to response
Clear ontology field

Fig. 12. Web interface for web service generation.

was used for data source registration, for ontology registration and for mapping of data
sources to ontology. We also built a web interface where data source owners can create
web services for data retrieval in a simple fashion. An example of the web interface is
presented in Fig. 12.

The main part of the prototype is the web service named dynamicws which can be in-
voked by users and which reads semantically described WSDL files as input arguments.
When such WSDL file is read, ontological model of a request is created. Dynamicws per-
forms one of the following: it returns the URL from the existing web service; it creates
one or more new web services and returns their URLs; it prevents the service from re-
turning anything if a user request cannot be fulfilled. It is sufficient to know the URL of
the dynamicws web service in order to query data. Client web interface is developed for
testing purposes. A client can generate his/her client code based on the URLs returned
from the dynamicws web service, following which the service can be invoked to retrieve
the data.

13. Conclusions

This paper presents the model for dynamic generation of web service for data retrieval
from heterogeneous data sources using ontology. Binding of the web services technology,
ontology and methods of generative programming enables the development of a modular
system for creation of web services customized to a particular user. Application of on-
tology in semantic description of the web services enables computers to unambiguously

414 1. Magdalenic et al.

interpret the user’s request, allowing either the creation of new web services or recogni-
tion of the existing web services. There are many advantages of the ontology-supported
web services for data retrieval compared to the traditional approach which includes pro-
gramming access to data sources or compared to web services which do not support
ontology. The most obvious are automated implementation of new web services, rapid
development, and creation of the services customized to user’s request where created
client code can be used to access more data sources. In addition, the web services tech-
nology increases the safety level by allowing access only to data sources registered by the
data owner. When the user has an application which data input are described in a way de-
scribed by our model, discovery and invocation of new data sources could be automated.
In that case the end user does not need to have profound knowledge of complex technical
background. Our future work will focus on the automated mapping of data sources to the
existing ontology, which will add functionality to our model.

References

Albano, A. et al. (1989). A framework for comparing type systems for database programming languages. In:
Computer Science at the University of St Andrews. St Andrews, UK. Available at:
http://www.cs.st-andrews.ac.uk/files/publications/download/ADG+89.pdf.

Atkinson, M. et al. (2005). A new architecture for OGSA-DALI In: Proceedings of the UK e-Science All Hands
Meeting 2005. Available at
http://www.allhands.org.uk/2005/proceedings/papers/432.pdf.

Baida, Z., Gordijn, J., Omelayenko, B., Akkermans, H. (2004). A shared service terminology for online service
provisioning. In: ICEC ’04: Proceedings of the 6th International Conference on Electronic Commerce, pp. 1—
10.

Barrasa, J., Corcho, O., Gomez-Perez, A. (2004). R20, An Extensible and Semantically Based Database-to-
Ontology MApping Language. Ontology Engineering Group, Departmento de Inteligencia Artificial, Facul-
tad de Informatica, Universidad Politecnica de Madrid, Espana.

Benslimane, S.M., Rahmouni, M.K., Benslimane, D. (2007). Extracting personalised ontology from data-
intensive web application: An HTML forms-based reverse engineering approach. Informatica, 18(4), 511—
534.

Cardoso, J. (2007). Semantic Web Services: Theory, Tools, and Applications. Information Science Reference.
Hershey.

Chinnici, C., Gudgin, M., Moreau, J., Weerawarana, S. (2003). Web Services Description Language (WSDL).
Version 1.2. W3C Working Draft. Available at: http://www.w3.org/TR/2003/WD-wsdl12-
20030124/.

Ciuksys, D., Caplinskas, A. (2007). Reusing ontological knowledge about business processes in IS engineering:
Process configuration problem. Informatica, 18(4), 585-602.

Czarnecki, K., Eisenecker, U. (2000). Generative Programming: Methods, Tools and Applications. Addison-
Wesley.

Czarnecki, K. (1999). Generative Programming and GMCL. Technische Universitit [lmenau, Fakultit fiir In-
formatik und Automatisierung.

Eisenecker, U. (1997). Generative programming (GP) with C++. In: Proceedings of Modular Programming
Languages. Springer-Verlag, Heidelberg/Linz.

Guerraoui, R. (1996). Strategic Directions in Object-Oriented Programming. ACM Computing Surveys. Balti-
more.

Kandé, M.M., Kienzle, J., Strohmeier, A. (2002). From AOP to UML — A bottom-up approach. In: Ist Interna-
tional Conference on Aspect-Oriented Software Development, Enschede, The Netherlands.

Karasavvas, K. et al. (2005). Introduction to OGSA-DALI services. In: Scientific Applications of Grid Comput-
ing. In: Lecture Notes in Computer Science, Vol. 3458/2005. Springer, Berlin/Heidelberg.

Dynamic Generation of Web Services for Data Retrieval Using Ontology 415

Kiczales, G. et al. (1997). Aspect-oriented programming. In: Proceedings of the European Conference on
Object-Oriented Programming. LNCS, Vol. 1241. Springer-Verlag.

Lemaire, C. (2007). CODEWORKER Parsing Tool and Code Generator, User’s Guide & Reference Manual.
Available at http: //codeworker. free. fr/CodeWorker .pdf.

Magdalenic, 1., Vrdoljak, B., Skocir, Z. (2006). Towards dynamic web service generation on demand. In: Pro-
ceedings of the International Conference on Software, Telecommunications and Computer Networks 2006,
Split, Croatia.

Martin, D. et al. (2007). OWL-S: Semantic Markup for Web Services.
http://www.w3.org/Submission/OWL-S/.

Ousterhout, J.K. (1998). Scripting: Higher level programming for the 21st century. IEEE Computer Magazine,
March.

Patil, A., Oundhakar, S., Sheth, A., Verma, K. (2004). METEOR-S web service annotation framework. In: The
Proceedings of the Thirteenth International World Wide Web Conference, New York, pp. 553-562.

Pengcheng, W., Lieberherr, K. (2005). Shadow programming: Reasoning about programs using lexical join
point information. In: Generative Programming and Component Engineering Conference (GPCE) 2005. In:
Lecture Notes in Computer Science, Vol. 3676/2005. Springer, Berlin/Heidelberg, pp. 141-156.

Peter Alesso, H., Craig, F.S. (2005). Developing Semantic Web Services. A.K. Peters, Ltd.

Radosevic, D., Klicek, B., Dobsa, J. (2006). Generative development using scripting model of application gen-
erator. In: DAAAM International Scientific Book 2006, Vienna, Austria.

Radosevic, D. (2005). Integration of generative programming and scripting languages (doctoral thesis). In:
DAAAM International Scientific Book 2006. Fakultet organizacije i informatike, Varazdin, Croatia.

Roman, D., Lausen, H., Keller, U. (Eds.) (2007). Web Service Modeling Ontology.
http://www.wsmo.org/TR/d2/v1.2/.

Sattanathan, S., Narendra, N.C., Maamar, Z. (2006). Ontologies for specifying and reconciling contexts of web
services. Electronic Notes in Theoretical Computer Science, 146(1), 43-57.

Scicluna J, (2007). Web Service Modeling Language. http: //www.wsmo .org/wsml/.

Sells, C. (2001). Generative programming: Modern techniques to automate repetitive programming tasks.
MSDN Magazine.
http://msdn.microsoft.com/msdnmag/issues/01/12/GenProg/GenProg.asp.

Sheth A., Miller, J., Budak Arpinar, I., Verma, K. (2007). METEOR-S: Semantic Web Services and Processes.
http://1lsdis.cs.uga.edu/projects/meteor-s/.

Sivashanmugam, K., Verma, K., Sheth, A.P., Miller, J.A. (2003). Adding semantics to web services standards.
In: Proceedings of the 1st International Conference on Web Services, Las Vegas, Nevada, pp. 395-401.

Skrobo, D., Milanovic, A., Srbljic, S. (2005). Distributed program interpretation in service-oriented architec-
tures. In: The 9th World Multi-Conference on Systemics, Cybernetics and Informatics, Orlando.

Stuikys, Damasevicius (2000). Scripting language open PROMOL and its processor, Informatica, 11(1), 71-86.

Verma, K., Gudgin, M., Moreau, J., Weerawarana, S. (2003). Configuration and Adaptation of Sematic Web
Processes. PhD dissertation. The University of Georgia.

Wang, H., Huang, J.Z., Qu, Y., Xie, J. (2004). Web services: Problems and future directions. Journal of Web
Semantics: Science, Services and Agents on the World Wide Web, 1(3), 309-320.

Yao, Z., Zheng, Q., Chen, G. (2005). AOP++: A generic aspect oriented programming framework in C++.
In: Generative Programming and Component Engineering Conference (GPCE) 2005. In: Lecture Notes in
Computer Science, Vol. 3676/2005. Springer, Berlin/Heidelberg, pp. 94-108.

416 1. Magdalenic et al.

I. Magdalenic is a PhD student and research associate at University of Zagreb, Faculty
of Organization and Informatics, Varazdin, Croatia. His main research interests include
development and application of new web technologies and e-commerce.

D. Radosevic is assistant professor at University of Zagreb, Faculty of Organization and
Informatics, Varazdin, Croatia. His main research areas are generative programming and
textmining.

Z. Skocir is a professor at University of Zagreb, Faculty of electrical engineering and
computing, Zagreb, Croatia. The main research interest are e-commerce, databases and
data warehousing.

Duomenims ieSkoti panaudojant ontologijas skirtu pasaulinio tinklo
paslaugu dinaminis generavimas

Ivan MAGDALENIC, Danijel RADOSEVIC, Zoran SKOCIR

Pasaulinis semantinis tinklas Siandien yra suvokiamas kaip jame saugomu duomeny ir jo
teikiamy paslaugy toks semantinis aprasas, kuri vienareik§miskai gali interpretuoti kompiuteris.
Pasinaudodamas tokiais apraSais, kompiuteris gali vykdyti nurodytas uZzduotis, pavyzdZiui, au-
tomatiskai surasti reikiamy heterogeniniy duomeny $altinius ir organizuoti prieiga prie ty duomenu.
Nors $ita galima padaryti esamomis pasaulinio tinklo paslaugu teikimo technologijomis, taciau, pa-
pildZius jas ontologijomis ir generatyviojo programavimo metodais, tai vyksta paprasciau ir daug
efektyviau. Straipsnyje aprasyta, kaip, panaudojant ontologijas, dinamiskai generuoti pasaulinio
tinklo paslaugas, atliekancias paieSka heterogeniniuose duomeny $altiniuose. Pagrindinis démesys
skirtas klausimui, kaip, panaudojant ontologija konkretaus vartotojo pateiktoms uZduotims anali-
zuoti, dinamiskai generuoti paslaugas, kuriy interfeisai biity pritaikyti tam vartotojui. Straipsnyje
taip pat yra apraSyta bandomoji pasiiillyto metodo realizacija ir aptarti svarbiausieji to metodo
pranasumai prie$ kitus panasios paskirties metodus.

