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Abstract. The aim of the given paper is development of a recursive approach for calculating
the statistics of decimated realizations of a basic discrete-time signal, obtained by sampling a
continuous-time one. The statistics values are calculated without storing decimated realizations
in the memory of a computer. In such a case, only all samples of the basic discrete-time signal are
required. The summing calculation amount has been significantly reduced here by applying recur-
sive expressions that use, in the current operation, the respective statistic obtained by processing
the samples of a previous decimated realization. We prove the corollaries referring to recursive
statistics calculation and present here an example. The results of calculation of the total quantity
of computer operations for a different amount of decimated signals are also given and compared to
that, determined by using the ordinary formulas.

Keywords: signals, processing, decimation, Nyquist frequency, realization, statistics, computer
operations.

1. Introduction

While processing discrete-time signals, there arises a problem to retrieve maximal infor-
mation as well as to reduce the amount of calculations on samples. In such a case, the
data decimation by means of a downsampling operation is used (Proakis and Manolakis,
1996). This is a time-scaling operation that is equivalent to changing the sampling rate Fs

of an analogous signal from 1/Ts to 1/2Ts, where Ts is a sampling period and its recip-
rocal 1/Ts = Fs, i.e., decreasing the sampling rate twice. In such a case, the number
of samples to be processed decreases twice, as well. In general, the basic sampling fre-
quency Fs could be decreased by a fixed integer number of times. It is known that the
decimation process ought to be stopped before the frequency content of the signal is
above the new Nyquist frequency FN = Fs/2. The sampling rate determination tech-
niques are proposed for discrete process control and identification of dynamic systems
(Ȧström, 1969; MacGregor, 1976; Payne et al., 1975; Ljung, 1999; Xin et al., 1995),
as well as for improving spectral resolution while solving a spectral estimation problem
(Liu and Mintzer, 1978; Quirk and Liu, 1983; Villalba and Walker, 1989; Wang et al.,
2007). On the other hand, frequently it is important, first of all, to calculate simple sta-
tistical characteristics of decimated realizations without storing them in the memory of a
computer, e.g., while modelling stochastic as well as deterministic signals parametrically
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(Zaknich, 2005). There also arises a problem to reduce the number of operations needed
for calculations of statistical moments. Both problems have been solved here, using the
recursive approach proposed in the paper. In Section 2, the statement of the problem
is presented. In Section 3, recursive expressions for the first and second order central
statistics values are worked out. In Section 4, an example is given for any realization of
33 samples. The results of calculation of the total quantity of computer operations are
presented in Section 5. Section 6 contains conclusions.

2. Statement of the Problem

Assume that we consider a discrete-time signal U(kTs) ∀ k ∈ 0, N that is obtained by
sampling its continuous-time counterpart U(t) with sampling frequency Fs. Here N is the
general number of samples of the basic signal U(kTs) ∀ k ∈ 0, N under consideration;
t is a continuous time variable. Suppose, for simplicity, that N is divisible n times by 2,
i.e., N = 2n. After a multiplex decimation of the realization u(kTs) ∀k ∈ 0, N , in the
memory of a computer one has a set Ω of the following sequences:
x1(k) ≡ u(kTs) ∀k ∈ 0, N , x2(k) ≡ u(k2Ts) ∀k ∈ 0, N/2, x3(k) ≡ u(k4Ts)
∀k ∈ 0, N/4, . . . , xn−1(k) ≡ u(knTs/2) ∀k ∈ 0, 2N/n, xn(k) ≡ u(knTs)
∀k ∈ 0, N/n of the same signal U(kTs) ∀k ∈ 0, N .

Also it is assumed here that the maximal frequency of the last decimated signal
xn(k) ≡ u(knTs) ∀k ∈ 0, N/n is still lower or equal to the new Nyquist frequency FN .
Then the mean, variance, and autocovariance function values could be calculated by pro-
cessing different sequences from the set Ω, respectively, using well-known formulas (36),
(37) and (38) given in (Bendat and Piersol, 1967).

The aim of the given paper is: firstly, to calculate the abovementioned statistics values
without storing decimated sequences in the memory of a computer, secondly, to reduce
the number of calculations by applying the recursive approach that will use the informa-
tion obtained by processing the previously decimated realization from the same set Ω in
the current operation.

3. Recursive Expressions for Values of the Statistics

In order to work out the recursive expressions for the first and second central order statis-
tics, let us formulate statements on the calculation of means, variances and covariance
function values of decimated realizations as well as non-decimated ones.

COROLLARY 1. The mean m(· ) and the variance var(· ) of each realization from the set
Ω are calculated using the recursive expressions of the form

m(iTs) =
i

N + i

{
N + 2i

2i
m(2iTs) +

N
2i∑

l=1

u
(
iTs(2l − 1)

)}
, (1)
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var(iTs) =
i

N + i

{
N + 2i

2i
var(2iTs) +

N
2i∑

l=1

u̇2
(
iTs(2l − 1)

)}
(2)

∀i = 1, 2, 4, 8, . . . , n/2, respectively. Here m(iTs), m(i2Ts) and var(iTs), var(i2Ts)
∀i = 1, 2, 4, 8, . . . , n/2 are mean and variance values of the current and previous itera-
tions, respectively, and

u̇
(
iTs(2l − 1)

)
= u

(
iTs(2l − 1)

)
− m

(
iTs(2l − 1)

)
(3)

∀i = 1, 2, 4, 8, . . . , n/2.

COROLLARY 2. The covariance function values ru(· ) of each realization from the set Ω
are calculated using the recursive expression of the form

ru(2τiTs; iTs) =
1

N
i − 2τ + 1

{(N

2i
− τ + 1

)
ru(τiTs; 2iTs)

+

N
2i −τ∑
l=1

u̇
(
iTs(2l − 1)

)
u̇
(
iTs(2l − 1 + 2τ)

)}
(4)

∀i = 1, 2, 4, 8, . . . , n/2, where for each i the lag τ = 0, 1, 2, . . . in ru(τiTs; 2iTs), and

ru(τiTs; iTs) =
1

N
i − τ + 1

N
i −τ∑
l=0

u̇(iTsl)u̇
(
iTs(l + τ)

)
(5)

∀i = 1, 2, 4, 8, . . . , n/2, where for each i the lag τ = 1, 3, 5, . . .. Here ru(2τiTs; iTs)
and ru(τiTs; 2iTs) ∀τ = 0, 1, 2, 3, . . . are covariance function values of the current and
previous iterations, respectively.

Proof of Corollary 1. Let us describe now the signal u(kTs) ∀k ∈ 0, N resolving it into
a sum of unit sample sequences δ(kTs − lTs) such as (Proakis and Manolakis)

u(kTs) =
N∑

l=0

u(lTs)δ
[
Ts(k − l)

]
, (6)

because δ(kTs − lTs) is zero everywhere except at k = l, where its value is a unity. It
follows that the last decimated sequence xn(k) ≡ u(knTs) ∀k ∈ 0, N/n is

u(knTs) =
N/n∑
l=0

u(lnTs)δ
[
Ts(kn − ln)

]
(7)
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with the mean

m(nTs) =
n

N + n

N/n∑
l=0

u(lnTs), (8)

and the variance

var(nTs) =
n

N + n

N/n∑
l=0

u̇2(lnTs), (9)

where u̇(lnTs) = u(lnTs) − m(nTs) ∀l ∈ 0, N/n. It is obvious that samples of the
sequence u(knTs

2 ) for k = 0, 2, 4, . . . , 2N
n are equivalent to the samples of the last dec-

imated sequence u(knTs) for k = 0, 1, 2, . . . , N
n , respectively. The other samples of

u(knTs

2 ) are newly inserted into sequence u(knTs) halving its corresponding time in-
tervals between the next samples, thus increasing the whole number of the samples of
sequence (6) twice. Therefore the mean and the variance of the sequence u(knTs

2 ) for
k=0, 2, 4, . . . , 2N

n are

m(nTs/2) =
n

2N + n

{
N + n

n
m(nTs) +

N/n∑
l=1

u
(
Tsn(l − 1/2)

)}
, (10)

and

var(nTs/2) =
n

2N + n

{
N + n

n
var(nTs) +

N/n∑
l=1

u̇2
(
Tsn(l − 1/2)

)}
, (11)

respectively. Proceeding with that in the reverse order, one could obtain the recursive
formulas for calculating means and variances of decimated realizations as well as for
the basic one. For the first-decimated realization and for the basic one, those recursive
formulas are

m(2Ts) =
2

N + 2

{
N + 4

4
m(4) +

N/4∑
l=1

u
(
2(2l − 1)

)}
(12)

and

m(Ts) =
1

N + 1

{
N + 2

2
m(2) +

N/2∑
l=1

u
(
(2l − 1)

)}
, (13)

respectively. Thus, the general expressions for calculating means and variances are of the
forms (1) and (2), respectively.
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Proof of Corollary 2. Let us calculate now covariance values of the last decimated real-
ization xn(k) ≡ u(knTs) ∀k ∈ 0, N/n by the ordinary formula

ru(τnTs; nTs) =
1

N − τ + 1

N
i −τ∑
l=0

u̇(ilnTs)u̇(ilnTs + τnTs) (14)

∀τ = 0, 1, . . . , L with L < N
n . Assuming, for clarity of mathematical expressions that

Ts = 1. Having in the mind that some samples of the sequence u̇(knTs

2 ) for k=0, 2, 4,
. . . , 2N

n are equivalent to the respective samples of the last decimated sequence u̇(knTs)
for k = 0, 1, 2, . . . , N

n , respectively, one can write

ru

(
2τ ;

n

2
Ts

)
=

1
2N

n − 2τ + 1

{(N

n
− τ + 1

)
ru(τ ; nTs)

+

N
n −τ∑
l=1

u̇

(
nTs

(
l − 1

2

))
u̇

(
nTs

(
l − 1

2
+ τ

))}
(15)

∀τ = 0, 1, 2, . . . in ru(τnTs; nTs), and

ru(τ ;
n

2
Ts) =

1
2N

n − τ + 1

N
n −τ∑
l=0

u̇
(n

2
Tsl

)
u̇
(n

2
Ts(l + τ)

)
, (16)

where the lag τ = 1, 3, 5, . . .. Here ru(2τ ; n
2 Ts), ru(τ ; n

2 Ts), and ru(τ ; nTs) ∀τ =
0, 1, 2, 3, . . . are covariance function values of the current and previous iterations, re-
spectively.

Continuing that in the reverse order, one could obtain the recursive formulas for cal-
culating covariance values of decimated realizations as well as for a basic one. For the
first decimated realization those recursive formulas are

ru(2τ ; 2Ts) =
1

N
2 − 2τ + 1

{(N

4
− τ + 1

)
ru(τ ; 4Ts)

+

N
4 −τ∑
l=1

u̇
(
2Ts(2l − 1)

)
u̇
(
2Ts(2l − 1 + 2τ)

)}
(17)

∀τ = 0, 1, 2, . . . in ru(τ ; 4Ts), and

ru(τ2Ts; 2Ts) =
1

N
2 − τ + 1

N
2 −τ∑
l=0

u̇(2Tsl)u̇
(
2Ts(l + τ)

)
(18)

where the lag τ = 1, 3, 5, . . .. Here ru(τ ; 2Ts), ru(τ ; 2Ts), and ru(τ ; 4Ts) ∀τ =
0, 1, 2, 3, . . . are covariance function values of the current and previous iterations, re-
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spectively. Finally, for the basic realization u(kTs) ∀k ∈ 0, N , we have

ru(2τ ; Ts) =
1

N − 2τ + 1

{(N

2
− τ + 1

)
ru(τ ; 2Ts)

+

N
2 −τ∑
l=1

u̇
(
Ts(2l − 1)

)
u̇
(
Ts(2l − 1 + 2τ)

)}
(19)

∀τ = 0, 1, 2, . . . in ru(τ ; 2Ts), and

ru(τ ; Ts) =
1

N − τ + 1

N −τ∑
l=0

u̇(Tsl)u̇
(
Ts(l + τ)

)
, (20)

where the lag τ = 1, 3, 5, . . .. Here ru(2τ ; Ts), ru(τ ; Ts), and ru(τ ; 2Ts) ∀τ =
0, 1, 2, 3, . . . are covariance function values of the current and previous iterations re-
spectively. Thus, the general expressions for calculating covariance values of decimated
realizations and of the basic sequence are of the form (4) and (5), respectively.

4. Example

Let us now calculate the mean, variance, and covariance values having any realization
of the basic non-decimated discrete-time signal U(kTs) ∀k ∈ 0, N with N = 32 and
arbitrary Ts. After decimating this realization, we get the set Ω of realizations: u(Tsk)
∀k ∈ 0, 32, u(2Tsk) ∀k ∈ 0, 16, u(4Tsk) ∀k ∈ 0, 8, u(8Tsk) ∀k ∈ 0, 4 or u(k) ∀k ∈
0, 32, u(2k) ∀k ∈ 0, 16, u(4k) ∀k ∈ 0, 8, u(8k) ∀k ∈ 0, 4 assuming, for simplicity, that
Ts = 1.

First of all, we calculate the mean, variance and covariance values of the last deci-
mated realization by the ordinary formulas:

m(8) =
1
5

4∑
l=0

u(8l) =
1
5
[
u(0) + u(8) + u(16) + u(24) + u(32)

]
, (21)

var(8) =
1
5

4∑
l=0

u̇2(8l) =
1
5
[
u̇2(0) + u̇2(8) + u̇2(16) + u̇2(24) + u̇2(32)

]
, (22)

and

ru(τ ; 8) =
1

4 − τ + 1

4−τ∑
l=0

˙u(8l)u̇(8l + 8τ) (23)

for τ = 1, 2, 3, respectively. Here u̇(8l) = u(8l) − m(8) ∀l ∈ 0, 4.
Next, the decimated realization u(4k) ∀k ∈ 0, 8 has been found by inserting the

respective samples of the basic realization into u(8k) ∀k ∈ 0, 4. They halve the corre-
sponding time intervals between the adjacent samples of the last decimated realization
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increasing the number of data. Then the statistics of u(4k) ∀k ∈ 0, 8 are calculated ac-
cording to recursive expressions (1)–(5) as follows:

m(4) =
4

32 + 4

{
32 + 8

8
m(8) +

4∑
l=1

u
(
4(2l − 1)

)}

=
1
9
[
5m(8) + u(4) + u(12) + u(20) + u(28)

]
, (24)

var(4) =
4

32 + 4

{
32 + 8

8
var(8) +

4∑
l=1

u̇2
(
4(2l − 1)

)}

=
1
9
[
5var(8) + u̇2(4) + u̇2(12) + u̇2(20) + u̇2(28)

]
, (25)

ru(2τ ; 4)=
1

8 − 2τ +1

{
(4−τ +1)ru(τ ; 8)+

4−τ∑
l=1

u̇(8l−4)u̇(8l−4+8τ)
}

, (26)

if τ = 1, 2 in ru(τ ; 8),

ru(τ ; 4) =
1

8 − τ + 1

8−τ∑
l=0

u̇(4l)u̇(4l + 4τ) (27)

for τ = 1, 3, respectively. Here u̇(4l) = u(4l)−m(4) ∀l ∈ 0, 8. Using the same recursive
expressions, we get the statistics of the first decimated realization u(2k) ∀k ∈ 0, 16

m(2) =
2

32 + 2

{
32 + 4

4
m(4) +

8∑
l=1

u
(
2(2l − 1)

)}

=
1
17

[
9m(4) + u(2) + u(6) + u(10) + u(14)

+ u(18) + u(22) + u(26) + u(30)
]
, (28)

the variance

var(2) =
2

32 + 2

{
32 + 4

4
var(4) +

8∑
l=1

u̇2
(
2Ts(2l − 1)

)}

=
1
17

[
9var(4) + u̇2(2) + u̇2(6) + u̇2(10) + u̇2(14)

+ u̇2(18) + u̇2(22) + u̇2(26) + u̇2(30)
]
, (29)

and

ru(2τ ; 2)=
1

16 − 2τ + 1

{
(8−τ +1)ru(τ ; 4)+

8−τ∑
l=1

u̇(4l − 2)u̇(4l − 2 + 4τ)
}

, (30)
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if τ = 1, 2 in ru(τ ; 4),

ru(τ ; 2) =
1

16 − τ + 1

16−τ∑
l=0

u̇(2l)u̇(2l + 2τ) (31)

for τ = 1, 3, respectively. Here u̇(2l) = u(2l) − m(2) ∀l ∈ 0, 16. Finally, we obtain the
statistics of the basic non-decimated realization u(k) ∀k ∈ 0, 32

m(1) =
1

32 + 1

{
32 + 2

2
m(2) +

16∑
l=1

u(2l − 1)
}

=
1
33

(
17m(2) + u(1) + u(3) + u(5) + u(7) + u(9) + u(11),

u(13) + u(15) + u(17) + u(19) + u(21) + u(23) + u(25)

+ u(27) + u(29) + u(31)
)
, (32)

the variance

var(1) =
2

32 + 2

{
32 + 4

4
var(2) +

16∑
l=1

u̇2(2l − 1)
}

=
1
33

(
17m(2) + u̇2(1) + u̇2(3) + u̇2(5) + u̇2(7) + u̇2(9) + u̇2(11),

u̇2(13) + u̇2(15) + u̇2(17) + u̇2(19) + u̇2(21) + u̇2(23) + u̇2(25)

+ u̇2(27) + u̇2(29) + u̇2(31)
)
, (33)

and

ru(2τ ; 1)=
1

32−2τ +1

{
(16−τ +1)ru(τ ; 2)+

16−τ∑
l=1

u̇(2l − 1)u̇(2l−1+2τ)
}

(34)

for τ = 1, 2 in ru(τ ; 2),

ru(τ ; 1) =
1

32 − τ + 1

32−τ∑
l=0

u̇(l)u̇(l + τ) (35)

for τ = 1, 3, respectively. Here u̇(l) = u(l) − m(1) ∀l ∈ 0, 32.
It should be noted that one can calculate the same mean and variance values by the

ordinary formulas (36), (37) and (38), too. However, recursive calculations according to
the formulas (1)–(5) allow us to decrease the number of summing operations as com-
pared with ordinary expressions given in (Bendat and Piersol, 1967), especially, for large
enough N . In such an example, while calculating m(4), m(2) and m(1), we avoid five,
nine and seventeen summing operations, respectively. By calculating var(4), var(2), and
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var(1), we double the numbers of operations to be saved. In addition we avoid four and
three, eight and seven, sixteen and fifteen summing operations while calculating the co-
variance values by (26), (30) and (34), correspondingly. In general, having any realiza-
tion consistin g of 33 samples one needs 115 less summing operations while calculating
the statistics of decimated and non-decimated realizations in comparison with the oper-
ations performed using the ordinary formulas. On the other hand, in such an example
there appear several additional multiplication operations in each recursive step, as shown
in (Pupeikis, 2007).

5. Total Amount of Computer Operations

Thus, recursive calculations using formulas (1), (2), and (4) allow us to decrease the
quantity of computer summing operations as compared to the ordinary expressions:

u =
1
N

N∑
k=1

uk, (36)

x2 =
1
N

N∑
k=1

(xk)2, (37)

and

Rr = Rx(rh) =
1

N − r

N−r∑
k=1

xkxk+r, r = 0, 1, 2, . . . , m, (38)

used to determine the mean, variance, and covariance function values, respectively. It
could be noted that in (36), (37), and (38), the markings and notation given in (Bendat
and Piersol, 1967) are kept. Here uk are sample values of the continuous time function
u(t) at points tk = t0+kh for k = 1, 2, . . . , N (point t0 is chosen, arbitrarily and it is not
included in the abovementioned formulas); h is equivalent to the sampling period Ts in
expressions (1), (2), and (4); the sequence {xk } is determined by centering the sequence
{uk }, i.e., xk = uk − u for k = 1, 2, . . . , N .

The total amount of computer operations could be calculated by

O1 =
n−1∑
k=0

N

2k
+ 5n, (39)

for the mean,

O2 = 2
n−1∑
k=0

N

2k
+ 6n (40)
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for the variance, and

O3 =
n∑

l=0

{
2
[(N

2l
+ 1

)(m
2l

+ 1
)

−
m
2l∑

k=0

k

]
+ 5

(m
2l

+ 1
)}

(41)

for the covariance function values, respectively, if we process one realization of initial
nondecimated and n realizations of decimated signals, using formulas (36), (37), and
(38). On the other hand, O1, O2, O3 turn out to be

Õ1 = N + 8n, (42)

Õ2 = 2N + 8n, (43)

and

Õ3 =
n∑

l=1

{
2
[(N

2l
+ 1

)(m
2l

+ 1
)

−

m
2(l−1)∑
k=0

2k

]
+ 11

(m
2l

+ 1
)}

+
n∑

l=1

{
2
[

N

2(l−1)

m
2l

−

m
2(l−1)∑
k=0

(2k − 1)
]

+ 5
(m

2l
+ 1

)}

+ 2
[( N

2n
+ 1

)( m
2n

+ 1
)

−
m
2n∑

k=0

k

]
+ 5

( m
2n

+ 1
)
, (44)

respectively, if recursive expressions (1), (2), (4) are applied in the calculation of the
mean, variance, and covariance function values. The covariance function values have
been calculated using the recommendation given in (Bendat and Piersol, 1967) in respect
of the m value in expression (38). The authors recommend there to choose m not more
than 0.1N . Note that, in our case, N depends on Ts. Thus, for different realizations m is
varying, as well. The values of O1, O2, O3, Õ1, Õ2, Õ3 have been determined for varying
numbers of realizations in the set Ω by increasing the general number of realizations QR

from QR = 1 (only last decimated signal in the set Ω with N10 = 32 and m10 = 2) to
QR = 10 (all n = 9 decimated realizations and non-decimated realization of the initial
signal with N1 = 16384 and m1 = 1024). The values of N for each decimated realization
decrease two times. Thus, for the first decimated sequence N2 = 8192, while for the
last one N10 = 32. In such a case, the m values decrease, too. For the initial nondeci
mated realization m1 = 1024 is chosen. Then, for decimated realizations, the values of
mi, i = 2, 10 are: 512, 256, 128, 64, 32, 16, 8, 4, and 2. The results of calculation of the
total quantity of computer operations for both methods are given in Table 1 and Figs. 1, 2.
Note that, in the calculation of values O1, O2, O3, Õ1, Õ2, Õ3 for each varying QR only
samples of one at least decimated realization in the set Ω have been used despite which
expressions – ordinary or recursive – are applied. Thus, we process samples of the last
decimated realization for QR = 1, samples of the first decimated realization for QR = 9,
and samples of initial non-decimated realization for QR = 10, respectively. It should be
noted that, by increasing QR in the set Ω more than by five realizations, the quantity
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Table 1

Dependence of O1, Õ1, O2, Õ2, O3, Õ3, on QR in the set Ω while calculating their mean, variance, and
covariance values. The first line for each QR corresponds to the computer operations values O1, O2, O3,
while the second line – to the values Õ1, Õ2, Õ3, respectively

QR O1, Õ1 O2, Õ2 O3, Õ3

1 37 70 207
37 70 207

2 69 134 655
40 72 430

3 133 262 2295
72 136 1482

4 261 518 8687
136 264 5506

5 517 1030 33495
264 520 21234

6 1029 2054 131495
520 1032 83410

7 2053 4102 521031
1032 2056 330642

8 4101 8198 2074247
2056 4104 1316626

9 8197 16390 8277255
4104 8200 5254674

10 16389 32774 335943375
8200 16392 20995090

of computer operations increases considerably despite which expressions–ordinary or
recursive–are used. On the other hand, the recursive expressions guarantee much smaller
quantity of computer operations as compared with the ordinary ones, especially when
calculating the covariance values of realizations (see Table 1 and Fig. 2).

6. Conclusions

The number of operations for calculating the mean, variance, and covariance values of
nondecimated and decimated signal realizations could be essentially reduced using recur-
sive formulas (1), (2), (4) (see Table 1 and Figs. 1, 2). In such a case, there is no need to
store the whole set of decimated realizations in the memory of a computer, only the basic
non-decimated realization is required.
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Fig. 1. Dependence of O1, O2, Õ1, Õ2 on QR while calculating their mean and variance values: x-axis –
values of QR in the set Ω , y-axis – numbers of computer iterations. O1, O2, Õ1, Õ2, are marked by ∗, Δ, ·
and ◦, respectively.

Fig. 2. Dependence of O3, Õ3 on QR while calculating their correlation values. O3, Õ3 are marked by + and
◦, respectively. Other values and markings are the same as in Fig. 1.
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Apie decimuot ↪u signal ↪u apdorojim ↪a

Rimantas PUPEIKIS

Straipsnyje pasiūlytas rekurentinis decimuot ↪u sek ↪u statistik ↪u skaičiavimo metodas, leidžiantis
žymiai sumažinti skaičiavimo operacij ↪u skaiči ↪u. Decimuotos sekos gaunamos išrenkant tam tikras
pradinio diskretaus laiko signalo, gauto diskretizavus analogin↪i signal ↪a, atskaitas. Nauja seka ly-
ginant su prieš j ↪a esančia esti sudaryta padvigubinus pradin↪i diskretizavimo period ↪a. Pastarasis
dvigubinamas tol, kol naujasis Naikvisto dažnis neperžengia pradinio signalo maksimalaus dažnio.
Pasiūlytas statistik ↪u skaičiavimo metodas, kuris tam tikr ↪a statistin↪i moment ↪a, kaip antai, vidurk↪i,
dispersij ↪a bei kovariacij ↪a, skaičiuoja rekurentiškai taikydamas informacij ↪a, gaut ↪a apdorojus prieš
esanči ↪a decimuot ↪a sek ↪a. Atkrenta būtinybė decimuotas sekas saugoti kompiuterio atmintinėje –
pakanka joje turėti pradinio diskretaus laiko signalo atskaitas. Darbe ↪irodyti teiginiai, kuri ↪u pa-
grindu sukurtos rekurentinės išraiškos. Pateiktas statistik ↪u skaičiavimo pavyzdys bei skaičiavimo
operacij ↪u skaiči ↪u išraiškos. Gauti eksperiment ↪u rezultatai.


