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Abstract. One of the most known applications of Discrete Optimization is on scheduling. In con-
trast, one of the most known applications of Continuous Nonlinear Optimization is on the control
of dynamic systems. In this paper, we combine both views, solving scheduling problems as dy-
namic systems, modeled as discrete-time nonlinear optimal control problems with state and control
continuous variables subjected to upper and lower bounds. Complementarity constraints are used
to represent scheduling decisions. One example we discuss in detail is the crude oil scheduling in
ports, with numerical results presented.
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1. Introduction

Scheduling problems can be modeled as discrete optimization problems, as they feature
two general types of constraints: discrete constraints and continuous constraints. The first
group relates to enumerative or logical decisions like “choose source A to send cargo B to
destination C at time t”, whereas the second relates to more general limitations like “the
maximum storage capacity of store A is 30,000 m3”. Constraints on discrete variables
stand for assignment and sequencing decisions, and continuous equations model mass,
volume, energy or component balances.

Floudas and Lin (2005) recently presented a survey on process scheduling, where they
emphasize the importance of Mixed Integer Linear Programming (MILP) in this field.
The guarantee of global optimality is considered as the highlight of this approach. How-
ever, due to scheduling’s NP-completeness, such models suffer from the curse of dimen-
sionality (the number of variables is exponential to number of time periods), and MILP
solving procedures reach unacceptable computational times to find a solution for a real-
world problem. A possible approach to reduce computational time is to develop tailor-
made heuristics that can find good solutions for specific scheduling problems, based on
the problems’ particular structures as in Al-Yakoob and Sherali (2007) and Janiak and Ko-
valyov (2006). Another possible approach is to substitute typical scheduling objectives to
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alternative objectives to be optimized, which may feature better mathematical properties:
one example is found in the work of Dzemyda (1999). Additionally, the research com-
munity has been constantly working on formulations to reduce models’ dimensions, par-
ticularly within nonuniform time-discretization frameworks (see Floudas and Lin (2004)
for a thorough discussion on this subject). Moreover, nonlinear phenomena are dealt with
linear approximations, relaxed or removed from the models. In this paper a nonlinear
programming (NLP) formulation based on continuous variables is proposed, trying to
achieve reasonably small models and to converge to local optimal solutions in affordable
computing time.

The main idea herein discussed is to reduce the problem’s dimensions by avoiding
discrete variables. The proposed formulation employs complementarity constraints to
handle assignment and sequence decisions, applied on continuous variables. An NLP
feasible point is equivalent to an MILP feasible point and vice versa. Therefore, an NLP
local solution is equivalent to a integral MILP feasible point, defining an upper bound
(if solving a minimization problem) on the correspondent MILP, which can improve the
pruning in a branch-and-bound procedure. In fact, the NLP solution is a valid solution for
the scheduling problem, and may be kept as the solution in a real-world situation or be
used as an incumbent for the MILP.

In addition to the complementarity approach, we can also consider scheduling systems
as dynamic systems, where one action (decision) at a given instant impacts the future
states of the system. Dynamic systems are classically made up by control variables (the
decisions one can make), state variables (the system features one can measure), and state
equations (how a state is affected by past states and decisions). In industries such as the
Oil and Gas industry and the Water and Wastewater industry, control systems are built
upon optimal control dynamic models, where one tries to maintain the system operating
safely and efficiently. An optimal control problem features a highly separable Jacobian
of the constraints, with a block-diagonal structure, which may result in convergence with
lower computational costs (Faco, 1990). Common NLP solvers can take advantage of this
particular structure, as a discrete optimal control problem is equivalent to a NLP problem
(Abadie, 1970). In particular, a scheduling problem can be exactly described with this
approach: the transfer operations are represented by control variables, while inventories
are mapped to state variables. The state of a given time instant is calculated from previous
state and control variables, by means of the state equations.

In this paper, we combine both nonlinear approaches: complementarity and optimal
control to avoid mixed-integer formulations. We use the scheduling of crude oil and
derivatives in ports as an example for the proposed nonlinear optimal control model.
The paper is divided as follows: Section 2 discusses the crude oil problem and its mod-
els; Section 3 presents some numerical examples; and Section 4 closes this work with our
final remarks.

2. Crude Oil Scheduling Models

The scheduling of crude oil and derivatives in ports is the problem to determine: (i) ship
allocation within the port; (ii) transfer operations between ships, tanks, process units, and
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Fig. 1. Logistic subsystems.

pipelines; (iii) sequence of pipeline parcels (end products and crude oil), in such a manner
that an objective cost function is minimized and operational constraints are respected. It
is a complex task, featuring nonlinear (due to crude blending) and combinatorial (due to
assignment and sequencing) aspects.

The logistic system can be divided in three main subsystems (Fig. 1): port, distribu-
tion center, and refinery, all of them connected by pipelines (Mas and Pinto, 2003). It
is also possible to consider a single system, when the port tanks are directly connected
to refinery charging tanks (Shah, 1996; Magalhaes and Shah, 2003). In addition to these
three systems, one may possibly consider a fourth system: the tanker fleet, whose sched-
ule updates the estimated times of arrival (ETA) for each ship. According to Shah (1996),
a reasonable approach is to solve the systems hierarchically. We follow this approach in
this paper, considering two systems: the port (tankers, jetties, tanks, and pipelines) and the
refinery crude area (pipelines, tanks, and distillation crude unit). However, it is important
to mention that the equations presented herein could be employed in other arrangements
as well.

Portside tanks serve as a buffer to keep the pipelines in continuous operation, even
when tankers are late. In general, a (refinery or portside) tank stores a certain class of
crude (e.g., heavy oil tanks cannot store light oil). Ideally, a good schedule will use a
small number of tanks, but it is important to notice that inventory costs are secondary
when compared to the cost of not meeting the refinery production plan or delaying the
ships. The refinery’s demand for crude oil (as well as derivatives production) must be met
by the port scheduling. Jetties can be restrictive on what tankers and cargoes to handle,
according to their dimensions (draught and length) and pumping capacity. A ship must
berth, unload, and leave the port within a time window defined by contract, otherwise
the oil company will pay heavy demurrage fees. For instance, Brazilian demurrage costs
amounted to USD 1.5 billion in 2006 (Collyer, 2006).

Therefore, the port schedule’s main objective is to minimize demurrage costs, while
keeping the refinery plan. A jetty is available for berthing only after the previous ship
had enough time to leave the port. In the refinery side, the crude distillation unit operates
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continuously, around an operational feed flow. Blending is not allowed in the lines, i.e.,
each transfer operation has only one source equipment and one destination equipment at
a given time. Running tanks are not allowed either, i.e., a tank cannot receive and send
crude simultaneously. In fact, a tank can make a delivery to another equipment (e.g.,
pipeline or crude distillation unit) only if the necessary “idle time” has been observed
(e.g., to separate brine from crude oil or to assure a lab analysis).

In the recent literature, Shah (1996) proposed a MILP formulation for crude oil
scheduling from tanker vessels to CDUs, based on two models: (i) a refinery problem
(called the downstream problem); and (ii) a port model (called the upstream problem),
constrained by the pipeline parcels defined by the solution of the first problem. Magal-
haes and Shah (2003) revisited the problem, extending Shah’s original MILP formulation
to consider a real-world port–pipeline–refinery infrastructure and additional operational
constraints. The authors pointed out that some optimal solutions of the MILP model, if ap-
plied to a real-world schedule, could be considered by a human scheduler as non-optimal,
or even unfeasible, because certain real-world decisions are sometimes very hard to be
mathematically modeled. Más and Pinto (2003) modeled another real-world infrastruc-
ture, dividing the crude oil logistic system in three subsystems: (1) port, (2) distribution
centers (intermediate storage), and (3) refineries. The y also presented an exponential
equation to calculate an upper bound of binary variables with the number of time inter-
vals in order to illustrate that real-world instances are hard to be solved.

2.1. Modeling the Transfer Operation

The fundamental scheduling activity is the transfer operation, which is made up by a pair
of equipments (source–destination) connected by an arc, and a flow from the source to
the destination. The control vector u(ti) is the vector whose each entry uj(ti) stands for
a nonnegative flow on arc j at time ti. The optimization problem is to define a feasible se-
quence of u(ti), for all instants ti, which minimizes the objective function J . All control
variables uj(ti) are bounded.

The infrastructure of a logistic system can be seen as a graph, defined during the
problem’s formulation, featuring equipments as nodes, connected by flow arcs. A system
graph is built by checking which equipments are connected by pump lines, and which
are compatible in terms of crude oil and physical dimensions. Fig. 2 illustrates a port
infrastructure with 3 jetties, 5 tanks (3 for end products, 2 for crude oils), 2 pipelines
connecting the port to a refinery (one to receive end products, the other to send crude
oil), and 3 tankers that must be scheduled. In this example, tanker N3 can berth on jetties
P3 and P2, but cannot berth on jetty P1. Moreover, N3’s cargo is a crude oil that can be
pumped to tank T5. Therefore, there is a flow arc (represented by the lower traced line)
between tanker N3 and tank T5, through jetty P3.

In summary, the schedule is basically to define a nonnegative flow uj(ti) for each arc
j at each time instant ti. If uj(ti) = 0, there is no transfer operation at arc j at time ti,
otherwise, a transfer operation is occurring at this arc.

Operational constraints, such as “one equipment N cannot be the destination of two
transfer operations at the same time ti, in order to avoid inline blending” can be modeled
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Fig. 2. System as a graph.

by different manners. For instance, let’s examine the case of a certain tank N which is
being fed by other equipments: it can be the destination of at most one transfer operation
at a certain time ti, as inline blending is forbidden. We present two different modeling
possibilities (Table 1), with AN as the set of indexes for all arcs whose destination is N :
(a) an MILP formulation, as commonly found in the literature (Shah, 1996; Mas and
Pinto, 2003), and (b) a novel NLP formulation proposed here.

The volume of tank N is calculated by a volumetric balance equation, which is equal
in both models. The models differ on how to enforce the upper bounds on the flows and
how to guarantee that only one source will be employed to feed the tank. Notice that,
as N can participate in at most one transfer operation at time ti, either all flows in the
AN arcs are zero at ti (no transfer happens with destination N at time ti), or only one
flow is greater than zero at ti (N is the destination of only one transfer operation at time
ti). Both formulations enforce this behavior.

Model (a) requires an additional control vector b(ti) of binary variables, whose each
entry bj(ti) is associated to the uj(ti) entry. If bj(ti) is set to 1, then a positive flow is
allowed on arc j; otherwise (if set to zero), no flow is allowed on arc j. This is assured by
the manipulation of the bounds on uj(ti): if bj(ti) = 1, the bounds are preserved; other-

Table 1

Modeling possibilities for transfer operations

Model Equations

(a) MILP volN (ti) = volN (ti−1) +
∑

j∈AN
uj(ti)Δt∑

j∈AN
bj(ti) <= 1

0 <= uj(ti) <= bj(ti) ∗ uMAX
j (ti), j ∈ AN

bj(ti) is binary, uj(ti) ∈ R

(b) NLP volN (ti) = volN (ti−1) +
∑

j∈AN
uj(ti)Δt∑

j∈AN

∑
k>j∈AN

uj(ti) ∗ uk(ti) = 0

0 <= uj(ti) <= uMAX
j (ti), j ∈ AN

uj(ti) ∈ R



208 F.D. Fagundez, A.E. Xavier, J.L.D. Faco

wise, they are set to zero. The summation constraint on the binary constraints guarantees
that at most one bj(ti) can be evaluated as 1 at ti, j ∈ AN . All others binary variables
associated to AN must be evaluated as zero.

Model (b) relies on the control vector u(ti) only. There is no need for additional binary
variables. The summation of the products of all AN flows two by two is equal to zero if
and only if all flows are equal to zero or only one flow is greater than zero, making N

as the destination of at most one transfer operation, as required. The main disadvantage
of this formulation is that it defines a nonconvex model. In the next sections, “idle time”
and “berthing” constraints are formulated in a similar fashion.

2.2. Optimal Control Nonlinear Model

In the previous section, we have implictly defined the schedule as a dynamic model within
the optimal control framework.

DEFINITION 1. An optimal control problem is defined mathematically as the following
Mathematical Programming problem. The control variables are u, the state variables are
x and the time horizon spreads from t0 to tF .

Minimize:

J = f(u, x, t)

subject to:

uMIN <= u(ti) <= uMAX , t0 <= ti < tF ,

xMIN <= x(ti) <= xMAX , t0 <= ti <= tF ,

x(ti) = g
(
x(ti−1), u(ti−1)

)
, t0 < ti <= tF , x ∈ Rn, u ∈ Rm.

The transfer operation is composed by two equipments – source and destination – and
a flow uj from the source to the destination (through arc j). A storage is filled by flows
from other equipments, changing its state (volume and composition), and this equipment
may later perform an outlet transfer operation performing changes on other equipments.
We modeled flow rates as control variables, bounded by upper and lower bounds: each
entry of the control-vector u(ti) stands for a flow in an arc between two equipments
during the interval [ti, ti + Δt). The control’s upper bounds may not be the same for all
intervals, depending on port unavailability because of tides, limited operation of some
equipments during certain periods of the day, scheduled maintenance, and the fact that a
ship can only berth after its ETA. However, it is important to notice that all flow bounds
are known a priori, during the problem formulation phase.

The proposed nonlinear optimal control model features the flow rates u as control
variables (2), and volumes v and qualities p as subsets of the state variables x (3), all
bounded by upper and lower limits. The state equations are developed from volume bal-
ance (4) and product blending in storage equipments (5). The objective-function (1) is a
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summation of different costs, which can be prioritized with the use of weights (wcost).

Minimize J =
∑
cost

wcost ∗ Ccost, (1)

umin <= u(ti) <= umax(ti), (2)

xmin <= x(ti) =
[
v(ti)p(ti)

]T
<= xmax, (3)

v(ti) = v(ti−1) + Uu(ti−1)Δt, (4)

pN,q(ti)=
(

vN (ti−1)∗pN,q(ti−1)+
∑

j∈AN

uj(ti−1)∗pj,q(ti−1)∗Δt

)/
vN (ti). (5)

Eq. (4) features U as an incedence square matrix with entries in {0, 1, −1}. Eq. (5)
calculates density, sulphur concentration and product composition: each uj(ti−1) is an
inlet flow at N at time ti−1 and pj,q(ti−1) is the value of this inlet flow’s property q.
The complementarity equations will force that at most one source equipment is actually
feeding N , i.e., at most one uj(ti−1) will be greater than zero.

The following equations model scheduling decisions: unique definition of source and
destination in a transfer operation (6), idle time to segregate impurities (7), berthing time
(8), and constant flow constraints (9), and all of them must equal to zero. We define
new state variables rN , zN , sN , and qN for all equipments N , each one refering to a
complementarity equation. In the next section, these variables will be employed to relax
and penalize the problem.

rN (ti) =
∑

j∈AN

∑
k>j∈AN

uj(ti−1)uk(ti−1) = 0, (6)

zN (ti) =
ti−1∑

t′=ti−1−ΔtIDLE
N

∑
j∈AN

∑
k∈AOUT LET

N

uj(t′)uk(ti−1) = 0, (7)

sN (ti) =
ti−1∑

t′=ti−1−ΔtBERT H
N

∑
j∈AN

∑
k∈AK<>N

uj(t′)uk(ti−1) = 0, (8)

qN (ti) = uN,0 −
∑

j∈AN

uj(ti) = 0. (9)

Eq. (6) enforces that only one flow can feed N at time ti−1, therefore, any transfer
operation has only one source and only one destination at time ti−1. Eq. (7) enforces that
N will be able to feed another equipment only after its idle time ΔtIDLE

N was respected.
Eq. (8) enforces the necessary berthing time ΔtBERTH

N for ships. Eq. (9) force a constant
flow uN,0 feeding a given equipment (usually a process unit or a pipeline) N – this
constraint can be easily changed to force a variable flow, if needed.

In the case of crude oil scheduling, we considered the following costs: demurrage
(Eqs. (10)–(12)), unattained demand (13), and inventory (14).

Cunload
demurrage =

∑
N ∈Shipsunload

∑
ti>tdepart

N

cdemur
N vN (ti), (10)
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Cload
demurrage =

∑
N ∈Shipsload

∑
ti>tdepart

N

cdemur
N

(
CargoN − vN (ti)

)
, (11)

Cdemurrage = Cload
demurrage + Cunload

demurrage, (12)

Cdemand =
∑
ti

∑
N ∈Pipelines

∑
P ∈Products

cdemand
N vN,P (ti), (13)

Cinventory =
∑
ti

∑
N ∈Storages

cinv
N vN (ti). (14)

Eqs. (10), (11), and (12) deal with demurrage cost: we do not employ the classic
demurrage formulation, but one that is also proportional to the remaining volume to be
transferred that is delayed. Notice that demurrage costs are accounted for ship N only if
it has departured after the maximum acceptable time of departure (tdepart

N ). If ship N is
to be loaded, its volume at the departure time must be CargoN . If N is to be unloaded,
its volume at the departure time must be zero.

In all cost equations, ccost is a different arbitrary unitary cost.

2.3. Solving the Problem

The model is solved as follows: the nonlinear constraints (6)–(8) are relaxed and added
to the objective-function as penalties, creating the merit-function J ′ (15). This merit-
function will be minimized instead of the original objective-function J . This approach
removes most of the difficult constraints, generating a broader search region for nonlin-
ear optimization methods, with fewer constraints. In addition, if only linear state equa-
tions are present, the search region becomes a polyhedra. Within the feasible region of
the original formulation, all penalties are cancelled. The parameter μ can be determined
iteratively by solving sucessive relaxations of the original problems or fixed a priori as a
large enough number.

J ′ = J + μ
∑

t

(
eT r(t) + eT s(t) + eT z(t)

)
, (15)

where e is the unary-vector.
Trivial points are points where the control-vector u is zero for all time intervals. These

points are very easy to be constructed, but they are not feasible in the original problem
formulation. At trivial points, the demurrage and demand costs are maximal. The norms
of the additional states are ‖z‖ = ‖r‖ = ‖s‖ = 0 and ‖q‖ >> 0. However, such points
are feasible in the relaxed formulation and define a descent direction that leads to the
minimization of the penalties – moving the points to the feasible region. Therefore, we
use these points as starting points.

2.4. Mixed Integer Linear Model

In order to compare the NLP approach with the more common MILP approach, we
present an MILP model following the crude oil scheduling literature (Shah, 1996) and
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(Mas and Pinto, 2003). Eqs. (2), (6)–(8) from the NLP model are replaced by Eqs. (16)–
(19). The blending equation (5) is dropped, as it is nonlinear. Complementarity con-
straints are replaced by mixed-integer constraints, with the addition of the binary vari-
ables vector (bj).

0 <= uN (ti) <= Diag
(
bj∈AN

(ti)
)
uMAX

N (ti), (16)∑
j∈AN

bj(ti) <= 1, (17)

∑
j∈AOUT LET

N

bj(ti) +
ti∑

t′=ti −ΔtBERT H

∑
j∈AN

bj(t′) <= 1, N ∈ Ships, (18)

∑
j∈AOUT LET

N

bj(ti) +
ti∑

t′=ti −ΔtIDLE

∑
j∈AN

bj(t′) <= 1, N ∈ Storages. (19)

Eq. (16) features a diagonal matrix Diag(bj(ti)), composed by the binary variables
bj , which are added to the model in the MILP formulation. These variables represent
scheduling decisions: there is no flow uj at time ti if bj = 0 at time ti, and there is a
flow uj if bj = 1. The consecutive equations represent the following constraints: only one
flow can be used by an equipment N at time ti−1, idle time and berthing time must be
respected before any outlet transfer.

The MILP can be solved with usual mixed-integer procedures and is larger than the
NLP model, as shown in next section.

3. Results

The NLP and MILP models were compared in 5 preliminary test instances (Tables 2
and 3), coded in AMPL (Fourer et al., 2003), and solved with standard commercial
solvers: CPLEX (v. 10.1.0) (ILOG, 2002), SNOPT (v. 6.1; Gill et al., 2002), and MI-
NOS (v. 5.5) (Murtagh and Saunders, 1982). Case 1 is composed by an infrastructure
with two crude tanks and one pipeline connected to a refinery, whose crude demand has
to be fulfilled. Case 1 has 2 configurations: (A) allows the pipeline to be idle in certain
periods, (B) keeps the pipeline with a constant flow, during the entire schedule. The MI-
NOS run converged to a local minimum in (B) configuration. Case 2 has two crude tanks,
one jetty and two tankers, whose cargo had to be unloaded. Case 3 has three crude tanks,
one jetty, three tankers, whose cargo had to be unloaded, and one pipeline, whose demand
has to be fulfilled. Case 3 has 2 configurations: (A) allows the pipeline to be idle in cer-
tain periods, (B) keeps the pipeline with a constant flow. The SNOPT run converged to
a local minimum with demurrage costs in (B) configuration. The number of variables is
shown as determined after AMPL’s pre-solve procedure. As both MILP and NLP models
have linear objective functions, it is possible to compare them in regards of the global
optimality of their solutions. All cases were solved in a workstation with the following
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Table 2

Dimensions of the test cases

Model Case Binary variables Continuous variables Constraints

NLP 1(A) 0 31 25

1(B) 0 31 30

2 0 111 87

3(A) 0 169 103

3(B) 0 135 97

MILP 1(A) 12 25 31

1(B) 12 25 36

2 34 82 111

3(A) 93 158 265

3(B) 93 158 275

Table 3

Results

Model Case Solution Iterations Global optimum

NLP (SNOPT) 1(A) 1460 51 Yes

1(B) 1600 13 Yes

2 0.33 12 Yes

3(A) 0 812 Yes

3(B) 18.27 544 No

NLP (MINOS) 1(A) 1460 17 Yes

1(B) 1625 5 No

2 0.33 191 Yes

3(A) 0 411 Yes

3(B) 0 472 Yes

MILP (CPLEX) 1(A) 1460 14 Yes

1(B) 1600 13 Yes

2 0.33 63 Yes

3(A) 0 324 (8 BB nodes) Yes

3(B) 0 397 (25 BB nodes) Yes

configuration: Intel Core Duo T2250 1.73GHz, RAM 1 GB, Linux OpenSUSE 10.1. The
running times were around 1s.

As the complementarity model is nonconvex, a nonlinear programming method, such
as MINOS and SNOPT, may converge to local optima, differently from what happens
with the mixed-integer model when solved by a typical branch-and-bound method, such
as CPLEX. On the other hand, the complementarity model is more compact, featuring less
variables and constraints than the MILP one. Noticing that one NLP solution is equiva-
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lent to an MILP feasible point, we propose a hybrid scheme: solve the continuous NLP
problem and then transform its solution as an initial point for the MILP. If needed, call
NLP runs in difficult nodes of the MILP branch-and-bound tree. This scheme can be able
to reduce the total number of branches and Simplex iterations in the MILP optimization,
as the NLP point is an integral MILP good solution. At the current state of our research,
we employed the NLP solutions to initialize the MILP previous examples, and compared
the number of iterations and branched nodes. A substantial reduction in the number of
iterations in the MILP optimization run is detected (Table 4). All cases had similar CPU
times of approximately 1s.

Table 4 shows the MILP iterations when the NLP solutions were employed as ini-
tial incumbents to the MILP problem. A solution defined by the NLP formulation is
transformed to a MILP point by simply adding the binary variables and replacing the
complementarity constraints by the mixed-integer ones. For each positive flow, the cor-
responding binary variable is set to 1 (one), while for each null flow, the corresponding
binary variable is set to 0 (zero). The number of branch-and-bound iterations and visited
nodes is significantly reduced, even for these preliminary test cases.

4. Solving a Larger Problem

In addition to the preliminary cases, we solved a larger problem (Case 4) from the litera-
ture (Moro and Pinto, 2004) with the proposed NLP approach, where one has to schedule

Table 4

MILP results with different initializations

Case Initial point (x, u) Iterations

1(A) (x0, 0) 14

(x, u)SNOPT 13

(x, u)MINOS 13

1(B) (x0, 0) 13

(x, u)SNOPT 4

(x, u)MINOS 4

2 (x0, 0) 63

(x, u)SNOPT 47

(x, u)MINOS 40

3(A) (x0, 0) 324 (8 BB nodes)

(x, u)SNOPT 215

(x, u)MINOS 215

3(B) (x0, 0) 397 (25 BB nodes)

(x, u)SNOPT 265 (6 BB nodes)

(x, u)MINOS 215
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the receipt of 4 crude cargoes with 3 different crude oils within 6 crude tanks in a refin-
ery over 5 days, keeping the refinery’s crude processing unit (CDU) continously running.
The problem is similar to Case 3(B): for scheduling purposes, the CDU is identical to a
pipeline receiving crude from the tanks. Moro and Pinto proposed two models: an MILP
and an MINLP. The MINLP employed a nonlinear bleding equation to calculate crude oil
composition (similar to Eq. (5)) and the MILP employed a linear approximation of this
equation. Both models had the objective of processing the maximum amount of crude oil
as possible. In their paper, Moro and Pinto reported that they were able to achieve such
objective at the MINLP solution, whereas their MILP was stopped in a solution that could
not process all crude (the CDU operated under its maximum flow capacity).

Tables 5 and 6 compare our NLP with Moro and Pinto’s MILP and MINLP as re-
ported in their paper: MILP solved with CPLEX (ILOG, 2002) in 105 min and MINLP
solved with DICOPT (Viswanathan and Grossmann, 1990) in 30 min, both in a 700 MHz
Pentium PC. Our NLP was solved with SNOPT (Gill et al., 2002) at the NEOS Server
(Dolan et al., 2002) in 30 s (job 1701755 at host shepherd.mcs.anl.gov). It is important
to state that the computational times cannot be directly compared as the configuration of
the NEOS server is unkown to us. However, the small number of iterations is a strong
indicative that the NLP approach is a valid alternative to solve this kind of problem.

5. Conclusion

A nonlinear optimal control model for process scheduling – based on flow variables – was
presented. All constraints are modeled without discrete variables, achieving a continuous
model. These models are smaller than their MILP counterparts from the literature. Al-
though being capable of generating good solutions, the NLP formulation is nonconvex.

Table 5

Comparison of model dimensions

Model Case Binary variables Continuous variables Constraints

NLP 4 0 3727 3108

MILP 4 912 4246 5175

MINLP 4 228 2226 2634

Table 6

Results

Model Case Solution (processed crude in m3) Iterations

NLP (SNOPT) 4 168000 33536

MILP (CPLEX) 4 143109 856297

MINLP (DICOPT) 4 168000 330370
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The NLP can be employed as an auxiliary problem to traditional MILP formulations. In
fact, preliminary numerical results showed a significative reduction of MILP iterations
when initialized by a NLP solution.
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Tolydaus netiesinio programavimo metodai tvarkarašči ↪u problemoms
spr ↪esti

Fabio D. FAGUNDEZ, Adilson E. XAVIER, Joao L.D. FACO

Tvarkarašči ↪u sudarymas yra bene žinomiausias diskrečiojo optimizavimo uždavinys. Kita ver-
tus, gerai žinomi tolydaus optimizavimo pritaikymai yra susij ↪e su dinamini ↪u sistem ↪u valdymu. Šia-
me darbe yra derinami abu būdai, sprendžiant tvarkarašči ↪u planavimo uždavinius kaip diskretaus
laiko netiesinio dinaminio valdymo problem ↪a su būsenos ir valdymo kintamaisiais, atitinkančiais
darb ↪u atlikimo viršutines ir apatines ribas. Papildomumo s ↪alygos panaudojamos tvarkaraščiams
pavaizduoti. Uost ↪u darb ↪u planavimo pavyzdys yra detaliai nagrinėjamas pateikiant skaitmeninius
rezultatus.


