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Abstract. In this study, the performance of the modified subgradient algorithm (MSG) to solve
the 0—1 quadratic knapsack problem (QKP) was examined. The MSG was proposed by Gasimov
for solving dual problems constructed with respect to sharp Augmented Lagrangian function. The
MSG has some important proven properties. For example, it is convergent, and it guarantees zero
duality gap for the problems such that its objective and constraint functions are all Lipschtz. Addi-
tionally, the MSG has been successfully used for solving non-convex continuous and some combi-
natorial problems with equality constraints since it was first proposed. In this study, the MSG was
used to solve the QKP which has an inequality constraint. The first step in solving the problem was
converting zero-one nonlinear QKP problem into continuous nonlinear problem by adding only
one constraint and not adding any new variables. Second, in order to solve the continuous QKP,
dual problem with “zero duality gap” was constructed by using the sharp Augmented Lagrangian
function. Finally, the MSG was used to solve the dual problem, by considering the equality con-
straint in the computation of the norm. To compare the performance of the MSG with some other
methods, some test instances from the relevant literature were solved both by using the MSG and
by using three different MINLP solvers of GAMS software. The results obtained were presented
and discussed.

Keywords: quadratic knapsack problem, sharp augmented lagrangian function, MSG, integer
programming.

1. Introduction

The knapsack problem (KP) is a well-known combinatorial optimization problem. The
classical KP seeks to select, from a finite set of items, the subset, which maximizes a
linear function of the items chosen, subject to a single inequality constraint. In many real
life applications it is important that the profit of a packing also should reflect how well
the given items fit together. One formulation of such interdependence is the quadratic
knapsack problem. The quadratic knapsack problems (QKP) ask to maximize a quadratic
objective function subject to a single capacity constraint. Some application areas of the
QKP are determination of the optimal sites for communication satellite earth stations with
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a budget constraint, and similarly the determination of the location of railway stations and
freight handling terminals and airports.

QKP was introduced in 1980 by Gallo, Hammer and Simeone, who also presented
the first branch-and-bound algorithm using the bounds based on upper planes. In 1986,
a branch and bound algorithm for QKP was proposed by Chaillou, Hansen and Mahieu.
In their proposal, the computation of an upper bound was based on Lagrangean relax-
ation. Then, two upper bounds based on Lagrangean decomposition were presented for
QKP by Michelon and Veuilleux (1996). In the same year, Billionnet and Calmels pre-
sented a branch-and-cut approach for QKP. An exact algorithm was developed for QKP
by Caprara, Pisinger and Toth in 1999. In 2000, Helmberg, Rendl and Weismantel pro-
posed a number of upper bounds for QKP based on semi definite programming. In 2003,
Billionnet and Soutif introduced an exact method based on computation of an upper
bound by means of Lagrangean decomposition. This method allows for finding the op-
timum of instances with up to 150 variables whatever their densities are, and with up to
300 variables for medium and low densities. In 2005, Julstrom proposed a greedy genetic
algorithm (GA) whose operators implement the strategies of the two QKP greedy heuris-
tics. In Julstrom’s study, by using the greedy GA, near optimal solutions were obtained
with very small error for the test instances with 100 and 200 variables in a reasonable
short time.

In this study, the performance of the modified subgradient algorithm (MSG) to solve
the 0—1 quadratic knapsack problem (QKP) was examined. Then the results obtained this
way were compared with the results obtained when QKP was regarded as a quadratic
integer model and three different GAMS MINLP solvers (DICOPT, SBB, and BARON)
were used.

The MSG algorithm was proposed by Gasimov in 2002 for solving a continuous non-
linear model with respect to sharp augmented Lagrangean function. In order to use the
MSG algorithm, the QKP model should be converted into the continuous form first. In
this study, Li’s procedure (Li, 1992) was used due to the fact that this procedure adds
only one new constraint to the model, and it does not require adding new variables. Af-
ter converting, the dual problem with “zero duality gap” should be obtained and solved
by using the augmented Lagrangean function. Different methods or solvers can also be
used in solving the problem. In this study, CONOPT and MINOS solvers of the GAMS
software were used for solving the dual model.

In the steps of the MSG algorithm, two different formulations were given for step size
parameter by Gasimov and Ustun (2007). Indeed one of them may be used. However, in
order to determine differences between these two step parameters, in this study, both of
them were used on the same literature test instances and results were compared. All test
problems were taken from Soutif’s QKP page in University of Paris web site. They were
solved by using DICOPT, SBB, BARON solvers of GAMS software and by using the
MSG with two different step size parameters separately. As a result, it was shown that the
MSG is a promising and competitive algorithm to solve QKP.

The organization of this paper is as follows. In section two, the modified subgradi-
ent algorithm is introduced. In section three, solving QKP procedure by using the MSG
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algorithm is explained. Computational results are reported in section four and finally,
conclusions are given in the fifth section.

2. Modified Subgradient Algorithm

One of the classes of the exact methods used for solving 0-1 integer problems with non-
convex objective and/or constraints is based on penalty function approaches. The simple
examples show that in many cases the solution to the penalty problem can be made suf-
ficiently close to the optimal solution of the original problem by choosing the penalty
parameter large enough. However, solving a penalty problem with a very large penalty
parameter leads to computational difficulties (see, for example, Bazaraa et al., 2006, and
Bertsekas, 1995). Ordinary Lagrangian duality underlies many efficient algorithms for
convex minimization problems. A key ingredient is the strong duality. Lagrangian relax-
ation and decomposition methods have been extensively used for solving linear integer
problems (see, Michelon and Maculan, 1993; Michelon and Veuilleux, 1996). Unfortu-
nately, ordinary Lagrangian methods often end up with a duality gap and fail to identify
an optimal solution of the primal integer optimization problems such as the quadratic 0-1
problems which are non-convex, in general (Li, 1999).

In recent years, different augmented Lagrangian duality schemes which are able to
eliminate duality gap in a wide class of non-convex optimization problems and to pro-
vide solution algorithms, have been extensively studied (see, Gasimov, 2002; Gasimov
and Rubinov, 2004; Burachik ez al., 2006; Gasimov and Ustun, 2007; Burachik and Kaya,
2007; Burachik et al., in press). The MSG algorithm was proposed by Gasimov in 2002,
and then Gasimov and Rubinov introduced a general version of this algorithm by mod-
ifying it for generalized augmented Lagrangian dual problems and extended the circle
of problems solvable by this method in 2004. Gasimov and Ustun (2005) examined the
MSG algorithm by applying it to solve the non-convex zero-one quadratic assignment
problems. Burachik et al. (2006) gave a new convergence analysis for the MSG algo-
rithm and they proposed new formulas for the step-size parameters. In 2007, Gasimov
and Ustun proposed a generalized version of the MSG algorithm to solve sharp aug-
mented Lagrangian dual problems. Burachik et al. (in press) proposed an inexact version
of the MSG algorithm which may allow for solving problems with less computational
effort.

The MSG algorithm can solve the non-convex optimization problems with equality
constraint. If the problem is not convex, using the classical Lagrangean may lead to non-
zero duality gap. However, if the sharp augmented Lagrangean function is used; this
problem can be eliminated for a large scale of problems. It is proven that when the ob-
jective and constraint functions are all Lipschitz then the sharp augmented Lagrangean
guaranties the zero duality gap (Gasimov, 2002). This is a very important property but
it is not the only one because the MSG algorithm has other outstanding properties, too.
For example, the MSG algorithm converges to the optimal dual value when the step-size
is conveniently chosen. It does not require convexity or differentiability conditions on
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the primal problem and it does not use any penalty parameter. In other words, the MSG
algorithm can find the optimal value if the step-size parameter and other parameters are
properly chosen. That is the reason why the MSG algorithm is preferable. However, at
the end of the solution process, the obtained solution value may not be optimal. Success
of the MSG depends on success of the solver used for solving dual model. If solver guar-
antees the optimal solution of the dual model, the MSG can find the optimal value on
condition using proper parameter values. Otherwise, it can not be said anything about
optimality of the obtained solution. Nevertheless, it is observed that the MSG algorithm
can solve the problems in reasonable short times. For example, 32b, the hardest test prob-
lem of Quadratic Assignment Problem (QAP), was solved in 4.32 s by using the MSG
algorithm, although the other techniques need 7 years to solve. (see Gasimov and Ustun,
2005; Burachik et al., 2006; Gasimov and Ustun, 2007). The MSG algorithm is explained
shortly as follows:
Let the primal problem P be given as follows,

P
min P = min (),

subject to g(z) = 0,

where S is a compact subset of a metric space X, and f: X — Rand g: X — R"
are given functions. The sharp augmented Lagrangean function L: S x R x R, — R
associated with P:

L(z,u,¢) = f(x) +cllg()]| = (9(z),w) ,

where ¢ and u are the dual variables, || - || is the Euclidean norm and (-, -) is the Euclidean
inner product on R™.
The dual function H: R™ x R, — R associated with the problem P is defined as

H(u,c) = migL(m,um), foru € R, andc € R,.
xE

Then the dual problem P* is given by:

max  H(u,c).
(u,c)€ER™"X Ry
The steps of the MSG algorithm given by Gasimov and Ustun (2005) are as follows.
Initialization step: Choose a vector (u1,c1) € R" X Ry. Letk = 1.
Step 1. Given Lagrange multipliers (ug, c ), solve the following sub problem:
Minimize f(z) -+ cci [lg(z)| — (. 9(a)).
subject to f(z) + ccy, |g(z)|| — (ug, g(x)) < H.
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Let x;, be the global solution of this problem. If || g(x, )|| = 0 then stop. (u, cx) is a
solution to the dual problem (P*), xj, is a solution to (P). Otherwise, go to Step 2.
Step 2. Let

U1 = U — 5x9(Tr), cry1 = e + (Skrer)llg(xr)ll, ey

where s; and €, are positive scalar step sizes, replace k by k + 1 and repeat Step 1.
In practice, following step size formulation can be used:

6 (H - L(xk,uk,ck))
— , 2)
o 5 9 (ze)l”

where, H is an approximate optimal value or an upper bound for the dual problem and
0<d<2.

Choosing a value for the upper bound His crucial for the performance of the MSG
algorithm. In practice such a value may be taken by different ways. It is very easy to
find an upper bound for the QKP as the original objective function of the QKP is maxi-
mization. After converting into minimization form, zero will be the upper bound for all
the converted QKPs because the values of the objective functions are always negative.
The running times for the problems are not so long. Therefore, trying the different upper
bounds is not hard and the best upper bound can be found in a reasonable time. Another
important issue is calculating the €5, value. An interval is given for £, by Gasimov (2002).

Theorem 1. Let {(uy,ck)} be the sequence of dual variables generated by the MSG
algorithm. Assume that (uy, cy) is not a solution of the dual problem for any k, that is,
g(xx) # 0 for all k. Then

(a) Assume that there exists a dual solution. If

a(H — L(xg, uk, cx))
5llg ()2 ’

then dj41—dj, < 0, where dj, = d((u, €), (ug, c)) is distance between the optimal
dual solution and the pair of dual variables calculated at the kth iteration of the
algorithm and 0 < § < 2.

(b) Assume again that that there exists a dual solution and that f and g are contin-
uous, S is compact, and a feasible solution exists. If

0<er <sp=

(H — L(zk,uk,ck))
5 lg(a)|”

O<erp<sp=

b

then L(xy,ug,cx) — H.

Since the objective and constraint functions of the problem continuous nonlinear prob-
lem (CNP) given in (10)—(12) are all continuous and the set S for the problem (CNP) is
compact, it guarantees the duality gap property and the existence of solutions to (P).
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Theorem 2 was given by Burachik et al. (2006) and Theorem 3 and its proof were also
given by Gasimov (2002) to show that if z;, is a solution to (P) and (@, ¢) is a solution to
(P*) if and only if g(xy) = 0.

Theorem 2. Suppose that f(x) and g(x) are continuous, S is compact, and a feasible
solution of (P) exists. Then inf P = sup P* and S(P) # @. Furthermore, the dual
function H is concave and finite everywhere on R™ x R_. Consequently, this maximization
problem is effectively unconstrained.

Theorem 3. Let InfP = SubP* and for some (u,c) € Y* x Ry,

min L(z, 4, ¢) = f(z) + llg(@)| - (9(2), w).

€S

Then Z is a solution to (P) and (@, ) is a solution to (P*) if and only if

where X is any topological linear space, S C X is a certain subset of X, Y be a real
normed space and Y * is its dual.

The following step-size formulation was proposed and proven that it forces conver-
gence of the dual values towards the optimal value H by Burachik et al. (2006).

((H — L(zp, ur, ck)) + (e — ci)lg(an)ll)
(14 (1 +a)?)llg(zr)l?

Sk =19 , 0<éd<2.

In 2007, Gasimov and Ustun proposed new formulations (3), (4) and (5) instead of
(1) and (2). These formulations are given below:

Ug 1 = Up — askg(Tr), chr1 = cx + (14 a)sgllg(@n)|l, (3)

sl = § (a(H— L(ﬂfk,uk,q))z (c—ck) ||9(33k)|‘)’ @
(0% + (14 a)?) [|g(zx)]?

2 _ o (H L(zg, ug, ck ) )

(a2 + (1+a)?) g(za)|*

where @ > 0and0< ¢ < 2.

In this study, both of them were used separately in order to determine the differences
between them. In these formulations, c is not a penalty parameter. It is a dual variable and
its value is calculated as a function of the step size parameter.
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3. Solving the QKP by Using the MSG Algorithm

The QKP is a well known combinatorial optimization problem in Operational Research
literature and it is defined as follows:

n n—1 n
(P) maxz = Zpil‘i + Z Z PijTixj, (6)
=1

i=1 j—it1

subject to szxl < a, @)
i=1

z,x; €{0,1}, 4,j=1,...,n, ®)

where n items to pack in some knapsack of capacity a. Each item ¢ has a weight w; and
profit p; which is the profit achieved, if item 7 is selected. p;; is the profit achieved if both
items 7 and j are selected and the objective is maximizing the profit sum of the included
items without having the weight sum to exceed a. All the model parameters p;, p;;, w;
and a are positive numbers. In addition, the parameter a should satisfy the following
condition, maxw; < a < Z?:l w;.

In order tLo solve the QKP by using the MSG algorithm, QKP should be converted
into the continuous form first. In this study, 0-1 quadratic knapsack problem (P) was
converted into continuous nonlinear problem (CNP) by adding the only one constraint
which was proposed by Li in 1992.

n
D (wi—a7)=0, with0 <z <1.

i=1

Capacity constraint was reduced to the equality constraint by adding a slack variable and
the maximization problem was converted to the minimization one

max(f(z)) = —min(—f(z)).

The equivalent formulation of (P) as a continuous nonlinear problem with equality
constraints (CNP) can be written as follows:

n n—1 n
(CNP) minz=— Zpixi - Z Z DijTily, ®
i=1 i=1 j=i+1
subject to Zwixl + slack —a =0, (10)

i=1
S (s - a?) = 0, (1)
i=1
0<z; <1, ©1=1,...,n, slack > 0. (12)
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Then Augmented Lagrangean Function L(u,c,x) for (CNP) is constructed as given
below.

u c, x Zplxl—kz Z PijTi X

1=1 j=i+1

(o sacka) + (S 1)

i=1

(Zwmﬁ—slack—a)—m(i >7

i=1
1<2;,<£0,i=1,...,n, slack > 0. (13)

The last step of the algorithm is solving this sub-problem. Any method or solver can
be used to do this. In this study, CONOPT solver with step parameter s, and MINOS
solver with step parameter s; were used separately. Computational results are given in
Section 4.

4. Computational Results

In this section, the solving results of twenty QKP instances from the pertinent literature
are presented. All instances were solved by using three different GAMS MINLP solvers
(DICOPT, SBB and BARON) as integer QKP model and by using the MSG algorithm
with two different step size parameters s; and s;. All computational experiments were
conducted on HP6000 workstation and their computational time and the objective func-
tion values were reported and compared.

The first ten instances were called as Group 1 and others were called as Group2. In
order to define structure of test instances, number of available objects (n) and density —
percentage of non-zero p;; — (d) values were used. The test instances in Group 1 have
100 objects with 0.25 densities, and the test instances in Group 2 have 200 objects with
1 density. It is known that solving a problem of high density is relatively harder. On the
other hand, the optimal solutions were known for these test instances due to the fact that
all instances were solved to optimality by Billionet and Soutif (2003) and the relevant
web site! reports their optimum values.

An important issue in the MSG algorithm is choosing the proper parameter values.
There is no guaranteed method for identifying parameter values in the MSG method-
ology. However, it is very easy to find an upper bound for the QKP. Since the original
objective function of the QKP is maximization, after converting the objective function
into minimization form, zero will be a good upper bound for the problem. As the run-
ning times for the problems are not so long, trying to solve the QKP model with any
positive upper bound is not difficult and a good upper bound can be found in a reason-
able time. According to the algorithm, a vector (u1,¢1) € R™ x R, should be cho-
sen at the initialization step. Zero vectors were used for all test problems as the initial

'http://cedric.cnam. fr/~soutif/QKP/.
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value of the dual variables and each test problem was solved five times with different pa-
rameter (H, ¢, v, §) combinations. Ranges of the parameters were determined like that:
H >0, ¢ € [2c5c, a € [2,10], § € (0,2). Then, the best objective function value
among five tests and its running time were reported as the result of the MSG algorithm.

Computational results for twenty QKP instances are illustrated in Table 1 as Groupl,
and Group 2. The left part of the table summarizes the properties of instances such as
number of items (n), density (d) and the optimum value for each instance. The second
and third parts contain solution results obtained by using GAMS MINLP solvers and the
MSG algorithm with sj, step size parameter. In order to solve the augmented Lagrangean
function, CONOPT solver is used due to obtaining good solution results by using sj
and CONOPT together. For each solution technique, the best objective function value
among 5 experiments, closeness to the optimality in percentage (E% = 100* (opt. value-
value)/opt. value), and the elapsed time in second are given in Table 1. Better solutions
are written in bold and underlined for each test instance.

Table 1
Performance of the MSG algorithm with step size parameter sllc and CONOPT solver

Instances GAMS MINLP SOLVERS MSG
Group 1 DICOPT SBB BARON

(n =100,d = 0.25)

Opt. value Value E% Time Value E% Time Value E%  Time Value E% Time
18558 18511 0.25 0.74 18485 0.39 0.82 18514 024  0.78 18558 0.00 1.33
56525 56525 0.00 0.53 55717 143 1.62 55578 1.68 497 56452 0.13  0.71
3752 3752 0.00 0.37 3717 093 1.31 3538 570 233 3717 093 1.08
50382 50382 0.00 0.08 50382 0.00 0.13 50382 0.00 0.89 50382 0.00 0.55
61494 61494 0.00 0.31 61213 046 0.36 60983 0.83 025 61494 0.00 0.72
36360 36360 0.00 0.46 36137 0.61 0.63 36137  0.61 0.89 36155 0.56 1.84
14657 14657 0.00 0.35 14072 399 1.65 14282 256 078 14439 149 0.78
20452 20369 041 0.78 19932 254 127 19932 254 0.66 20452 0.00 255
35438 35438 0.00 0.37 35438 0.00 0.66 34924 145 081 35325 032 07
24930 24915 0.06 0.59 24503 171 1.07 24748 073 0.78 24861 0.28 1.16

mean 0.07 0.46 1.21 095 1.63 1.31 037 1.14

Group 2

(n=200,d=1)

Opt. value Value E% Time Value E% Time Value E%  Time Value E% Time
937149 937149 0.00 0.6 935515 0.17 124 935700 0.15 787 933049 0.44 29.1
303058 303058 0.00 0.91 301788 042 124 301759 043  121.97 294360 2.87 891
29367 29367 0.00 0.58 28867 1.70 203 28867 1.70 1014.84 29162 0.70 134

100838 100838 0.00 1.35 100466 0.37 16.3 100466 0.37 270.38 100466 0.37 7.23
786635 786635 0.00 1.12 785450 0.15 3.08 785450 0.15 297.33 784480 0.27 525
41171 41171 0.00 0.66 39934  3.00 20.8 39318 4.50 266.17 41171 0.00 5.23
701094 701094 0.00 0.7 698701 0.34 4.23 698701 0.34  305.5 698004 0.44 12.6
782443 782443 0.00 0.73 780184 0.29 4.66 779785 0.34  226.38 767217 195 9.78
628992 628925 0.01 0.78 627121 0.30 534 619257 1.55 256.55 627121 0.30 8.18
378442 378442 0.00 1.14 376613 048 10 376744 045 206.14 370075 221 12.6

mean 0.00 0.86 0.72  10.95 1.00  214.65 095 11.23
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As can be seen in Table 1, the most successful solver is clearly DICOPT. DICOPT has
reached optimal solution in 18 of the 20 test problems. Besides, other 2 instances’ results
are quite close to optimal solution value except the first test problem. The MSG algorithm
found the optimum solutions in 5 test problems. SBB found the optimum solution in
only 2 test problems and BARON found the optimum solution in only 1 test problem.
Additionally, according to solution times, the most successful solver is again DICOPT. It
can be said that the MSG is the second best algorithm, SBB is the third and BARON is the
last one regarding E% (percent closeness to the optimal solution) and the solution time.
On the other hand, it is strange that the MSG algorithm can find the optimal solution in
the first test problem when DICOPT has got its worst performance. Indeed, the success
of DICOPT is regarded surprising considering the optimal solutions found for all test
problems with n = 200. Nevertheless, it can be said that the MSG algorithm is as good an
algorithm as other solvers in terms of solving QKP because it can solve all test problems
in less than 1 second for Group 1. However, for Group 2, it is clear that the success of
DICOPT is superior with respect to optimality and solution time.

In this study, in order to examine whether the success of the MSG can be increased,
another step parameter (s3) and MINOS solver was used to solve these test instances.
The obtained solutions are given in Table 2.

As presented in Table 2, the MSG has obtained better solutions in 11 of the 20 in-
stances. Two of them are in the first group (the seventh and ninth problems), and 9 of
them are in the second group (all instances except the fifth one). The MSG can find the
optimal solution for the seventh test instance of the first group. Besides, the obtained so-
Iution values were increased. It can therefore be suggested that better results are obtained
by using step parameter s7 and MINOS solver. On the other hand, the solution times are
not as short as before. The mean percentage E value is decreased from 0.37 to 0.2 in
the first group test instances. This value is decreased from 0.95 to 0.23 for the second

Table 2
The performance of the MSG algorithm with step size parameter si and MINOS solver

Instances MSG
n d Opt. value Value E% Time
100 0.25 14657 14657  0.00 2.92
24930 24912 0.07 16.00
200 1.00 937149 934467 029  63.30
303058 301965 036 87.30
29367 29176 0.65 184.08
100838 100837  0.00 143.96
786635 786018 0.08  73.81
701094 700260 0.12  95.02
782443 780148 029  64.87
628992 628398 0.09  77.56

378442 377000 038  81.03
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group test instances results. On the other hand, the mean solution times were increased
from 1.14 s to 2.84 s for the first group and from 11.23 s to 87.62 s for the second group.
Despite this increase, the solution times are not so serious that it can not be tolerated, but
finding better solution takes much time. These experiments show that the quality of the
MSG solutions depends on choosing proper parameter values and choosing the step size
parameter equation with solver. In other words, if these parameters are chosen properly,
the MSG will be able to compete with other solvers.

5. Conclusions

In this study, it is shown that the MSG algorithm is a successful algorithm on solving
QKP and it is as good as other GAMS MINLP solvers. Also, the MSG algorithm can
find the optimum solution. However, the MSG algorithm fails to yield a similar great
performance in solving the QAP. This result is considered to be surprising because the
quadratic objective function of QKP is similar to that of QAP. The reason may be that DI-
COPT can handle a problem having one constraint like QKP easily. Nevertheless, solving
performance of the MSG algorithm is too good to ignore. Besides, the performance of the
QKP can be increased in terms of determining step parameters reasonably.

In further researches, the performance of the MSG algorithm may be tested on differ-
ent integer programming models and different solvers or algorithms can be used to solve
the sub problem.
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Modifikuotas subgradientinis algoritmas (-1 Kkuprinés uzdaviniui
spresti

Aydin SIPAHIOGLU, Tugba SARAC

Siame darbe tiriamas modifikuotas subgradientinis algoritmas (MSA) 01 kuprinés uZdaviniui
(QKU) spresti. MSA buvo pasitilytas R. Gasimovo dulioms problemoms spresti pasinaudojus as-
tria papildyta LagranZo funkcija. MSA pasiZymi svarbiomis savybémis. PavyzdZiui, §is algoritmas
konverguoja, garantuodamas nulini dualumo skirtuma uzdaviniuose su LipSico tikslo ir ribojimy
funkcijomis. Be to, MSA buvo sékmingai pritaikytas neiskiliems tolydiniams ir kai kuriems kom-
binatoriniams uZdaviniams spresti. Siame darbe MSA pritaikytas QKU su nelygybiniais riboji-
mais spresti. Pirmiausia, sprendZiamas uzdavinys yra suvedamas i tolydaus iskilo optimizavimo
uzdavini, pridéjus papildomy ribojimu. Po to konstruojamas dualusis uzdavinys, ivedus aStriaja pa-
pildyta Lagranzo funkcija. Tuomet MSA yra pritaikomas dualiam uzdaviniui spresti, atsiZvelgiant {
lygybinius ribojimus normos skai¢iavimui. Pasitilytam metodui ivertinti buvo iSspresti keli testiniai
uzdaviniai, paimti i$ literatiros, pasinaudojus trimis skirtingomis MINLP procediiromis i§ GAMS
irangos.



