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Abstract. In this paper, a method for the study of cluster stability is purposed. We draw pairs of
samples from the data, according to two sampling distributions. The first distribution corresponds
to the high density zones of data-elements distribution. Thus it is associated with the clusters cores.
The second one, associated with the cluster margins, is related to the low density zones. The sam-
ples are clustered and the two obtained partitions are compared. The partitions are considered to
be consistent if the obtained clusters are similar. The resemblance is measured by the total number
of edges, in the clusters minimal spanning trees, connecting points from different samples. We use
the Friedman and Rafsky two sample test statistic. Under the homogeneity hypothesis, this statistic
is normally distributed. Thus, it can be expected that the true number of clusters corresponds to the
statistic empirical distribution which is closest to normal. Numerical experiments demonstrate the
ability of the approach to detect the true number of clusters.
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1. Introduction

Clustering deals with the partitioning of a data set to groups of similar items. In this paper,
we address the cluster validation problem. Namely, we propose a new method intended
to determine the true number of clusters. Iterative clustering procedures are frequently
carried out in two phases: a partitioning phase, where the data set is divided into groups,
and a validation phase, where the quality of the obtained partition is evaluated. Stability
based approaches, for the cluster validation problem, evaluate the partitions variability
under repeated applications of a clustering algorithm. Low variability is understood as
high consistency in the results obtained (see, for example, Cheng et al., 1996). Therefore,
the number of clusters that maximizes cluster stability is accepted as an estimate for the
“true” number of clusters in the data set.

We adopt the approach that the clusters correspond to modes of the probability den-
sity function of the data elements. Apparently, Wishart (1969) firstly promoted seeking
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for modes as an indication of the cluster structure. He suggested that clustering methods
must be able to expose distinct data modes, independently of their shape and variance.
Hartigan (1975), resting upon Wishart’s idea, introduced the notion of high probability
density clusters. The number of clusters has been recognized here as the amount of dis-
joint areas whose densities exceed a predefined value. An example consisting of three
clusters in the plane with their cores is presented in Fig. 1. This simplified example ex-
hibits a mixture of three two dimensional, same sized and spherical Gaussian distributions
with the same standard deviation. Each component constitutes a cluster and its core is rep-
resented by a circle of radius 1.5 times the standard deviation. The clusters are centered
at the distributions peak.

Our approach evaluates the goodness of a cluster by the likeness of clusters obtained
from high and low densities zones. From Wishart’s point of view, it is natural to foresee
that, in the case of a stable partition, clusters defined by high density zones have to be sim-
ilar to those defined by the whole data. We use probability metrics-distances, produced by
two-sample test statistic, to measure the dissimilarity between clusters. The distances are
calculated in clustered samples which are drawn from the source population according
to two distributions. The first is constructed so that it represents the clusters high density
cores and the second is constructed so that it represents the low density zones. Namely,
we compare pairs of partitions and, a pair is considered to be consistent if the obtained
clusters match. In this work, this matching is estimated via a Minimal Spanning Tree
(MST), constructed for each one of the clusters, and followed by a computation of the
number of edges connecting points from the two samples. Indeed, we employ here the
Friedman–Rafsky’s MST two sample test statistic (see, Friedman and Rafsky, 1979). Ap-
parently, applying MST for clustering problems has been firstly proposed in Zahn (1971).
Class discovery and feature selection via MST, for microarray gene expression data, have
been considered in Varma and Simon (2004). Smith and Jain (1984) offered a method for

Fig. 1. An example of clusters and their cores.
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testing uniformity, in multidimensional data, based on the Friedman–Rafsky’s MST test.
This approach has been extended in Jain et al. (2002).

2. Cluster Stability Model

Let us consider a finite subset X = {x1, x2, . . . , xn}, of the d-dimensional Euclidean
space Rd, drawn according to an underlying probability density function fX . For a given
set S ⊂ X , a partition Πk(S) of S is defined as a collection of subsets of S.

Πk(S) =
{
π1(S), π2(S), . . . , πk(S)

}
,

which satisfies the following conditions:

k⋃
j=1

πj(S) = S

and

πi(S) ∩ πj(S) = φ, i �= j.

The elements of Πk(S) are called clusters. As usual, partitions are obtained by means
of a clustering algorithm. We assume that such an algorithm Δ is available and that its
input includes the data to be clustered and the desired number of clusters k. A partition
of the data is the output of the algorithm. Within our model we apply the algorithm Δ to
a set which is the union of two samples. The first sample is drawn, from the dataset X ,
according to the “cores distribution” having the probability density function

hX(x) = exp
(
afX(x)

)
/c(a) (x ∈ X),

and the second sample is drawn, from the dataset X , according to the “cores surroundings
distribution” having the probability density function

gX(x) = exp
(

− afX(x)
)
/c(−a) (x ∈ X),

where

c(a) =
∑
x∈X

exp
(
afX(x)

)
,

a > 0 is a constant.
Let us suppose that we have a family of partitions Πk (k = 2, 3, . . . , k̃), where k̃ is

some predefined number representing the maximal considered number of clusters. The
proposed approach conjectures that, within partitions built for each possible number of
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clusters, the most stable one appears when the elements of the two samples are maximally
close inside the clusters. In other words, within the clusters, the differences between
the samples inside the clusters are expected to be minimal if the number of clusters is
chosen correctly. As was mentioned early, we measure this dissimilarity by means of a
two sample test statistic. Two sample tests are intended to test the null hypothesis which
suggests that the elements of two considered samples have been drawn from the same
distribution. Obviously, this is not the case here. However, we believe that, inside stable
well-defined clusters, the elements of the two samples are mingled as if they were selected
from close distributions.

Let Y (1): {y
(1)
i , i = 1, . . . , t} and Y (2): {y

(2)
i , i = 1, . . . , s} be two samples of inde-

pendent random vectors having the probability laws F and G, respectively. The classical
two-sample problem tests the null hypothesis

H0 : F (x) = G(x)

against the general alternative

H1 : F (x) �= G(x),

in the case when the distributions F and G are unknown. The classical Kolmogorov–
Smirnov test, the Cram‘er-von Mises test, the Friedman’s nonparametric ANOVA test and
the Wald-Wolfowitz test must be reminded as the classical univariate procedures for this
purpose. Many multivariate tests can be found in the literature (see, for example, Conover
et al., 1981; Duran, 1976; Friedman and Rafsky, 1979). Kernel based two sample tests
were applied to this problem in the paper of Volkovich et al. (2008).

In this work we use the Friedman–Rafsky’s MST two sample test statistic (the MST
statistic). It considers an MST created for the pooled sample

Vt,s = Y (1) ∪ Y (2)

and defines the statistic as the number of edges of the MST, which connect a sample
Y (1)element to a sample Y (2) element. If all distances between elements of V are dis-
tinct, the set is called nice. Recall, that in this case, there is only one MST that connects all
points of V , such that sum of the lengths of the edges is minimal. An MST for the set can
be built in O(|V |2) time, including distance calculations, using the well known Prim’s,
Kruskal’s, Boruvka’s or Dijkstra’s algorithms (see, for example, Nesetril et al., 2001).

Under the null hypothesis, the MST statistic is normally distributed. More specifically,
the following result was obtained. Let us denote by Rt,s(Y (1), Y (2)) the value of the
MST statistic calculated for two given samples Y (1) and Y (2). Actually, Friedman and
Rafsky introduced the statistic Rt,s(Y (1), Y (2)) + 1, which represents the amount of
disjoint sub-trees that result from removing all edges connecting points from distinct
samples.
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Theorem 1 (see, Theorem 1; Henze and Penrose, 1999). Let
• s → ∞ and t → ∞ such that t/(s + t) → p ∈ (0, 1);
• for each t and s the set Vt,s is nice,

then the value

Zt,s =
1√

t + s

(
Rt,s

(
Y (1), Y (2)

)
− 2ts

t + s

)
,

convergences in distribution to the normal distribution with expectation 0 and variance

σ2 = r
(
r + Cd(1 − 2r)

)
,

where r = 2p(1 − p) and Cd is a constant depending only on the space dimensionality.

Now, we apply this Theorem 1 to characterize cluster stability. Theorem 1 implies that
the problem can be reduced to estimation of distances from the empirical distribution of
the statistic Rt,s(Y (1), Y (2)) to a normal one for various values of the possible number
of clusters. The true number of clusters is assumed to correspond to the minimal dis-
tance. To motivate our approach let us consider two illustrative examples: An example of
“a good cluster” is presented in Fig. 2. The number of edges connecting points from dif-
ferent samples is relatively large here – 25 out of 59. Indeed, the samples are sufficiently
mingled so the clusters defined by them actually coincide.

The following example exhibits a case of two well separated clusters defined by sam-
ples. Here, the samples are artificially united by a single edge (Fig. 3).

The samples are, indeed, separated here and identify two different clusters. The MST
statistic gets here its minimal value 1. Thus, the statistic value can indicate the cluster
quality.

Fig. 2. An example of a cluster produced by two well mixed samples. (Edges connecting points from different
samples are marked by solid lines.)
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Fig. 3. An example of clusters produced by separated samples. (The edge connecting points from different
samples is marked by a solid line.)

For a given partition Πk(X) an underlying probability density function fX can be
represented by the form

fX =
k∑

i=1

pifi,

where pi, i = 1, . . . , k are the clusters’ probabilities and fi, i = 1, . . . , k are the clusters’
densities. Let R

(i)
t,s(Y (1), Y (2)) be the value of the MST statistic calculated within the

cluster number i. We introduce

R
(0)
t,s,k

(
Y (1), Y (2)

)
= min

i=1,...,k

{√
k

2(t + s)

(
R

(i)
t,s

(
Y (1), Y (2)

)
− 2ts

k(t + s)

)}
.

While comparing a partition to some other (base) partition, it must be noted that a cluster’s
identity is usually represented by its meaningless label. The same cluster in two partitions,
obtained by different applications of a clustering process, can be differently labeled. Thus,
once a convergence of partitions {Πk,m}, m = 1, 2, . . ., is considered, we have to assume
that the labeling of their elements are changed, on each step, by a suitable sequence of
permutations ψm(i) of the label set {1, . . . , k}.

Theorem 2. For a given number of clusters k:
1. There exists a partition Π(0)

k , of the set X , such that, for each sequence of samples
{Vm}, the sequence of partitions

Πk,m(Vm) = {π1,m, . . . , πk,m} = Δ(Vm, k)
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converges to Π(0)
k , for a sequence ψm(i) of permutations of the label set {1, . . . , k}. The

convergence is in the sense that

lim
|Vm |→∞

k∑
i=1

∣∣πψm(i),m ⊕ π
(0)
i

∣∣ = 0.

Here ⊕ denotes the symbol XOR (the symmetric difference operation) and |A| is the
cardinality of a set A.

2. The partition Π(0)
k satisfies

p1 = p2 = . . . = pk.

Then for two sequences of samples {Y
(1)

m }, {Y
(2)

m }, having equal size tm → ∞, such
that Vm = Y

(1)
m ∪ Y

(2)
m is nice for each m, the following random variable converges in

distribution,

R
(0)
tm,tm,k

(
Y (1)

m , Y (2)
m

)
→ Gk,

where Gk is a random variable representing the minimal value of k independent identi-
cally distributed standard normal variables.

Proof. We consider a sequence of equal sized pairs of samples |Y (1)
m |=|Y (2)

m | = tm with
nice union sets Vm. Let {πi,m}, m = 1, 2, . . . , i = 1, . . . , k be a sequence of clusters,
defined by Vm. Resting upon the MST, constructed for πi,m, we introduce the variables

T
(i)
m – the number of edges connecting points from different samples belonging

to π
(0)
i ;

S
(i)
m – the number of edges connecting points from different samples where at least

one of the points does not belong to π
(0)
i .

Thus, the value of the MST statistic, built within πψm(i),m, equals

M (i)
m = T (i)

m + S(i)
m

and (
T (i)

m − R
(i)
tm,tm,k

(
Y (1)

m , Y (2)
m

))
→ 0

in distribution. Moreover, due to the conditions mentioned above

lim
m→∞

k|Y (1)
m ∩ πψn(i),m|

tm
= lim

m→∞

k|Y (2)
m ∩ πψn(i),m|

tm
= 1,

for all i = 1, . . . , k and a sequence ψm(i) of permutations of the label set {1, . . . , k}. The
Theorem 2 assertion is now obtained by substituting the last equalities in the statement
of Theorem 1.
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We would like to note that a convergence condition presented in the Condition 1 of the
Theorem 2 is, indeed, a partial case of a general definition related to the convergence of
clustering algorithms (see, for example, Von Luxburg and Ben-David, 2005, Section 5.2).
For the k-means approach such a property has been discussed in Pollard (1981) and
Lember (2003). Condition 2 is sufficientlywidespread in cluster analysis. For instance,
Celeux and Govaert (1992) showed that the k-means approach is a specific case of the
common EM approach, which assumes in the Gaussian mixture model with equal sized
clusters having the same covariance matrix Γi = σ2I , i = 1, . . . , k, where I is the
identity matrix having the order d and σ2 is an unknown parameter, i.e., the k-means
algorithm essentially applies spherical, same sized clusters.

The presence of clusters having the same size and geometrical structure could be
rarely guaranteed for real datasets. Nevertheless, these requirements are common. Con-
sequently, the proposed model can be considered, for the distribution of the values
R

(0)
t,t,k(Y (1), Y (2)), as a theoretical etalon characterizing a stable partition situation.

As was noted earlier, a sequence ψm(i) appears in the theorem’s statement because a
cluster can be differently marked in rerunning of the clustering algorithm.

3. The Algorithm

According to our model the MST test is iterated many times, for each potential numbers
of clusters, to yield an empirical MST test statistic distribution. The distribution, which
is closest to normal, is assumed to correspond to the true number of clusters. Let us draw,
without replacement, M pairs of samples S

(m)
1 and S

(m)
2 (m = 1, . . . , M ), according to

the densities hX and gX , respectively. We introduce the set

S(m) = S
(m)
1

⋃
S

(m)
2

and the partition

Π(m)
k = Δ(S(m), k).

Hence, we consider

S(m)
1l

= S(m)
1

∩ π
(m)
l (S(m)), S(m)

2l
= S(m)

2
∩ π

(m)
l (S(m))

as subsets of elements from S
(m)
1 and S

(m)
2 , respectively belonging to the cluster

π
(m)
l (S(m)). We measure dissimilarities between these sets, within π

(m)
l (S(m)), with

the help of the MST statistic. Denote by r
(m)
l (l = 1, . . . , k) the values of this statistic,

calculated inside π
(m)
l (S(m)), as the number of edges which connect elements of S(m)

1l

to elements of S(m)
2l

. Thus, for each k = 2, . . . , k̃ we obtain an array of k-tuples having
size M . We measure the distance, between the samples of pair number m, by

R(m) = min
{
r
(m)
l | l = 1, 2, . . . , k

}
.
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Thus, under the assumptions presented in Theorem 2, the random variableR(m) is ap-
proximately distributed as the minimal value of k i.i.d. random variables, distributed ac-
cording to a normal distribution N(μ, σ2) if k is chosen correctly. In order to estimate
the mean μ and the variance σ2 we calculate the average value of r

(m)
l (l = 1, . . . , k):

T (m) = Average
{
r
(m)
l | l = 1, 2, . . . , k

}
.

From the M averages T (m) (m = 1, 2, . . . , M), their {mean(T )} and their variance
{var(T )} are obtained. For this end we substitute:

μ = mean(T ), σ2 = var(T ).

As a result, we conclude, that the estimate of the “true” number of clusters maintains a
distribution of the values R(m) which is the maximally close to the distribution of the
minimum of k independent normal variables with the chosen μ and σ2. For this purpose
we simulate M values

W (m) = Min
{
Zl | l = 1, . . . , k

}
,

where Zl(l =1, . . . , k) are the appropriate normal i.i.d. variables. Note, it is well known
that the distribution function PW (m)(x) of W (m) can be expressed as

PW (m)(x) = 1 −
(
1 − P(μ,σ2)(x)

)k
,

where P(μ,σ2)(x) is the distribution function of N(μ, σ2). These two possibilities of-
ten provide similar outcomes however; we prefer to compare two empirical distributions
since approximations of P(μ,σ2)(x) can yield additional calculations instabilities. There-
fore, we apply one-dimensional two sample test statistic to assess the distance between
the empirical distributions of R(m) and Y (m). This can be done by means of the fa-
mous Kolmogorov–Smirnov distance, often called the K-S distance. It is applied to settle
on whether two underlying one-dimensional probability distributions are different, or
whether an underlying probability distribution fits a hypothesized distribution.

Remarks

• We indirectly assume that the sets S(m)
1l

and S(m)
2l

are permanently nice. This sug-
gestion holds for almost all real datasets.

• The idea to explore differences between the high and low density regions by the
Friedman–Rafsky’s MST statistic is presented in (Smith and Jain, 1984) and (Jain
et al., 2002). The goal was to point out an “inconsistent” edge whose length is sig-
nificantly larger than the average length of the nearby edges. We apply the MST
two sample test statistic in the “departure from normality” manner that allows at-
tainment of more detailed results about the data cluster structure.
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• The high and low density regions have been characterized in the papers by Smith
and Jain (1984) and Jain et al. (2002) via the MST which appears to be computa-
tional costly for big datasets. We use a variant of the nearest neighbors approach
for the underlying density estimation.

4. Experimental Results

In order to evaluate our methodology, we provide several numerical experiments on syn-
thetic and real datasets. We demonstrate the performance of the proposed method by
comparing the obtained results to the assumed “true” structure, on two simulated and
three real datasets. Estimates of the core density, h, and the core surroundings density, g,
are constructed by replacing f(x) by its estimate, obtained via a variant of the k-nearest
neighbors. It is set in the following way: for each point x ∈ X we determine its k nearest
neighbors Yk = {y1, y2, . . . , yk }. Here k is chosen as the minimal value between 100
and |X|/2 and a sphere radius is calculated by

R =
1

10k

k∑
i=1

‖x − yk ‖.

An estimated value of f(x) is found as

f̃(x) =

∣∣y ∈ Yk: ‖x − yk ‖ < R
∣∣

|X| .

Note, the meaning of k here differs from its meaning in the rest of the paper.
We provide 10 trials for each experiment. The results are presented via the error-bar

plots of the K-S distance mean within the trials. The sizes of the error bars are two stan-
dard deviations, calculated within the trials. The regular k-means algorithm is selected as
the clustering algorithm. We choose a = ln(4) and the maximal tested number of clusters
is 7.

4.1. Artificial Datasets

These datasets have been simulated as 4000 points drawn from a mixture of two dimen-
sional, spherical Gaussian distributions with the same standard deviation. The first dataset
consists of three components, centered at the coordinates (cos(2πi

3 ), sin( 2πi
3 )), i =

0, 1, 2, and having standard deviations of 0.4. Two components include 1333 items and
the last one includes 1334 items. Scatter plot of this data is presented in Fig. 4. Error-bar
plot, for M = 100 and a sample size of 225, is presented in Fig. 5.

The second dataset has been constructed as a mixture of five equal sized components,
centered at the points (cos(2πi

5 ), sin(2πi
5 )), i = 0, 1, 2, 3, 4, and having standard devia-

tions of 0.2 (Fig. 6). Error-bar plot, for M = 300 and a sample size of 700, is presented
in Fig. 7.
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Fig. 4. Scatter-plot of the three components simulated data.

Fig. 5. Error-bar plot of the K-S distance of the three components simulated data.

4.2. Three Text Collection Datasets

The dataset has been chosen from http://ftp.cs.cornell.edu/pub/smart/.
It includes
• DC0–Medlars Collection (1033 medical abstracts);
• DC1–CISI Collection (1460 information science abstracts);
• DC2–Cranfield Collection (1400 aerodynamics abstracts).
This dataset has been analyzed in several works (see, for example, Kogan et al., 2003

and Volkovich et al., 2004). Following the well-known “bag of words” approach, 300 and
600 “best” terms are selected and the dataset is embedded into Euclidian spaces having
dimensions identical to the terms quantity. Naturally, the dataset constructed by means of
the 300 best terms can be considered as a noisy version of the one based on the 600 best
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Fig. 6. Scatter-plot of the five components simulated data.

Fig. 7. Error-bar plot of the five components simulated data.

terms. A dimension reduction, in both cases, is carried out by the Principal Component
Analysis. The dataset is identified to be well separated via two leading principal com-
ponents. Therefore, we use this data representation in our experiments. Here we choose
M = 100 and the sample size equals 300.

Another experiment has been provided in order to investigate the approach steadiness
with this dataset constructed resting upon only 300 terms. Such a data can be viewed as a
blurred version of the previous one. Here more unstable outcomes are expected. However,
the true number of clusters has been, again, clearly detected.
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Fig. 8. Error-bar plot of the K-S distance for the three text collection dataset for 600 terms.

Fig. 9. Error-bar plot of the K-S distance for the three text collection dataset for 300 terms.

4.3. The Iris Flower Dataset

Additional considered dataset is the well known Iris Flower Dataset. It is available, for
example, at http://archive.ics.uci.edu/ml/datasets/Iris. This dataset con-
tains four-dimensional feature vectors for three distinct sets of flowers. There are 50 en-
tries for each class. It is well known that one cluster is linearly separable from the others
while the other two are not. This data set was analyzed in many papers. For instance in
Roth et al. (2002) a two cluster structure was detected. However, our approach is capa-
ble to identify a three cluster structure. Here we choose M = 200 and the sample size
equals 70.
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Fig. 10. Error-bar plot of the K-S distance for the Iris dataset.

5. Conclusions

We have developed a novel method for cluster validation based on the Minimal Spanning
Tree two sample test. The method suggests to measure the clusters quality by means of
the test statistic applied to pairs of clustered samples drawn from high and low density
regions. A new approach, for the departure from normality estimation of an empirical
statistic distribution, is offered.

All experiments performed detected the true number of clusters. The result of the three
components dataset, even though some overlapping of the observed occurrences area
exists, clearly detects the three clusters structure. The five components dataset contains
well separated components. Thus, it is of no surprise that the correct number of clusters is
obtained here. The analysis of the abstracts dataset is carried out twice – with 600 terms
and with 300 terms. We expected better results in the first case but, it did not materialize.
Apparently, 300 terms are sufficient for representing the abstracts variability.

In all cases addressed so far, due to the significance of the results, additions or sub-
tractions of two standard deviations do not generate an overlap of K-S-distance value in
the neighborhood of the true number of clusters.

The Iris Flower dataset is the most difficult to analyze. It is due to the fact that two
clusters are not linearly separable. The true number of clusters is detected but the result
of four clusters is near optimal. This fact may need a more specific analysis.
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Minimalaus jungimo medis klasteri ↪u skaičiui nustatyti

Zeev BARZILY, Zeev VOLKOVICH, Başak AKTEKE-ÖZTÜRK,
Gerhard-Wilhelm WEBER

Šiame straipsnyje pasiūlytas metodas klasteri ↪u stabilumui tikrinti. Iš duomen ↪u aibės paimamos
kelios poros poaibi ↪u pagal skirtingus pasiskirstymus, t.y. vieno poaibio element ↪u pasiskirstymas
atitinka didelio tankio zon ↪a, šie elementai susij ↪e su klasterio centru; kito poaibio element ↪u pa-
siskirstymas atitinka mažo tankio zon ↪a, šie elementai susij ↪e su klasterio pakraščiu. Elementai
yra kelis kartus klasterizuojami nustačius ↪ivairius klasteri ↪u skaičius. Teigiama, kad klasteriai yra
pastovūs, jei gauti klasteriai yra panašūs. Panašumas yra ↪ivertinamas pagal minimalaus jungimo
medžio jungči ↪u, jungianči ↪u taškus iš skirting ↪u pasiskirstym ↪u poaibi ↪u, skaiči ↪u. Yra naudojamas
Friedmano–Rafskio dviej ↪u element ↪u testo statistika. Pagal homogeniškumo hipotez ↪e ši statistika
yra pasiskirsčiusi pagal normal ↪uj↪i dėsn↪i. Taigi, galima tikėtis, kad tikrasis klasteri ↪u skaičius atitiks
šios statistikos empirin↪i pasiskirstym ↪a, kuris yra arčiausiai normalinio. Skaitiniai eksperimentai
parodo siūlomo metodo galimyb ↪e nustatyti tikr ↪aj↪i klasteri ↪u skaiči ↪u.


