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Abstract. The objective of this paper is the description, justification, and web-based implementa-
tion of polynomial time algorithms for equilibrium search of Quadratic Bimatrix Games (QBG).
An algorithm is proposed combining exact and heuristic parts. The exact part has the Irelevant
Fraud (IF) component for cases when an equilibrium exists with no pure strategies. The Direct
Search (DS) component finds a solution if an equilibrium exists in pure strategies. The heuristic
Quadratic Strategy Elimination (QSE) part applies IF and DS to reduced matrices obtained by se-
quential elimination of strategies that lead to non-positive IF solutions. Finally, penalties needed
to prevent unauthorized deals are calculated based on Nash axioms of two-person bargaining the-
ory. In the numeric experiments QSE provided correct solution in all examples. The novel results
include necessary and sufficient conditions when the QBG problem is solved by IF algorithm, the
development of software and the experimental testing of large scale QBG problems up to n = 800.
The web-site http://pilis.if.ktu.lt/˜jmockus includes this and accompanying opti-
mization models.
Keywords: game theory, heuristics, optimization, economics, education.

Introduction

Traditional economical models of competition define prices and other production param-
eters that satisfy the Nash equilibrium (Nash, 1950). However, the market competition
represents just a part of competitive economical and social activities. Inspection is an-
other important part of such activities. Objectives of inspection include tax collection,
property, health, and environment protection.

This paper investigates an example of quadratic bimatrix game model that describes
the competition between inspectors and violators. We call them Inspector Games (IG).
The IG is similar but not identical to the well known Inspection Game (Oven, 1995).
The objective is to illustrate how the theories of games (Oven, 1995; Forgo et al., 1999;
McKelvey and McLennan, 1996; McKelvey et al., 2005; Games, 2006) and optimization
(Dantzig, 1963; Karmarkar, 1984; Murty, 2006) can be applied to inspection problems
defined as Quadratic Bimatrix Game (QBG), to show the limitations imposed by the high
complexity of the problem, and investigate ways to address them.
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To solve large scale game problems and to prepare examples of game theory studies,
it is essential to use polynomial time algorithms. No polynomial time algorithm is known
for obtaining Nash Equilibrium (NE) of bimatrix games in general (Porter et al., to ap-
pear). Therefore, an important task is to define a subset BG problems where NE can be
obtained in polynomial time. In the paper this is done for QBG if NE exists in strictly
mixed strategies (no pure strategies) or if NE exists in pure strategies. For other QBG a
polynomial time heuristic is applied.

In (Forgo et al., 1999; Berg, 2000) necessary and sufficient conditions of NE are given
for Bimatrix Games (BG) in terms of a bilinear programming problem. No polynomial
time algorithms are known for this problem. In the paper a simple proof is provided that
the Irrelevant Fraud (IF) model described in (Mockus, 1997) defines the sufficient and
necessary conditions for QBG if NE exists with no pure strategies. The IF model uses
Linear Programming (LP) for solution. If NE exists in pure strategies then NE can be
found by the Direct Search (DS) of pure strategies.

To solve IG problems in general the heuristic algorithm is proposed, implemented,
and investigated. This algorithm, for short QSE, uses strategy elimination and includes
both IF and DS. The heuristic part makes NE search by sequentially eliminating strategies
that lead to infeasible IF solutions. This is a heuristic implementation of the general idea
of strategy elimination (Knuth et al., 1988; Conitzer and Sandholm, 2005a; Conitzer and
Sandholm, 2005b). In the numeric experiments with matrix dimensions up to 800 the QSE
heuristic provided correct solution for all IG. Automatic testing for optimality included
in QSE ensured that only correct solutions were accepted. The CPU time ranged from 25
minutes for the largest dimensions, to 20 seconds for n = 200.

The game model of this paper is implemented as a Java applet in a system used for
graduate studies and scientific collaboration in the field of optimization and market games
(Mockus, 2007; Mockus, 2003b; Mockus, 2006b; Mockus, 2006a; Heilo and Mockus,
2008; Mockus, 2003a). The system includes theory and software of different optimization
models in 85,000 files. The main web-site: http://soften.ktu.lt/˜mockus.

Published examples of this system is optimization of stock exchange model (Mockus,
2003b) and Walras competition model (Mockus, 2004).

The opportunity to run software developed by colleagues in a Web browser facilitates
for scientific collaboration and distance learning. Results obtained by other researchers
can be easily tested by running their software with our input. Therefore algorithms, soft-
ware and results published in the scientific papers can be easily replicated and indepen-
dently investigated. So far, this possibility has not been widely adopted. We include the
snapshots of graphical user interfaces to simplify testing of the results and to illustrate
how the calculations were performed by authors.

To provide this experience in the Web browser environment we need a platform inde-
pendent language running software on remote computers, for example, Java, Perl, Python,
PHP. We chose Java because we felt it is more efficient than other alternatives for large
scale optimization problems.
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1. Bimatrix Game (BG)

1.1. Complexity

The well known results of algorithm complexity show the limitations of exact solutions.
That explains popularity of heuristic algorithms.

An important open problem in complexity theory is the existence of polynomial-time
algorithms for computing equilibrium for subsets of bimatrix games. For games in exten-
sive form, the reduced normal form may be exponentially large (von Stengel, 1998).

The Lemke-Howson algorithm (Forgo et al., 1999) is the classical algorithm for the
problem of finding a Nash equilibrium of a bimatrix game. It solves a linear comple-
mentary problem and provides a constructive and elementary proof of existence of an
equilibrium.

The paper (Savani and von Stengel, 2004) presents a class of bimatrix games for
which the Lemke-Howson algorithm takes, even in the best case, exponential time in the
dimension of the game.

The book (Murty, 2006) shows that the computational effort required to solve a linear
complementarity problem, by either of the two well known complementary pivot methods
is not bounded above by a polynomial in the size of the problem. In was shown that to
solve the problem of order n, either of the two methods goes through 2n pivot steps before
termination.

In this paper a polynomial time heuristic QSE is investigated. The IE component of
QSE provides exact solution if NE exists with no pure strategies. The DS component
solves the problem if NE exists in pure strategies. The QSE heuristic did reach NE in all
randomly generated IG during large scale experimentation up to dimension n = 800. The
QSE heuristic was designed for IG but it can be used for any QBG.

1.2. Profit Functions

The payoff of the first player is expressed by a matrix u(i, j) where i = 1, . . . , m denote
moves (pure strategies) of the first player and j = 1, . . . , n represent moves of the second.
The payoff of the second player is v(i, j). The profit functions U and V of the first and
second players are defined as expected values of payoffs u(i, j) and v(i, j)

U(x, y) =
∑
i,j

xiu(i, j)yj , (1)

and

V (x, y) =
∑
i,j

xiv(i, j)yj . (2)

Here x = (xi, i = 1, . . . , m) and y = (yj , j = 1, . . . , n) are probabilities (mixed
strategies) of moves i and j.
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In the Matrix Game (MG) u(i, j) = −v(ij). In the Bimatrix Game (BG) u(i, j) �=
−v(i, j). In the Quadratic Bimatrix Game (QBG) m = n.

Often the payoffs are defined as functions of parameters. For example, in the Inspector
Game (IG) the payoffs (33) and (34) are defined by three main parameters: the probability
pi to detect a violation if it happens in the area i, the probability qi of the violation, and
the payoff gi of the violation.

Two “nti-corruption” parameters defining the minimal expected penalty (49) can be
regarded, too. The penalty ω for unauthorized deal and a probability pω of the penalty ω.

2. Search for Equilibrium of QBG

2.1. Necessary and Sufficient Conditions

The necessary and sufficient conditions of NE for BG in general are well known and
described in (Forgo et al., 1999; Berg, 2000) as a bilinear programming problem that
can be rewritten as a linear complementary problem. No polynomial time algorithms are
known for these problems (Murty, 2006). If NE of QBG exists in strictly mixed strategies
then the necessary and sufficient conditions are formulated as a system of linear inequal-
ities that can be conveniently solved by efficient polynomial time algorithms of Linear
Programming (LP) such as (Karmarkar, 1984; Murty, 2006). Here is a simple proof to
explain these conditions.

DEFINITION 1.
A game strategy x: xi � 0,

∑m
i=1 xi = 1 is called the mixed strategy.

A game strategy x: xi > 0,
∑m

i=1 xi = 1 is called the strictly mixed strategy.
A game strategy x: xi = {0, 1},

∑m
i=1 xi = 1 is called the pure strategy.

Theorem 1. For a pair

x∗ > 0, y∗ > 0. (3)

to be a Nash equilibrium in strictly mixed strategies of the quadratic bimatrix game it is
necessary and sufficient that there exist real numbers (α∗, β∗) such that (α∗, β∗, x∗, y∗)
satisfies the system

Uy∗ = α∗I, (4)

x∗V = β∗I, (5)

Ix∗ = 1, Iy∗ = 1. (6)

where I denotes the unit vector.

Proof. Applying the well-known (Forgo et al., 1999) necessary and sufficient conditions
of Nash equilibrium for general bimatrix games (U, V ) to a subset of bimatrix games in
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strictly mixed strategies we can write

m∑
i=1

n∑
j=1

xiui,jyj = α, (7)

m∑
i=1

n∑
j=1

xivi,jyj = β, (8)

n∑
j=1

ui,jyj � α, i = 1, . . . , m, (9)

m∑
i=1

xivi, j � β, j = 1, . . . , n, (10)

m∑
i=1

xi = 1,

n∑
j=1

yj = 1, (11)

xi > 0, yj > 0. (12)

The difference from the conditions (Forgo et al., 1999) are strict inequalities (12).
From (4), (5)

m∑
j=1

ui,jyj = α, i = 1, . . . , m, (13)

m∑
i=1

xivi,j = β, j = 1, . . . , m. (14)

From (13), (14), (7), (8)

m∑
i=1

n∑
j=1

xiui,jyj =
m∑

i=1

xi

n∑
j=1

ui,jyj =
n∑

i=1

xi α = α

n∑
i=1

xi = α, (15)

m∑
i=1

n∑
j=1

xivi,jyj =
m∑

j=1

yj

n∑
j=1

xivi,j =
n∑

j=1

yj β = β

n∑
j=1

yj = β. (16)

That proves the sufficiency of (4), (5), (6), (3).
To prove the necessity of (4), (5), (6), (3) assume that

m∑
j=1

u1,jyj = α − ε, ε > 0, (17)

m∑
j=1

ui,jyj = α, i = 2, . . . , m, (18)
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Then

m∑
i=1

n∑
j=1

xiui,jyj = (α − ε)x1 + α
m∑

i=2

xi = α − εx1 < α. (19)

That proves the necessity.

2.2. Direct Testing

The equilibrium can be tested directly by the conditions of Nash equilibrium. First de-
fine the “contract” profits U ∗, V ∗ assuming that both players keep the contract solu-
tion (x∗, y∗)

U ∗ =
∑
i,j

x∗
i u(i, j)y∗

j , (20)

V ∗ =
∑
i,j

x∗
i v(i, j)y∗

j . (21)

Then define the maximal profits Umax, Vmax of players assuming that opposite players
keep the contract solution (x∗, y∗)

Umax = max
x

∑
i,j

xiu(i, j)y∗
j , (22)

Vmax = max
y

∑
i,j

x∗
i v(i, j)yj . (23)

The contract profits U ∗, V ∗ are compared with the values Umax, Vmax, and if

U ∗ � Umax, V ∗ � Vmax. (24)

the contract solution x∗
i > 0, y∗

j > 0 is recorded as an equilibrium strategy.

2.3. Irrelevant Fraud Model (IF)

The Irrelevant Fraud model defines conditions where no incentive to break the contract
solution (x∗, y∗) exists. Expressions (13), (14), (6) is a system of 2m + 2 linear equa-
tions that can be solved by standard algorithms of linear algebra. However the Linear
Programming (LP) is convenient for analysis.

In LP all the variables should be non-negative. Thus we express all the original vari-
ables as differences of two non-negative LP variables

U = u1 − u2, V = v1 − v2, u1 � 0, u2 � 0, v1 � 0, v2 � 0,

yj = y1
j − y2

j , y1
j � 0, y2

j � 0, j = 1, . . . , m,

xi = x1
i − x2

i , x1
i � 0, x2

i � 0, i = 1, . . . , m. (25)
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Then from expressions (13), (14), (6) follows this LP problem

max
x,y,u,v

(u1 − u2 + v1 − v2), (26)

m∑
j=1

u(i, j)yj = u1 − u2, i = 1, . . . , m, (27)

m∑
i=1

v(i, j)xi = v1 − v2, j = 1, . . . , m, (28)

m∑
j=1

yj = 1, (29)

m∑
i=1

xi = 1, (30)

where x = (x1, . . . , xm), y = (y1, . . . , ym), u = (u1, u2), v = (v1, v2). If the LP
solution happens to be positive, meaning that xi > 0. yj > 0, i, j = 1, . . . , m, than
according to the conditions of Theorem 1 that is NE. Variables xi and yj can be zero
or negative, too. That provides some additional information about the problem when no
positive solution exists.

Theorem 2. If exists, the Nash equilibrium in strictly mixed strategies of quadratic bi-
matrix game can be defined by an algorithm of polynomial complexity.

Proof. If positive, the solution of IF model by LP algorithm (26)–(30) satisfies conditions
(4)–(3) of Theorem 1. Suppose that the Interior Point algorithm is used solving the LP
problem (26)–(30). This algorithm is of polynomial complexity (Murty, 2006; Karmarkar,
1984). That proves the theorem.

That is a theoretical result. In large scale practical problems the simplex algorithm
of LP problems can be more efficient since its average complexity is low. The simplex
algorithm of LP is of exponential complexity in the worst, and of low degree polynomial
complexity in average (Smale, 1983).

Thus, if exists, the positive IF solution defines the Nash equilibrium for the quadratic
bimatrix game (1)(2). The problem is that positive solutions of IF algorithm not always
exists. An example is the Nash equilibrium in pure strategies. The Direct Search (DS)
can be applied for a search of equilibrium in pure strategies (32). If that fails, too, then
the heuristic Quadratic Strategy Elimination (QSE) algorithm (Section 2.5) is used.

2.4. Direct Search (DS)

It is well known (Forgo et al., 1999) that, in large randomly generated bimatrix n × n

games, the probability that a game has exactly k pure strategy equilibrium is defined by
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the asymptotic distribution

lim
n→∞

Pk(n) = e−1/(k!). (31)

Summing the probability over k = 1, . . . , n2 we find that roughly two-thirds (1 − e−1

as n → ∞) of randomly generated bimatrix games have an equilibrium point in pure
strategies. Additional information about asymptotic properties of randomly generated bi-
matrix games is in (McLennan and Berg, 2005).

Denote by I(j) a set of pairs of indexes I(j) = ∪j(i(j), j), where index i(j) =
arg maxi u(i, j) defines the maximal element of column j of the inspector matrix
u(i, j). Denote by J(i) a set of pairs of indexes J(i) = ∪i(i, j(i)), where index
j(i) = arg maxj v(i, j) defines the maximal element of row i of violator matrix v(i, j).
Denote unions of these sets I = ∪jI(j) and J = ∪iJ(i). Intersection of these unions

IJ = I ∩ J, (32)

defines NE in pure strategies. Empty intersection means that there exists no equilibrium
in pure strategies. Defining intersection and defining maximal elements are simple oper-
ations requiring n2 comparisons, therefore DS is a polynomial time algorithm.

2.5. Quadratic Strategy Elimination Algorithm (QSE)

The general idea of QSE is to eliminate strategies that lead to non-positive IF solutions.
First an IF solution for both players x, y is generated. If for some k xk � 0 or yk � 0
and the DS solution is not found, then both the strategies xk and yk are eliminated from
the set of feasible strategies by setting them to zero xk = yk = 0.

Iterative application of this method generates a sequence of QBG. The iteration stops
if a positive IF solution of the reduced QBG is obtained, a DS solution is found, or just a
single element remains. Thus no more than n such steps are needed.

Both IF and DS are polynomial time algorithms, therefore QSE is polynomial time
algorithm, as well. The QSE heuristic is based on the assumption that performing the
sequence of strategy eliminations we will not miss the equilibrium. Based on all (several
dozen) random matrices we have tried for the IG models, the QSE has obtained the exact
solution. Here are seven steps of QSE:

1) obtain a solution (x∗, y∗) of the LP problem (26)–(25): if a strictly positive solution
of the system is found, go to Step 6;

2) search for an equilibrium in pure strategies using the Direct Search algorithm (32):
if a solution is found, go to Step 6;

3) reduce the dimesion of LP problem by setting to zero the strategies xk = yk = 0
if the IF solutions yk � 0 or xk � 0 and no DS solution is found;

4) if a positive IF solution or a DS solution of the reduced system is found, go to
Step 6;

5) if k is the only element in the reduced system set xk = yk = 1 and go to Step 6,
otherwise go to Step 3;
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6) test conditions (24) in terms of the initial problem with strategies that had been
eliminated in Step 3 set to zero:
if no – print ’No solution found’,
if yes – go to Step 7;

7) record the solution x∗
i , y∗

j as an equilibrium strategy.

3. Inspector Game (IG)

3.1. Profit Functions

Denote by x = (x1, . . . , xm), xi � 0,
∑

i xi = 1 the inspection vector and by y =
(y1, . . . , ym), yj � 0,

∑
j yj = 1 the violation vector. Here xi denotes the inspection

probability of the object i and yj means the violation probability of the object j. Denote
by u(i, j) the inspector’s payoff when the object i is inspected and the object j is violated.
Denote by v(i, j) the violator’s payoff when the object i is inspected and the object j

is violated. Functions U(x, y) and V (x, y) denote the inspector’s and violator’s profit
functions using inspection and violation vectors x, y. These vectors define probabilities
of inspection and violation. Payoffs of IG

u(i, j) =
{

pigiqi, if i = j,
0, otherwise,

(33)

and

v(i, j) =
{

−qjpigj + (1 − pi)qjgj , if i = j,
qjgj , otherwise.

(34)

Here pi is the probability of detecting the violation if it happens in the object i, qi is the
probability of the violation in the object i, and gi is the payoff (potential) of the violation
in the object i.

Expression (33) means that if the violation is completed and detected (for example, the
prey is killed and a poacher is caught) then the inspector’s premium is equal to the payoff
of violation (the value of the killed prey). Expression (34) shows that if the violation is
completed and detected, the violator’s payoff is negative. The payoff is positive, if the
violation is not detected.

The profit functions at given inspection and violation vectors x and y

U(x, y) =
∑
i,j

xiu(i, j)yj , (35)

V (x, y) =
∑
i,j

xiv(i, j)yj . (36)

Here u(x, y) �= v(x, y), thus the inspection model is a bimatrix game (Forgo et al., 1999).
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3.2. Explicit Solution

There exists explicit IF solution for a subset of IG. These solutions are useful for software
testing.

Suppose, for example, that qi = gi = 1. Then from (33)–(34)

u(i, j) =
{

pj , if i = j,
0, otherwise,

(37)

and

v(i, j) =
{

−pi + (1 − pi), if i = j,
1, otherwise.

(38)

From here and expressions(13), (14), (6)

pjyj = U, j = 1, . . . , m, (39)∑
i �=j

xi + (1 − 2pj)xj = V, j = 1, . . . , m, (40)

∑
j

yj = 1,
∑

i

xi = 1, yj � 0, xi � 0.

The solution is simple

yi = xi = 1
/(

pi

n∑
k=1

1/pk

)
, i = 1, . . . , n. (41)

Note, that

xi > 0, yj > 0, i, j = 1, . . . , m. (42)

We see that if gi = qi = 1 then the IG problem (33)(34) is solved by the Irrelevant Fraud
(IF) algorithm. The same is true if gi = g, qi = q, i = 1, . . . , n.

If no positive solution exist then we search for the equilibrium in pure strategies by the
Direct Search algorithm (32). That complements the IF algorithm (29)–(25) and defines
the equilibrium in pure strategies, if it exists. The next step is to apply the QSE algorithm.

3.3. Preventing Corruption

The game will not be played by rules if the players may win more by breaking them.
Unauthorized deals (for example, bribes) are common tools for breaking the rules of
non-zero-sum games where v(i, j) �= −u(i, j). An example of such deal is sharing the
violator profit between the inspector and violator. Values of the optimal deal (ū, v̄) are
defined by the Nash bargaining conditions (Oven, 1995).
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The optimal deal (ū, v̄) depends on the set of feasible deals D, and on guaranteed
profits defining what the players will get if the deal fails

u∗ = max
x

min
y

U(x, y),

v∗ = max
x

min
y

V (x, y). (43)

Here
u∗ is the maximal expected guarantee profit of the first player,
v∗ is that of the second player.
In the Nash deal the first player gets ū and the second obtains v̄.
If exists a pair (u, v) ∈ D, such that u > u∗, v > v∗, then the optimal deal

(ū, v̄) = arg max
u,v

(u − u∗)(v − v∗), (44)

where

(u, v) ∈ D, u � u∗, v � v∗. (45)

If the sum of expected profits of both players is restricted by c then

D =
{
(u, v): u + v � c

}
, (46)

and the Nash deal

(ū, v̄) =
(
(c + u∗ − v∗)/2, (c + v∗ − u∗)/2

)
. (47)

An obvious way to prevent unauthorized deals is by introducing an additional parame-
ter w defining the expected penalty that makes the deal unprofitable.

The deal profits of players

ud = ū − u∗ = 1/2(c + u∗ − v∗) − u∗,

vd = v̄ − v∗ = 1/2(c + v∗ − u∗) − v∗. (48)

We see that the profits are equal. Thus the minimal expected penalty

w∗ = 1/2 (c − u∗ − v∗). (49)

Deal fails if the expected penalty w > w∗. Here w = ω pω where ω is the deal penalty
and pω is the probability of deal detection.

Assuming, that the deal of some IG is arranged before the game

c = max
i

giqi. (50)

Here c is the maximal expected payoff to be divided between the bargaining players.
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3.3.1. Example, Corrupt Inspector
Suppose that gi = qi = 1 and the sum of expected profits is restricted by c =
maxi giqi = 1.

From (41)

x∗
1 = y∗

1 = p2/(p1 + p2),

x∗
2 = y∗

2 = p1/(p1 + p2).

Then from (1), (2), (37), and (38)

u∗ = p1p2/(p1 + p2),

v∗ = 1 − 2p1p2/(p1 + p2) = 1 − 2u∗,

w∗ = 1/2(1 − u∗ − v∗) = 1/2(1 − u∗ − 1 + 2u∗) = 0.5u∗. (51)

If, for example, p1 = p2 = 0.5 then from (49) the minimal expected penalty w∗ = 0.125.

4. Experimental Software

4.1. Short Description

The software implementation of QSE , QSE-Java in short, is on the web (unsigned and
signed versions of “Bimatrix Game” in the web-site section “Discrete Optimization”)
and is used for research cooperation and graduate studies. The QSE-Java is implemented
as Java applets therefore QBG examples can be run by any browser supporting Java. In
the unsigned version we enter data directly on the screen. That is not difficult for simple
demonstration examples. In the signed version we can do that by files. Input of data by
files is needed for large scale experimentation.

We start software description by unsigned version. Here the applet starts by clicking
the line ’remote start’. This mode is not secure thus the input is made writing on the
screen.

The payoffs u(i, j) and v(i, j) defined by (33), (34) in QSE-J are set in parametric
form by entering input parameters. The meaning of the parameters P, G, Q in IG was
explained in the comments of expressions (33), (34). Data can be changed by adding or
deleting rows and entering the parameters P, Q, G.

Fig. 1 shows the input example for just two objects.
Parameters denoted as Fine and FineProbability define the penalty ω for unautho-

rized deals and the probability of their detection pω . To prevent unauthorized deals we
enter the preferred penalties and their probabilities. The zero values mean no preferences
thus the penalty is set automatically by expression (49). Note that apparently this is the
first implementation of the Nash bargaining conditions (Oven, 1995) in bimatrix game
software.

In QSE-Java the payoffs as functions of parameters are defined by clicking
(U, V ) Specification. The parametric form is converted into payoff matrices u(i, j) and
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Fig. 1. Input of parameters P, G, Q.

Fig. 2. Payoffs as functions of parameters in IG.

v(i, j) by a parser during run-time. An example of these matrices is shown in the upper
part of Fig. 4. Fig. 2 shows how the IG payoffs u(i, j) and v(i, j) depends on parameters
Pi, Gi, Qi.

The optimization starts by selecting the Main and clicking Calculate. The results
can be observed in short and extended forms.

The short form is shown by clicking Output Data. It includes strategies X0 =
xi, Y 0 = yj of NE. Fig. 3 shows the Output Data when n = 2.

The extended form is opened by clicking Output. The Output of the simplest exam-
ple is in Fig. 4.

The upper part shows the payoff matrices U = u(i, j) and V = v(i, j) defined by
expressions (33),(34) and calculated by the parser of QSE-Java. The lower part of Fig. 4
shows how the Direct Search ’DSA’ works. First the indexes of maximal elements are
defined by columns and by rows. Then the intersection (32) is calculated and the NE
in pure strategies defined as the element (1, 1). This means that NE is obtained when
both the inspector and the violator visit the same second object (in the QSE-Java object
numbering starts from zero).
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Fig. 3. Equilibrium strategies, n = 2.

The Direct Testing (24) is applied to QSE results by comparing the contract values
U ∗ and V ∗ with maximal feasible profits U max and V max. This time the equilibrium
was found. The Output ends by defining the minimal expected penalty (49) preventing
unauthorized deal.

Using the unsigned version for input/output of data by large files the archive file
’remig05-19.tgz’ should be downloaded and opened first. Then the applet is started by
the command line that includes the policy file:

’appletviewer -J-Djava.security.policy=java.policy applet.html’ (here ’applet.html’
defines a html script to start QSE-Java).

The data can be entered by downloading an environmet file, for IG that is ’environ-
ment.txt’:

V_EQUTION=-Qj*Pi*Gj+(1-Pi)*Qj*Gj;i\=j;\nQj*Gj;
U_EQUTION=Pi*Gi*Qi;i\=j;\n0;
DATA_SAVE_URL=file\:save_data.txt
DATA_LOAD_URL=http\://soften.ktu.lt/~mockus/inspsign/src/data.txt
VARIABLES=P G Q
RESULTS_SAVE_URL=file\:save_results.txt

This example shows how payoffs of IG (33) and (34) are defined in QSE-Java. How-
ever the software is designed for solving larger family of QBG defining them by different
payoffs u(i, j), v(i, j) in the parametric form. The three variables Pi, Gi, Qi are just for
IG. For other games larger number of parameters can be employed. Note that no recom-
piling is needed while exploring different QBG.

The advantage of signed version is that data files can be entered by a browser if a user
trusts the originating web-site. Therefore the input files should be ready for use. It would
be convenient first to download the ’environment.txt’ file by a browser, to be uploaded
later, when the applet starts. Otherwise, a user prepares ’environment.txt’ file in advance
or writes ’(U,V) Specification’ on-line.

Note, that the web-site is updated at the end of each semester, as usual.

4.2. Comparing with General Software Tools for Game Theory

The Gambit (McKelvey et al., 2005) is a popular software tool. That is a general soft-
ware designed to solve different games. The advantage of Gambit is the implementation
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Fig. 4. Output, n = 2.

of exact algorithms and the convenient graphical user interface. Gambit displays a strate-
gic game in the table form. Payoffs for each player are specified individually for each
contingency, or collection of strategies, in the game. However analyzing large games by
Gambit may become infeasible surprisingly quickly. Typically, the amount of time re-
quired to compute equilibrium increases rapidly in the size of the game.

Fig. 5 shows (by colored numbers) input and output of Gambit. Results of Gambit are
obtained by the exact Lemke algorithm (Forgo et al., 1999). The inner gray table shows
output data of QSE algorithm. In this and other IG examples both the exact Gambit and
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Fig. 5. Graphical user interfaces of Gambit and QSE.

the heuristic QSE-Java did find NE.
The aim of the QSE-Java is the web-based implementation of algorithms of polyno-

mial complexity for the IG subset of QBG. This is done by Java applets. A feature of Java
as compared with other platform-independent languages is the ’just-in-time’ compiler.
That, and some new improvements in Java 1.6 and Java 1.7 versions, makes Java web-
based optimization algorithms almost as fast as the stand-alone versions implemented in
the efficient languages such as C++.

The QSE-Java realizes a parser for transforming payoffs as some function’s depend-
ing on several parameters into payoff matrices (33) and (34). In addition QSE-Java im-
plements algorithms for prevention of unauthorized deals (49).

The main advantage of the QSE-Java is the simplicity of large scale experimenta-
tion. For the large scale experiments the random IG parameters Pi, Gi, Qi, i = 1, . . . , n

were generated by uniform distribution in [0, 1]. The CPU time (by Intel(R), Core(TM)2,
2.4GHz, RAM 2GB, Linux, Fedora 8) was 20 sec. for the dimension n = 200, 1 min.
for n = 300, 6 min. for n = 400, and 25 min. for n = 800. The NE was reached in all
these experiments. Thus QSE guarantee equilibrium of QBG if it exists in pure or strictly
mixed strategies (with no pure strategies) and provides NE for randomly generated IG
examples, as usual.

Fig. 3 shows the Output for n = 2.

4.3. Application for Distance Graduate Studies

The QBG model is simple. However, the model is based on fundamental results of games
theory and operations research. That makes the model useful for studies of these topics.



A Web-Based Bimatrix Game Optimization Model of Polynomial Complexity 95

The software is designed as an open-ended tool of research. Important task is to define
a set of bimatrix games that can be solved by the polynomial algorithms. That includes
defining proportion of randomly generated quadratic bimatrix games with Nash equilib-
rium in strictly mixed strategies. For equilibrium in pure strategies similar problem is
solved by asymptotic formula (31). Solving the problem of equilibrium in strictly mixed
strategies extensive experimentation could be useful. Numerical experiments applying
QSE to different QBG can help evaluating advantages and disadvantages of QSE algo-
rithm. Using and developing the software students better understand applications of Nash
equilibrium (Nash, 1950).

These properties are useful for graduate studies where research skills are important.
Students can easily create new bimatrix game models using the “Parser” mode imple-
mented in the software, see Fig. 2. This way new features can be included and new situa-
tions investigated.

Implementation of the model as Java applet provides a cross-platform compatibility
and makes the distances almost irrelevant.

The model is a part of a Web-based system of distance graduate studies. The main
web-site:

http://soften.ktu.lt/˜mockus,
and three mirrors, for reliability:

http://pilis.if.ktu.lt/˜jmockus
http://optimum2.mii.lt
http://kopustas.elen.ktu.lt/˜jmockus

includes this and accompanying optimization models.
Now the system is used regularly for distance graduate studies in two Lithuanian

universities: Kaunas Technological University and Vilnius Technical University. The sys-
tem was used during international graduate studies including Lappeenranta University of
Technology, SF-53851, Lappeenranta, Finland (Heilo and Mockus, 2008).

5. Summary

We need polynomial time algorithms to solve large scale game problems and to explore
numerically examples in studies of game theory. No polynomial time algorithm obtaining
Nash Equilibrium (NE) is known for Bimatrix Games (BG) in general. Therefore, an im-
portant task is to define a subset of BG problems where NE can be reached in polynomial
time.

This is done for Quadratic Bimatrix Games (QBG) by the Irrelevant Fraud (IF) model
if NE exists in strictly mixed strategies (no pure strategies) or by the Direct Search (DS) if
NE exists in pure strategies. Otherwise the heuristic polynomial time Quadratic Strategy
Elimination (QSE) algorithm can be used. QSE includes both IF and DS, and the heuristic
component. So far, we could not construct an Inspector Game (IG) example where the
QSE does not find a solution, and in all our simulations with randomly generated IG
matrices up to n = 800 the algorithm found NE.
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A simple proof that the IF model defines the sufficient and necessary conditions for
QBG if NE exists with no pure strategies is presented. The QSE algorithm is implemented
as a Java applet and numeric simulations are conducted for IG from 200 to 800 objects.
The CPU time ranged from 25 minutes for the largest dimensions, to 20 seconds for
n = 200. Automatic testing for optimality included in QSE ensures that only correct
solutions are accepted.

The algorithms are implemented as Java applets in the web-based system for sci-
entific cooperation and studies. The source code is included as well. This helps teach-
ing the game-theory aspects of the problem for the students with no programming skills
and, more importantly, provides basic programming components in the game domain for
the rest.
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Kvadratinio bimatricinio lošimo polinominio sudėtingumo modelis

Jonas MOCKUS

Tikslas – aprašyti, pagr↪isti ir realizuoti interneto aplinkoje polinominio sudėtingumo algoritm ↪a
kvadratini ↪u bimatricini ↪u lošim ↪u (QBG) Nash’o pusiausvyrai (NE) nustatyti. Siūlomas algoritmas
jungia tiksliaj ↪a ir euristin ↪e dalis.

Tikslioji dalis turi nejautri ↪a apgaudinėjimui komponent ↪e (IF), skirt ↪a uždaviniams kai pusiau-
svyra egzistuoja be grynuj ↪u strategij ↪u. Kita, tiesioginio ieškojimo komponentė (DS), randa pu-
siausvyr ↪a kai ji egzistuoja gryn ↪uj ↪u strategij ↪u aibėje. Heuristinė, kvadratinio heuristik ↪u eliminavimo
(QHE), dalis naudoja abi šias komponentes nuosekliai eliminuojant strategijas, neturinčias teigiam ↪u
sprendini ↪u. Baigiant skaičiavimus nustatomos baudos už neteisėtus sandėrius.

Naujumas – tai būtin ↪u ir pakankam ↪u salyg ↪u ↪irodymas kai kvadratiniai bimatriciniai lošimai
sprendžiami IF algoritmo pagalba bei QSE realizavimas interneto aplinkoje ir didelės apimties
ekspriment ↪u atlikimas uždaviniuose iki n = 800. QSE rado pusiausvyr ↪a visuose skaičiavimuose.
Tinklapis http://pilis.if.ktu.lt/˜jmockus jungia š↪i ir kitus artimus optimizavimo
modelius.


