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Abstract. To restore the underexposure image, an illumination compensation inpainting model
which employs the joint-diffused partial differential equations (PDEs) is proposed. Firstly, the novel
model compensates the illumination effect in multi-scaled underexposure images respectively. Sec-
ondly, the information in the fused compensated image is restored by PDEs which diffuse the ge-
ometric property and gray information into the target region simultaneously. Experimental results
demonstrate that the novel model can properly restore scratches while compensating the illumina-
tion effect in underexposure image, and the joint-diffused PDEs which are employed in it lead to a
better performance than the conventional PDE inpainting models.

Keywords: image inpainting, illumination compensation, partial differential equation (PDE),
quotient image (QI).

1. Introduction

Image inpainting is used to restore scratches in damaged image. The scratch is chosen
manually, and then the model automatically restores the geometric property and gray
information in scratch based on the known image information.

Recently, many methods are proposed to inpaint images with different geometric
structures. Processing the geometric structure directly could preserve the composite fea-
tures in image (Malickas and Vitkus, 2001). Partial differential equation (PDE) which
restores image information by anisotropic diffusion was widely used in natural image
inpainting. Total variation (TV) and pure transportation model were firstly used in in-
painting which diffuse image information along the gradient direction and isophotes di-
rection respectively (Chan and Shen, 2001a; Bertalmio et al., 2001). The Euler’s elastic
function is adopted which restores image as curves (Chan et al., 2002). It diffuses along
both the gradient direction and the isophotes direction. Experimental results proved the
bi-directional diffused Euler equation inpainted image better. While Euler equation is
a 4th order PDE, the numerical scheme of it is very complex and the processing time
is long. Chan proposed a 3rd order PDE which also diffuses along two orthogonal di-
rections (Chan and Shen, 2001b). The numerical scheme of it is simple, but there are
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undetermined coefficients. A TV-Stokes equation is proposed by Tai for inpainting (Tai
et al., 2006). It diffuses the geometric directions firstly and then reconstructs image to fit
the restored directions. Chan etc proposed a joint-diffused PDEs inpainting model which
is also comprised by high-order PDEs (Ballester et al., 2001).

All above mentioned methods were focused on restoring the geometric structures in
natural image. Different PDEs were used to properly reconnect the geometric features.
While there is another kind of defect that needs to be restored in natural image. The nat-
ural image is often collected under low-level lighting condition or varied viewing points.
Therefore some image information is defected and unperceived in the overexposure im-
age or in the underexposure image (Li and Jain, 2005). A highlight removal inpainting
method is proposed in (Park and Lee, 2007), which restores the highlights in image under
the constraint of illumination effect. Some transforming methods, such as the Log opera-
tor, are proposed to directly correct the illumination effect in image (Adini et al., 1997).
But these methods change the gray contrast and even induce noises into the image. They
could not restore the corrupted information caused by lighting effect.

In this paper, our research focuses on deriving a joint diffused inpainting model which
is used for underexposure image. There are shadows in the underexposure images and
the information in the shadows is too dark to perceive. To generate an image with a good
visual perception, the model compensates the illumination effect and restores the target
region simultaneously. The Quotient Image (QI) method is used to remove the lighting ef-
fects in image (Chen et al., 2006) and the joint-diffused PDEs are used to inpaint image.
QI method enhances the image contrast and it does not induce any noisy information.
The PDEs diffuse both the geometric property and gray information into the target re-
gion. Also the gray information is diffused along two orthogonal geometric directions to
smoothly restore the image. So the visual perception of the processed result is good. The
lighting effects, geometric structures and gray information are all well restored.

2. The Proposed Model

The whole processing procedure of the model proposed in this paper is shown in Fig. 1.
The novel model is used to inpaint the underexposure image which has low-level illu-
mination effect. So the main task of it is illumination normalization and joint-diffused
inpaiting.

Firstly, it normalizes the illumination effect by using QI model. The Total Variation
model with L1 norm is used to decompose the image into two parts: a large-scale part
which has the diffuse reflections and a small-scale part which contains the intrinsic tex-
tured information. The large-scale part is normalized by the Histogram Equalization to
adjust the contrast of image and enhance the meaningful information. The small-scale
part is normalized by using QI to enhance the signals of intrinsic structures in the shad-
ows. Lastly, a feature fusion method is adopted to fuse the multi-scaled properties.

After compensating the illumination effect, the model diffuses the geometric property
and gray information into the target region to inpaint image. Along the gradient direc-
tion, pixel’s gray level changes greatly. So the dynamic changing geometric property is
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Fig. 1. The whole processing procedure.

preserved by diffusing the information about gradient directions. The gray information is
diffused along two orthogonal geometric directions to smoothly restore the image. The
diffusion along gradient direction uses the TV model which is morphological invariant,
and the diffusion along isophotes direction uses the inviscid Helmholtz vorticity equation
in fluid dynamics.

2.1. Illumination Compensation

The diffuse reflection in image could be defined by the Lambertian model as

I = ρS, (1)

where ρ is the albedo which is determined by the material and the geometric surface of the
object, S represents the lighting condition for image. Since the lighting effect in image
changes slowly, S represents the low-frequency part of image. In this paper, illumination
effect is compensated in both the high-frequency and the low-frequency part.
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TV-L1 is an image decomposition model which decomposes the image into a large-
scale part u and a small-scale part v (Yin et al., 2005):

I = u + v. (2)

The large-scale part contains the image information about the lighting effect, region
contour, and large geometric structure. So it represents the low-frequency part of image.
The small-scale part contains the intrinsic geometric and textured information of image,
so it often represents the high-frequency part. TV-L1 processes image under the constraint
of | | • | |1−norm, and it has a scale-selecting property:

Jλ[u] =
∫

| ∇u| dx + λ

∫
|I − u| dx. (3)

To maintain the numerical stability of TV-L1 model, a disturbance ε is added into the
fidelity term of Eq. (3):

Jλ[u] =
∫

| ∇u| dx + λ

∫ √
(I − u)2 + εdx. (4)

By minimizing Eq. (4), the large-scale part uwhich contains the lighting information is
generated. The difference between u and the original image I is the small-scale part.

v = I − u. (5)

According to the Lambertian model, the ratio of albedo between original image and the
low-frequency part which is the QI has illumination invariant property. So QI is used to
normalize the illumination effect in v:

�
v = I/u. (6)

After the quotient operation all the textured information in shadows is enhanced.
To adjust the contrast of image and enhance the meaningful information, histogram

equalization is used in u. A flat histogram Hwith gray level K is created as

H =
[
1 1 . . . 1

]
1×K

∗
(
n2/K

)
. (7)

With the flat histogram H , a gray scale transformation T (•) is chosen to minimize:

∣∣h1(T (k)) − h0(k)
∣∣, (8)

where h0(•) is the cumulative histogram of u, h1(•) is the cumulative sum of H for all
intensities k. Minimization of Eq. (8) is subject to the constraints that the gray scale trans-
formation must be monotonic and h1(T (μ)) cannot overshoot h0(μ)by more than half the
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distance between the histogram counts at μ. After getting the gray scale transformation,
u is processed to enhance its contrast as

�
u= T (u). (9)

The meaningful image information is enhanced in
�
u , and the contrast of u is adjusted.

Meanwhile the intrinsic textured information is contained in v, and the illumination effect
in v is compensated by QI.

Lastly, a feature fusion method is used to generate the image which has the illumina-
tion effect compensated:

�

I = α
�
u ⊕β

�
v , (10)

where ⊕ is a fusion operator, α and β are two fusion factors. There are many kinds of
image fusion methods, and some are even based on fuzzy logic. In this paper we just
choose a simple fusion method: ⊕ is chosen as a plus operator and α = β = 1/2. The
fused result is just a weighted average of two parts. More complicated fusion method
could be used in this model, and we will refer to it in further paper.

2.2. Image Inpainting

The image domain of
�

I in which all the illumination effect is compensated is denoted as
Ω. Ω is composited as

Ω = D ∪ Dc, (11)

where D denotes the target region which needs to be restored, and the image information
in Dc is known. In this paper, the information in D is restored based on that in Dcusing
a joint-diffused PDEs model.

The geometric property and gray information are two factors that determine the prop-
erty of an image, so a good inpainting model should restore them simultaneously, and
this is just the joint diffusion implemented in this paper.

Two orthogonal geometric directions in image are shown in Fig. 2. Γ is a gray curve
in the image. Along the curve, pixels’ gray values are consistent. ξ denotes the isophotes

Fig. 2. Geometric directions in image.
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direction and n denotes the gradient direction. Along the gradient direction, pixels’ gray
levels change greatly. The magnitude of a pixel’s gradient vector equals to its changing
rate of gray value. So by diffusing the gradient vectors, the geometric property of image is
maintained. To preserve the discontinuities in image, a TV energy function about gradient
vectors is used to diffuse image information:

E(I) =
∫

D

| ∇−→n | dx, (12)

where −→n denotes the gradient direction. The numerical form of Eq. (12) is

−→n t = div
(

∇−→n / | ∇−→n |
)
. (13)

When the geometric property of gradient vectors is diffused, the geometric directions
in the target region are updated. A Pixel’s gray information is then diffused along the two
updated geometric directions:

I0 =
�

I , ω0 = ΔI0, u0 = ∇⊥I0,
�

I n+1=
�

I n +Δt
(

∇ · (∇
�

I /| ∇
�

I |)
)
,

ωn+1 = Δ
�

I n+1, un+1 = ∇⊥ �

I n+1,

ωn+2 = ωn+1 − Δt
(
un+1· ∇wn+1

)
,

Δ
�

I n+2= ωn+2. (14)

Eqs. (14) is a bi-directional diffused model which is used to update gray information.
It is a coupled model and there is no undetermined coefficient. The diffusion item which is

along −→n is (∇ ·(∇
�

I /| ∇
�

I |)) and the along isophotes diffusion item is (un+1∇wn+1).
(∇ · (∇

�

I /| ∇
�

I |)) equals to the curvature in image which is morphological invari-
ant, so the stable status of TV model is adopted as the along gradient direction −→n diffused
item directly. The detailed analysis of TV model is given in (Chan and Shen, 2001a).

The along isophotes diffused item is derived according to the inviscid Helmholtz vor-
ticity equation in fluid dynamics. In fluid dynamics, the well-known Navier–Stokes (N-S)
equation for uncompressible fluid is

ρ( du/ dt) = ρf − ∇p + υΔu,

u = ∇⊥Ψ, (15)

where u is the fluid velocity, f is the external force in fluid, ρ is the fluid density, p is the
pressure, υ is the viscosity coefficient, and Ψ is the stream function in fluid. The velocity
part can be written as

du
dt

= (u· ∇)u = ∇
(u· u

2

)
− u × ω, (16)
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where ω is vorticity in fluid. In vorticity fluid, the vorticity equals to the curl of velocity:
ω = ∇ × u.The curl result of both sides of N-S equation is

∂(∇ × u)
∂t

− ∇ × (u × ω) = ∇ × f − ∇ ×
(1

ρ
∇p

)
+ υΔ(∇ × u). (17)

The vorticity continuity equation is

∇· ω = ∇· (∇ × u) = 0. (18)

Expanding the curl part, then we get the Helmholtz vorticity equation:

dω/ dt = ∂ω/∂t + (u· ∇)ω = (ω· ∇)u + ∇ × f − ∇ ×
(1

ρ
∇p

)
+ υΔω. (19)

In 2-D image domain, (ω· ∇)u, ∇ × f , ∇ × (∇p/ρ) are all zeros, so the Helmholtz
equation can be simplified as

dω/ dt = υΔω. (20)

Used in image inpainting, the Helmholtz equation should maintain the inviscid prop-
erty (Bertalmio et al., 2001). The inviscid Helmholtz vorticity equation is

dω/ dt = 0. (21)

dω/ dt is the material derivative of ω. It is composited as

dω/ dt = ∂ω/∂t + (u· ∇)ω. (22)

Then the inviscid Helmholtz vorticity equation in 2-D image domain is

∂ω/∂t + (u· ∇)ω = 0 ⇒ ∂ω/∂t = −(u· ∇)ω. (23)

The inviscid Helmholtz equation transports a smooth measure ω in fluid domain along
the isophotes direction u and it is morphological invariant. So it is adopted as the along
isophotes diffused item in the inpainting model.

The whole inpainting procedure is shown in Fig. 3. We restore the illumination com-

pensated image
�

I using PDEs. Firstly the gray value is updated based on the TV model
which diffuses along the gradient. Secondly the diffusion items for Eq. (23) are initial-
ized: ω is computed as the smooth measure of image, and the movement direction of
fluid is the isophote in image. Thirdly the vorticity and movement direction of fluid are
updated, and ω is updated according to the Helmholtz equation. Then the value of ω is
generated. To update all pixels’ gray values according to ω, it is necessary to solve the
Poisson problem. It is proved that using a Poisson equation or its dynamic relaxation form
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Fig. 3. The inpainting procedure.

does not affect the inpainting result (Bertalmio et al., 2001). To accelerate the diffusion
procedure, the dynamic relaxation form is used in this paper:

Ît = α
[
ΔÎ + ω

]
. (24)

Finally gray values of all pixels are updated. During the inpainting procedure, the gray
value and vorticity measure interact, Î0 → ω0 → Î1 → ω1 → · · · → În → ωn. The
procedure shown in Fig. 3 is executed circularly until the diffusion equations arrive at a
stable status.

3. Experiments

In this section, different kinds of images are used to test the validity of the novel illumi-
nation compensation image inpainting model.

The benefit of the joint-diffused PDEs is proved firstly. Both the geometric property
and gray information are diffused. The model is denoted as “JDM”. Two PDE models
which diffuse only along one geometric direction are used to compare with JDM. The
model which diffuses along the gradient direction is denoted as “GDM” and the model
which diffuses along isophotes is denoted as “IDM”. SNR (Signal-to-Noise Ratio) of im-
ages processed by different inpainting models is shown in Table 1. The SNRs generated
by the novel JDM are largest. Since it diffuses the geometric property and gray informa-
tion simultaneously, and it diffuses the gray information along two orthogonal directions.
The image processed by it is smooth and preserves the linear structure. The image pro-
cessed by conventional models which diffuses along only one direction is not as good as
that by the novel model.

Fig. 4 shows the inpainted images of different models. Fig. 4(a) is the results of the
model which diffuses along isophotes. The model diffuses inward, so the whole region
updates pixels’ gray values simultaneously. The contour of target region is smoothed
well, but the gray value of cobnut is error diffused. Fig. 4(b) gives the images inpainted
by TV model. TV model diffuses along the gradient direction. So the diffusion procedure
takes place from the top of rope to the bottom. There is no error diffusion and the whole
region is inpainted well. But there is no diffusion across the contour of the target region,
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Table 1

SNRs of images processed by different inpainting models

Different processing models
Original image

JDM GDM IDM

Image “Lincoln” 36.9396 29.0259 33.8260

34.6131 26.6370 33.1526

29.5291 29.4020 28.9051

Image “Squirrel” 41.9456 40.8307 41.7700

35.1318 23.1060 34.4607

29.3670 22.4191 29.2423

Image “Lena” 40.4986 40.3759 39.3481

45.4121 44.3803 39.8745

32.8756 31.6903 32.8173

Fig. 4. Diffusion procedures of image “Squirrel” using different models.

so the contour is not smoothed. Fig. 4(c) shows images inpainted by the novel joint-
diffused model. The diffusion procedure takes place at two orthogonal directions. The
topper parts are inpainted earlier than the lower parts, while the information across the
contour is diffused inward simultaneously. Therefore, the inpainted image is smooth. All
the marked contour of the target region is not perceivable. There is no error diffusion in
Fig. 4(c) and the visual perception of it is good.

The testing images in Fig. 5 are chosen from the CAS-PEAL face database (Gao et
al., 2004). We added some scratches into the images under varying lighting. To prove the
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Fig. 5. Inpainting with illumination compensation in face images.

Fig. 6. Inpainting in the underexposure natural image.

effect of illumination compensation, the large-scale part and small-scale part of image
are shown. The shadows and face contour are preserved in the large-scale part while the
intrinsic textured information is contained in the small-scale part. All the image informa-
tion is enhanced in the fused result of two parts. The scratch is well resorted in the final
result. It is proved the scratched testing face images under varying lighting could be well
restored by the novel model.

Lastly, two underexposure natural images are tested in Fig. 6 and Fig. 7. In the original
images, the details of scenes are too dark to perceive, and there are scratches in them. In
the restored images, illumination effects are compensated and the contrasts of the whole
images are enhanced. Also, the default information in scratches is well restored. All the
geometric structures and curvatures in the natural image are well preserved. The visual
perceptions of the processed images are good.
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Fig. 7. Inpainting in the underexposure natural image.

4. Conclusions

In this paper a novel illumination compensation inpainting model which employs joint-
diffused PDEs is proposed. It could restore the underexposure image directly. The model
restores the lighting information and enhances image contrast in two scales, and then
inpaint the illumination compensated image by diffusing the geometric property and
gray information simultaneously. The joint-diffused PDEs restore the target region fast
and precisely. They could well reconnect the geometric structure and restore the region
smoothly. The model is tested in many images, and the result demonstrates the model
could well inpaint underexposure image with shadows. The visual perception of the pro-
cessed image is better than that of the conventional models.
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Tiesin ↪e geometrin ↪e struktūr ↪a išsaugantis bendro skleidimo modelis
nepakankamo išlaikymo paveikslams rekonstruoti

Jiying WU, Qiuqi RUAN, Gaoyun AN

Bendro skleidimo dalini ↪u išvestini ↪u lygtis naudojantis apšvietimo kompensavimo modelis
pasiūlytas nepakankamo išlaikymo paveikslams rekonstruoti. Pirmiausia naujas modelis kom-
pensuoja apšvietimo efekt ↪a nepakankamo išlaikymo paveiksluose. Tada informacija sulietame
kompensuotame paveiksle yra rekonstruojama naudojant dalini ↪u išvestini ↪u lygtis, skleidžiančias

↪i rekonstruojam ↪a srit↪i kartu ir geometrines savybes, ir pilkumo informacij ↪a. Eksperimentas demon-
struoja, kad naujas modelis geli tinkamai rekonstruoti ↪ibrėžimus kompensuodamas apšvietim ↪a, o
bendro skleidimo dalini ↪u išvestini ↪u lygtis yra tikslingiau naudoti negu bendrai priimtus rekonstra-
vimo modelius.


