
INFORMATICA, 2008, Vol. 19, No. 4, 597–616 597
© 2008 Institute of Mathematics and Informatics, Vilnius

Termination of Derivations in a Fragment of
Transitive Distributed Knowledge Logic

Regimantas PLIUŠKEVIČIUS, Aida PLIUŠKEVIČIENĖ
Institute of Mathematics and Informatics
Akademijos 4, LT-08663 Vilnius, Lithuania
e-mail: {regis, aida}@ktl.mii.lt

Received: February 2008; accepted: June 2008

Abstract. A transitive distributed knowledge logic is considered. The considered logic S4nD is
obtained from multi-modal logic S4n by adding transitive distributed knowledge operator. For
a fragment of this logic loop-check-free sequent calculus is proposed. The considered fragment
is such that it can be applied for specification and verification of safety properties of knowled-
ge-based distributed systems. By relying on the constructed loop-check-free sequent calculus a
PSPACE procedure to determine a termination of backward derivation in considered fragment of
the logic S4nD is presented.

Keywords: logic of knowledge, distributed knowledge, safety and liveness properties of distributed
systems, deduction-based decision procedure, sequent calculus, loop-check, backtracking, PSPACE-
complexity.

1. Introduction

Knowledge-based logics have been widely applied in CS, AI, social sciences and eco-
nomics as they provide a simple and intuitive language that has proven effective at cap-
turing important concepts treated in such fields as knowledge representation, knowledge-
based computer systems, software engineering, especially in distributed systems, and cap-
turing these concepts in a computationally tractable manner.

To consider properties of distributed systems logics of knowledge with distributed
knowledge operator were introduced in (Fagin and Vardi, 1986; Fagin et al., 1992;
Halpern and Moses, 1992; Fagin et al., 1995). The completeness of Hilbert-style cal-
culi for these logics was proved in (Fagin et al., 1992; Halpern and Moses, 1992; Fagin
et al., 1995; Meyer and van der Hoek, 1995). The decidability (based on finite model
property) of the logics with distributed knowledge was proved in (Fagin et al., 1995).
Distributed knowledge, sometimes also called “implicit knowledge”, cannot be defined
in terms of “everybody knows” or common knowledge (Fagin et al., 1995). Distributed
knowledge is the knowledge that is implicitly present in a group of agents, and which
might become explicit if the agents were able to communicate. Intuitively, distributed
knowledge is the knowledge that can be obtained when the agents (from some agent

598 R. Pliuškevičius, A. Pliuškevičienė

group) pool their knowledge. If we have only one agent the distributed knowledge re-
duces to knowledge. Specification of distributed knowledge logics is a good preparation
to study much more complicated common knowledge axiomatics and semantics of which
is defined with a help of some induction-like axiom (see, e.g., (Fagin et al., 1995; Meyer
and van der Hoek, 1995)).

One of the main tasks in the field of knowledge-based logics is to find decision proce-
dures allowing us to tell in an automatic way whether the given knowledge-based spec-
ifications are provable (or true) in some logical formalism. Along with the model based
approach (e.g., (Clarke et al., 2000)), a deductive approach (based on logical calculi) is
widely used. In a deductive approach various formal calculi are used. For non-classical
logics tableaux (see, e.g., (Fitting, 1996)) and Gentzen-style (sequent) (see, e.g., (Gallier,
1986)) calculi are most often employed because these calculi are more suitable to con-
struct derivations in rather convenient way. Deduction-based decision procedures will not
only tell us whether a given specification is provable (true) or not, but also give the proof
of the specification whenever it is provable.

A proof that suitable logical calculus (e.g., sequent or tableaux calculus) allows us to
get a decision procedure is crucial but it is not enough. Check of termination of a decision
procedure is very important problem and though termination of a decision procedure is
a strict requirement, it may be hard to establish. Termination of various processes is a
fundamental topic in CS. Check of termination of a decision procedure often require to
keep information on previous parts of a derivation.

Traditional techniques used to ensure termination of a decision procedure in non-
classical (e.g., knowledge-based) sequent (and tableau) calculi is based on loop-check
(Fitting, 1983; Fitting, 1993; Goré, 1999). Namely, before applying any rule it is checked
if this rule was already applied to “essentially the same” sequent; if this is the case we
block the application of the rule. Naive methods which store all previously seen nodes are
typically not effective. Therefore unrestricted loop-check is often considered as useless
(see,e.g., (Demri, 1995)). In (Heuerding et al., 1996), efficient loop-check for modal logic
S4, tense logic Kt, and a fragment of intuitionistic logic was presented using sequents
extended by the notion of a history. For modal logic KT loop-check-free sequent calcu-
lus is presented in (Heuerding et al., 1996) using sequents with two halves. In (Dyckhoff,
1992; Hudelmaier, 1992) a contraction-free calculus for propositional intuitionistic logic
was proposed. A contraction-free calculus entirely excludes loop-check in derivations. In
(Hudelmaier, 1996), a contraction-free calculus for S4 was constructed, however only for
sequents in Mints normal form. Alternative approach (Fitting, 1993; Cerrito and Cialdea
Mayer, 1997) is to translate a considered modal logic into a more simple modal logic.
Interesting approach is proposed in (Massacci, 2000) allowing us to decrease a complex-
ity of loop-check for various modal logics. Decision procedures allowing us to specialize
the structure of derivations are proposed in (Pliuškevičius and Pliuškevičienė, 2004) (for
temporal logic of belief and actions) and in (Pliuškevičius and Pliuškevičienė, 2006) (for
a fragment of mutual belief logic with quantified agent variables).

Considering deductive decision procedures backtracking is one more problem. This
problem is related with the presence (in general case) of non-invertible rules in a sequent

Termination of Derivations in a Fragment of Transitive Distributed Knowledge Logic 599

(or tableaux) calculus. Invertibility property is very significant because it allows to pre-
serve derivability when applying the rules backwards to construct derivations in an auto-
matic way. Traditional invertibility of all rules of a calculus allows us to construct deriva-
tions without backtracking. As usual, sequent (or tableaux) calculi for non-classical logics
contain non-invertible rules. There are several techniques to get invertibility or to restrict
backtracking in sequent calculi for non-classical logics. One method is to use indexation
technique. Using this technique invertible sequent calculi for modal logic S5 (Kanger,
1957) and for intuitionistic logic (Maslov, 1967) were constructed. Another method is to
use specialization of rules which allow us to eliminate or restrict backtracking. In (Pli-
uškevičius and Pliuškevičienė, 2006) a method is proposed to replace non-invertible rules
by existentially invertible ones. In contrast to usual invertibility, existential invertibility
requires a restricted backtracking.

In (Fagin and Vardi, 1986; Fagin et al., 1992; Halpern and Moses, 1992; Fagin et
al., 1995; Meyer and van der Hoek, 1995) distributed knowledge logics based on various
multi-modal logics were considered. But only transitive distributed knowledge logics,
i.e., containing transitive axioms, are really important for applications of these logics in
CS, AI and other fields. The transitive axioms in distributed knowledge logics allow us
to apply these logics for specification and verification of distributed systems.

In this paper a transitive distributed knowledge logic S4nD is considered. The logic
S4nD is obtained from multi-modal logic S4n by adding distributed knowledge operator.
An initial Gentzen-style calculus for S4nD contains two modal reflexivity rules which
correspond to reflexivity axioms, two modal transitivity rules which correspond to tran-
sitivity axioms, and a modal interaction rule which corresponds to axiom of interaction
between knowledge and distributed knowledge. The premise of reflexivity and transitiv-
ity rules preserve some modal formulas from the conclusion of the rules. Unlike the other
rules, the transitivity and interaction rules are not invertible. For these reasons backward
proof search requires a loop-check and backtracking, in general.

The aim of this paper is to present a procedure without loop-check for determination
of a termination of backward derivation in a fragment of distributed knowledge logic
S4nD. The considered fragment is such that it can be applied for specification and veri-
fication of safety properties of knowledge-based distributed systems (see, e.g., (Halpern,
1987; Fagin et al., 1997; Huth and Ryan, 2000; Yoshioka et al., 2001)) and will be called
a safety fragment. The procedure proposed in this paper is carried out using a sequent cal-
culus. This calculus does not require sequents in a certain normal form and does not use
sequents with two halves. With a view to avoid loop-check, applications of reflexivity and
transitivity rules are restricted using marked knowledge and distributed knowledge opera-
tors. An existential invertibility (see, e.g., (Pliuškevičius and Pliuškevičienė, 2006)) of the
transitivity and interaction rules allows us to restrict backtracking. It is demonstrated that
presented technique does not allow us to exclude loop-check in non-restricted distributed
knowledge logic S4nD which is suitable for specification and verification of liveness
properties of distributed systems (see, e.g., (Halpern, 1987; Fagin et al., 1997; Huth and
Ryan, 2000; Yoshioka et al., 2001)).

The paper is organized as follows. In Section 2, Hilbert-style and Gentzen-style cal-
culi for the logic S4nD are described. In Section 3, specialization of reflexivity rules

600 R. Pliuškevičius, A. Pliuškevičienė

is presented. In Section 4, an existential invertibility of the transitivity and interaction
rules is established. In Section 5, a PSPACE procedure for determination of termination
of backward proof search in considered safety fragment of the logic S4nD is presented.
In Section 6, conclusions and further investigations are briefly discussed. In Appendix
some lemmas from Sections 2 and 3 are proved.

2. Hilbert-Style and Gentzen-Style Calculi for the Logic S4nD

The logic S4nD is obtained from the multi-modal logic S4n by adding distributed knowl-
edge operator D (see, e.g., (Fagin and Vardi, 1986; Fagin et al., 1992; Halpern and
Moses, 1992; Fagin et al., 1995; Meyer and van der Hoek, 1995)).

A language of this logic contains: a set of propositional symbols P, P1, P2, . . . , Q,

Q1, Q2, . . .; a set of agent constants i, i1, i2, . . . (i, il ∈ {1, . . . , n}); a set of knowledge
operators K1, K2, . . . , Kn; the distributed knowledge operator D; the set of logical
connectives ⊃, ∧, ∨, ¬.

Formulas are defined in traditional way from propositional symbols using logical
connectives, knowledge operators Ki, i ∈ {1, . . . , n}, and distributed knowledge op-
erator D. An atomic formula is defined as any propositional symbol. Each formula dif-
ferent from atomic formula is called a non-atomic one. A formula of the shape QA

(Q ∈ { Ki, D}) is called a modal one.
The formula KiA means “agent i knows A”. The formula DA means “A is dis-

tributed knowledge of all set (group) of agents”. Distributed knowledge is the knowledge
that is implicitly present in a group of agents, and which might become explicit if the
agents were able to communicate. For instance, it is possible that no agent knows the
assertion Q, while at the same time DQ may be derived from K1P ∧ K2(P ⊃ Q). We
have distributed knowledge of Q if, putting our knowledge together, Q may be deduced,
even if none of us individually knows Q.

Knowledge operators Ki, i ∈ {1, . . . , n}, and distributed knowledge operator D for
the logic S4nD satisfy relations which comply with reflexivity and transitivity properties.
The semantics of knowledge operators Ki and distributed knowledge operator D is de-
fined using Kripke structure (see, e.g., (Fagin and Vardi, 1986; Fagin et al., 1992; Halpern
and Moses, 1992; Fagin et al., 1995; Meyer and van der Hoek, 1995)). Let us remind the
semantics of the formulas KiA and DA. Let S be a set of “states”, s, t be some states
from S, Π be an interpretation function, Ri (i ∈ {1, . . . , n}) be the possibility (accessi-
bility) relations, satisfying reflexivity and transitivity properties. Then in Kripke structure
M = (S, Π, R1, . . . , Rn) (M, s) |= KiA iff (M, t) |= A for all t such that (s, t) ∈ Ri;
(M, s) |= DA iff (M, t) |= A for all t such that (s, t) ∈ R1 ∩ . . . ∩ Rn. Following (Fagin
et al., 1992) the intuition behind the definition of semantics of the formula DA is that if
all the agents could “combine their knowledge” the only worlds they would consider pos-
sible are precisely those in the intersection of the set of worlds that each one individually
considers possible.

A Hilbert-style calculus HS4nD for the logic S4nD is defined by the following pos-
tulates:

Termination of Derivations in a Fragment of Transitive Distributed Knowledge Logic 601

Axioms for logical connectives ⊃, ∧, ∨, ¬ (see, e.g., (Fitting, 1996)).
Axioms for knowledge operators Ki and distributed knowledge operator D (see, e.g.,

(Fagin et al., 1995; Meyer and van der Hoek, 1995)):

KiA ∧ Ki(A ⊃ B) ⊃ KiB (1), DA ∧ D(A ⊃ B) ⊃ DB (2),
KiA ⊃ A (3), DA ⊃ A (4),
KiA ⊃ Ki KiA (5), DA ⊃ DDA (6),

KiA ⊃ DA (i = 1, . . . , n) (7).

Rules:

A, A ⊃ B

B
(R1)

A

KiA
(R2)

A

DA
(R3).

The axioms (1) and (2) are the distributivity axioms for the operators Ki and D; the
axioms (3) and (4) are the reflexivity axioms for the operators Ki and D; the axioms
(5) and (6) are the transitivity axioms for the operators Ki and D; the axiom (7) is the
interaction axiom between the operators Ki and D.

Thus knowledge operators Ki (distributed knowledge operator D) satisfy the pos-
tulates of the multi-modal logic S4n (modal logic S4, respectively). In (Fagin et al.,
1992; Halpern and Moses, 1992; Fagin et al., 1995; Meyer and van der Hoek, 1995)
soundness and completeness of the calculus HS4nD are proved. A finite model prop-
erty, i.e., decidability of S4nD is also proved in (Fagin et al., 1995).

In Gentzen-style calculus for the considered logic instead of formulas we con-
sider sequents, i.e., formal expressions A1, . . . , Ak → B1, . . . , Bm where A1, . . . , Ak

(B1, . . . , Bm) is a multiset of formulas. A sequent is interpreted as a formula
∧k

i=1 Ai ⊃∨m
j=1 Bj , k, m � 0. This formula is called a translation of the sequent S and denoted

by T (S).
A subformula (or some symbol) occurs positively in some formula B if it appears

within the scope of an even number of negation signs, once all the occurrences of A ⊃ C

have been replaced by ¬A ∨ C; otherwise the formula (symbol) occurs negatively in B.
For a sequent S = A1, . . . , Ak → B1, . . . , Bm positive and negative occurrences are
determined just as for the formula

∧k
i=1 Ai ⊃

∨m
j=1 Bj .

Let G be some sequent calculus, and let i be any inference rule of the G. A rule (i)
is applied to get the conclusion of (i) from the premises of (i). If a rule (i) is back-
ward applied, i.e., to get premises of (i) from the conclusion of (i) we have a “backward
application of (i)” instead of “application of (i)”. A rule (i) is invertible in G, if the
derivability in G of the conclusion of (i) implies the derivability in G of each premise of
(i). As usual, proof search in sequent calculi is implemented by applying the rules back-
wards. If a rule (i) is invertible, the backward application of (i) preserves the derivability.
Let S be a sequent, then the notation G �V S means that S is derivable in G and V is a
derivation of S in G, i.e., a tree each branch of which ends with an axiom. A rule (i) is
admissible rule in G, if adding (i) to the calculus G the set of derivable sequents in G is
not extended.

602 R. Pliuškevičius, A. Pliuškevičienė

Let us introduce a Gentzen-style calculus GS4nD for the logic S4nD. The calculus
GS4nD is defined by the following postulates:

Axiom: Γ, P → Δ, P where P is an atomic formula.
Logical rules: traditional invertible rules for logical connectives ⊃, ∧, ∨, ¬ (see, e.g.,

(Kanger, 1957; Gallier, 1986; Goré, 1999)).
Modal rules (rules for knowledge operators Ki and distributed knowledge opera-

tor D):
• Reflexivity rules:

Π, A, KiA → Δ
Π, KiA → Δ

(Ki →)
Π, A, DA → Δ
Π, DA → Δ

(D →);

• Transitivity rules:

Γ, KiΓ → A

Π, KiΓ → Δ, KiA
(Ki)

Γ, DΓ → A

Π, DΓ → Δ, DA
(D),

where QΓ (Q ∈ { Ki, D}) means either empty word or multiset of formulas
QA1, . . . , QAn (n � 1);

• Interaction rule:

Γ → A

Π, KΓ → Δ, DA
(I),

where KΓ means either empty word or multiset of formulas K1A1,1, . . . ,

K1A1,l1, . . . , KnAn,1, . . . , KnAn,ln, (n � 1).
Formula QA (Q ∈ { Ki, D}) is the main formula of the rules (Q →), (Q),

and (I). Formulas from QΓ (KΓ) are additional main formulas of the rules (Q) where
Q ∈ { Ki, D} ((I), correspondingly).

EXAMPLE 1. Let us demonstrate an application of the rule (I):

A, B, C → M

P, K1A, K1B, K3C, DE → K4N, DM
(I)

By induction on the height of derivation we can prove

Lemma 1. All logical rules and reflexivity rules (Ki →) and (D →) are invertible
in GS4nD.

The rules (Ki), (D), and (I) are not invertible, in general. For example, backward
applying (K1) to K1R in the sequent → K1R, K2(P ∨ ¬P) we get → R which is
non-derivable, but backward applying (K2) to K2(P ∨ ¬P) we get a derivation. We can
demonstrate the non-invertibility of the rules (D) and (I) analogously.

Lemma 2. For any sequent S, HS4nD � T (S) if and only if GS4nD � S.

Termination of Derivations in a Fragment of Transitive Distributed Knowledge Logic 603

The proof of Lemma 2 is presented in Appendix.
Using soundness and completeness of the calculus HS4nD and Lemma 2 we get

Theorem 1. The calculus GS4nD is sound and complete.

3. Specialization of the Reflexivity Rules

With a view to get stopping device different from loop checking let us introduce marked
knowledge operators K∗

i and marked distributed knowledge operator D∗ which allow
us to get a specialization of derivations in which it is not possible to apply reflexive rules
twice using the same occurrence of a formula as main formula.

Let G1S4nD be a calculus obtained from the calculus GS4nD by the following trans-
formations:

• the axiom of G1S4nD has the same shape as the axiom of GS4nD but multiset Γ is
permitted to contain some formulae of the shape Q∗B (Q ∈ { Ki, D}), i.e., operators
Ki and D can be marked;

• replacing the reflexivity rules (Ki →) and (D →) by the following ones:

Π, A, K∗
i A → Δ

Π, KiA → Δ
(K∗

i →)
Π, A, D∗A → Δ

Π, DA → Δ
(D∗ →),

where in the conclusion of the rules (Q∗ →) (Q ∈ { Ki, D}) the operator Q in the
main formula QA is not marked;

• replacing the rules (Ki), (D), and (I) by the following ones:

Γ, KiΓ → A

Π, KiΓ → Δ, KiA
(K∗

i)
Γ, DΓ → A

Π, DΓ → Δ, DA
(D∗)

Γ → A

Π, KΓ → Δ, DA
(I∗),

where the rules (K∗
i), (D∗), and (I∗) have the same shape as the rules (Ki), (D), and

(I), correspondingly but QΓ (Q ∈ { Ki, D, K}) is permitted to contain some formulae
of the shape Q∗B, i.e., operator Q in additional main formulae can be marked.

Let us consider the admissibility of structural rules (see, e.g., (Gallier, 1986)).

Lemma 3 (admissibility of structural rules and cut rule). The following structural rules
(weakening, contraction, and cut rule):

Γ → Δ
∇, Γ → Δ, Θ

(W),

Γ → Δ, A, A

Γ → Δ, A
(→ C)

A, A, Γ → Δ
A, Γ → Δ

(C →),

604 R. Pliuškevičius, A. Pliuškevičienė

Γ → Δ, A; A, Π → Θ
Γ, Π → Δ, Θ

(cut),

are admissible in G where G ∈ {GS4nD, G1S4nD}.

The proof of this lemma is presented in Appendix.
Using induction on the height of a derivation the invertibility of logical rules and the

reflexivity rules (K∗
i →) and (D∗ →) in G1S4nD can be proved.

From definition of the calculi GS4nD and G1S4nD we get

Lemma 4. If G1S4nD � S then GS4nD � S, where a sequent S does not contain
occurrences of marked operators.

To justify specialization of reflexivity rules it is necessary to prove that for any se-
quent S not containing occurrences of marked operators from GS4nD � S follows
G1S4nD � S. To this end let us introduce an auxiliary calculus Gd

1S4nD. Let Gd
1S4nD

be a calculus obtained from the calculus G1S4nD adding the following rules:

Π, A, K∗
i A → Δ

Π, K∗
i A → Δ

(K∗d
i →)

Π, A, D∗A → Δ
Π, D∗A → Δ

(D∗d →).

It is obvious that if a sequent S does not contain occurrences of marked operators and
GS4nD � S then Gd

1S4nD � S. To prove that if GS4nD � S then G1S4nD � S it is
sufficient to prove that the rules (K∗d

i →) and (D∗d →) are admissible in G1S4nD.

Lemma 5. The rules (K∗d
i →), (D∗d →) are admissible in G1S4nD.

The proof of this lemma is presented in Appendix.
From Lemma 5 it follows

Lemma 6. If GS4nD � S then G1S4nD � S.

From Lemmas 4, 6 we get

Lemma 7. GS4nD � S if and only if G1S4nD � S where a sequent S does not contain
occurrences of marked operators.

Let us note that in the calculus G1S4nD applications of the reflexivity rules (K∗
i →)

and (D∗ →) are restricted in such way that it is not possible to apply these rules twice
using the same occurrence of a formula as main formula.

4. Existential Invertibility of the Transitivity and Interaction Rules

First let us introduce the sequent calculus G2S4nD in which the rules (D∗) and (I∗) are
combined into one rule. The calculus G2S4nD is obtained from the calculus G1S4nD

Termination of Derivations in a Fragment of Transitive Distributed Knowledge Logic 605

replacing the rules (D∗) and (I∗) by the following rule (named combined interaction
rule):

Γ1, Γ2, DΓ2 → A

Π, KΓ1, DΓ2 → Δ, DA
(I∗

c),

where KΓ1 (DΓ2) means the same as in the rule (I) ((D), correspondingly). The for-
mula DA is the main formula and formulas from KΓ1, DΓ2 are additional main formu-
las of the rule (I∗

c).

EXAMPLE 2. Let us demonstrate applications of the rules (K∗
i) and (I∗

c):

A, K1A, B, K∗
1B → N

P, K1A, K∗
1B, K3C, DE → R, K1N, DM

(K∗
1),

A, B, C, E, DE → M

P, K1A, K∗
1B, K3C, DE → R, K1N, DM

(I∗
c).

From the fact that the rules (D∗) and (I∗) are special cases of the rule (I∗
c) we get

Lemma 8. If G1S4nD � S then G2S4nD � S where a sequent S does not contain
occurrences of marked operators.

Lemma 9. The rule (I∗
c) is admissible in G1S4nD.

Proof. Let G1S4nD � Γ1, Γ2, DΓ2 → A. Then using admissibility of weakening we
get G1S4nD � Γ1, DΓ1, Γ2, DΓ2 → A. Applying (D∗) to Γ1, DΓ1, Γ2, DΓ2 → A

we get G1S4nD � S = Π, DΓ1, DΓ2 → Δ, DA. Let Γ1 = A1, . . . , An (n � 1),
then DΓ1 = DA1, . . . , DAn. It is obvious that G1S4nD � Si = Ai → Ai. Applying
the rule (I∗) to Si we get G1S4nD � S∗

i = KiAi → DAi. Starting from a sequent S

and using S∗
i and cut rule (and relying on admissibility of cut rule) we get G1S4nD �

Π, KΓ1, DΓ2 → Δ, DA.

From Lemmas 8, 9 we get

Lemma 10. G1S4nD � S if and only if G2S4nD � S where a sequent S does not
contain occurrences of marked operators.

It is easy to see that the combined interaction rule (I∗
c) as well as the rule (K∗

i) is not
invertible. To get existential invertibility of the transitivity rule (K∗

i) and rule (I∗
c) let us

introduce some canonical form of sequents.
A sequent S is a primary one, if S is of the following shape:
Σ1, K∗Γ1, D∗Π1 → Σ2, KΓ2, DΠ2, where
• Σi (i ∈ {1, 2}) is empty or consists of propositional symbols;
• K∗Γ1 is empty or consists of formulas of the shape K∗

l B;

606 R. Pliuškevičius, A. Pliuškevičienė

• D∗Π1 is empty or consists of formulas of the shape D∗B;
• KΓ2 is empty or consists of formulas of the shape KlA;
• DΠ2 is empty or consists of formulas of the shape DA.

Lemma 11 (reduction to primary sequents). Every sequent S can be reduced to a set
of primary sequents {S1, . . . , Sm}, m � 1, by applying the logical and reflexivity rules
of G2S4nD backwards. Moreover, if G2S4nD �V S then for all j (j ∈ {1, . . . , m})
G2S4nD �Vj Sj .

Proof. Follows from invertibility of the logical and reflexivity rules.

Let G3S4nD be a calculus obtained from the calculus G2S4nD replacing the rules
(K∗

i) and (I∗
c) by the following rules where the conclusion is a primary sequent and

Σ1 ∩ Σ2 is empty:

Γ◦
1j , K∗

jΓ
◦
1j → Ai

Σ1, K∗Γ1, D∗Π1 → Σ2, KΓ2, KiAi, DΠ2
(Kp

i),

where K∗Γ1 = K∗
1Γ11, . . . , K∗

nΓ1n and K∗
jΓ1j(j ∈ {1, . . . , n}) is empty or consists

of formulas of the shape K∗
jB; i ∈ {1, . . . , m}, and if there exists j(j ∈ {1, . . . , n})

such that i = j then Γ◦
1j = Γ1i else Γ◦

1j and K∗
jΓ

◦
1j are empty;

Γ1, Π1, D∗Π1 → A

Σ1, K∗Γ1, D∗Π1 → Σ2, KΓ2, DΠ2, DA
(Ip

c).

A primary sequent of the shape Σ1, K∗Γ, D∗Π → Σ2 where Σ1 ∩ Σ2 is empty and
K∗Γ (D∗Π) is empty or consist of formulas of the shape K∗

i M (D∗M , correspond-
ingly), is a final one. It is impossible to apply any rule to a final sequent.

Let us note that we start backward derivation in the calculus G3S4nD from a sequent
not containing occurrences of marked operators.

A derivation V of a sequent S in the calculus G3S4nD is a successful one, if each
branch of V ends with an axiom. A derivation V of S in the calculus G3S4nD is an
unsuccessful one if V contains a branch ending with a final sequent. A sequent S is
derivable in the calculus G3S4nD if and only if there exists a successful derivation V

of S. Thus, if all possible derivations of S in G3S4nD are unsuccessful, the sequent S is
non-derivable.

From definition of the calculi G2S4nD and G3S4nD we get

Lemma 12. If G3S4nD � S then G2S4nD � S.

Using Lemma 11 we can prove

Lemma 13. If G2S4nD � S then G3S4nD � S.

From Lemmas 12, 13 we get

Termination of Derivations in a Fragment of Transitive Distributed Knowledge Logic 607

Lemma 14. G2S4nD � S if and only if G3S4nD � S.

Lemma 15 (existential invertibility of the rules (Kp
i) and (Ip

c)). Let S be a pri-
mary sequent Σ1, K∗Γ1, D∗Π1 → Σ2, KΓ2, DΠ2 such that Σ1 ∩ Σ2 is empty. Let
G3S4nD � S, then

• there exists a formula KiAi from KΓ2 such that G3S4nD � Γ◦
1j , K∗

jΓ
◦
1j → Ai,

where Γ◦
1j = Γ1i if j = i, otherwise Γ◦

1j and K∗
jΓ

◦
1j are empty; or

• there exists a formula DA from DΠ2 such that G3S4nD � Γ1, Π1, D∗Π1 → A.

Proof. The proof is carried out by induction on the height of the given derivation of the
sequent S.

Lemma 15 allows us to restrict backtracking in backward proof search in G3S4nD.
Using Lemmas 7, 10, 14, and relying on soundness and completeness of initial calcu-

lus GS4nD (Theorem 1) we get

Theorem 2. The calculus G3S4nD is sound and complete.

5. Termination of Derivations in G3S4nD

If loop-check is not used backward proof search in G3S4nD does not terminate,
in general.

EXAMPLE 3. Let S be the sequent K1¬ K1¬ K1¬ K1¬P →. Let A denotes
K1¬ K1¬ K1¬P , then the considered sequent S is K1¬A → . The derivation of the
S in G3S4nD does not terminate.

S5 = K∗
1¬A, K∗

1¬ K1¬P, K∗
1¬ K1¬P → A, K1¬P

S4 = K∗
1¬A, K∗

1¬ K1¬P, P → A, K1¬P
(Kp

1), (¬ → ¬), (K∗
1 →)

S3 = K∗
1¬A, K∗

1¬ K1¬P → A, K1¬P
(Kp

1), (¬ → ¬)

S2 = K∗
1¬A, K1¬ K1¬P → A

(K∗
1 →), (¬ →)

S1 = K∗
1¬A → A

(Kp
1), (¬ → ¬)

S = K1¬A →
(K∗

1 →), (¬ →)

where (¬ → ¬) denotes applications of two rules: (→ ¬) and (¬ →). Let us note
that the sequent S5 is obtained from S4 backward applying the rule (Kp

1) with A as
the main formula. Since the sequent S5 (up to application of contraction) coincides with
S3, continuing the derivation we again get the same sequent but we do not get a final
sequent. Backward applying the rule (Kp

1) to S4 with K1¬P as the main formula and
rules (→ ¬), (¬ →) we obtain the sequent S∗

5 = K∗
1¬A, K∗

1¬ K1¬P, P → A, K1¬P

which coincides with S4. Thus, constructing derivation in the calculus G3S4nD we can
not avoid loop checking.

608 R. Pliuškevičius, A. Pliuškevičienė

We now consider a safety fragment of the presented transitive distributed knowledge
logic such that termination of derivations in this fragment can be established without
loop-check. The considered fragment can be applied for specification and verification
of safety properties of knowledge-based distributed systems (see, e.g., (Halpern, 1987;
Fagin et al., 1997; Huth and Ryan, 2000; Yoshioka et al., 2001)). This safety fragment
is defined by means of a restriction on positive occurrences of knowledge and distributed
knowledge operators.

A positive occurrence of operator Q (Q ∈ { Ki, D}) in a sequent S is a special one
if it occurs within the scope of a negative occurrence of operator Q (Q ∈ { Ki, D})
in S. A sequent S is a safety one if it does not contain special occurrences of opera-
tors Ki, D.

EXAMPLE 4. Let S1 = K1¬ DP →, S2 = D¬ K2P →, and S3 = K1 DP → K1 K2P .
Then occurrences of operator D in S1 and operator K2 in S2 are special ones and the
sequent S3 does not contain special occurrences of operators K1, K2, D. So, the se-
quent S3 is safety.

Let B be a formula entering in a sequent S. A subformula of B is a modal one if it has
the shape QμM where Q ∈ { Ki, D} and μ ∈ {∅, ∗}. A modal subformula QμM may
occur both positively and negatively in B. The complexity of safety sequent S (denoted
by C(S)) is defined as an ordered triple < k(S), n(S), l(S) > where

• k(S) is the number of different modal subformulas of the shape QM (Q ∈
{ Ki, D}) entering in S positively;

• n(S) is the number of different modal subformulas of the shape QM (i.e., the
outmost operator in QM is not marked) entering in S and such that at least one
occurrence of QM enters in S negatively and does not occur within the scope
of marked operator Q∗ (Q ∈ { Ki, D} (it means that if a considered modal
subformula enters in S negatively and occurs only within the scope of marked
operators then this subformula is not counted);

• l(S) is the length of S defined as
∑k

i=1 l(Bi), where l(Bi) is the length (defined
in a traditional way) of i-th (1 � i � k) member of a sequent S.

Lemma 16. Let G3S4nD �V S∗, and (j) is a rule of the calculus G3S4nD. Let a safety
sequent S be a conclusion of an application of the rule (j) in V and S1 be a premise of
the same application of the rule (j). Then C(S1) < C(S).

Proof. If (j) is a logical rule then k(S1) � k(S), n(S1) � n(S) but l(S1) < l(S).
If (j) = (Q∗ →) (Q∗ ∈ { K∗

i , D∗ }) then n(S1) < n(S). If (j) = (Qp) (Qp ∈
{ Kp

i , I
p
c } then k(S1) < k(S). Thus, in all cases C(S1) < C(S).

EXAMPLE 5. Derivations constructed below demonstrate a backward proof search in
G3S4nD. We can check that the derivations terminate and the complexity of the safety
sequents in backward derivation decreases.

Termination of Derivations in a Fragment of Transitive Distributed Knowledge Logic 609

(a) Let S be a sequent K1 K2P → K1R. Then unsuccessful derivation of S in
G3S4nD is the following:

S4 = P, K∗
2P, K∗

1 K2P → R

S3 = K2P, K∗
1 K2P → R

(K∗
2 →)

S2 = P, K∗
2P, K∗

1 K2P → K1R
(Kp

1)

S1 = K2P, K∗
1 K2P → K1R

(K∗
2 →)

S = K1 K2P → K1R
(K∗

1 →)

Since the sequent S4 is a final sequent and the presented derivation is the only possible,
G3S4nD � S.

Let us evaluate the complexity of each sequent in the derivation constructed:
C(S) =< 1, 2, 5 >, C(S1) =< 1, 1, 7 >, C(S2) =< 1, 0, 8 >, C(S3) =< 0, 1, 6 >,
C(S4) =< 0, 0, 7 >; thus, C(S4) < C(S3) < C(S2) < C(S1) < C(S).

(b) Let S be a sequent K1 K2P → K1 DP, DR. We can construct the following
successful derivation of S in G3S4nD:

S5 = P, K2P → P

S4 = P, K∗
2P, K∗

1 K2P → DP
(Ip

c)

S3 = K2P, K∗
1 K2P → DP

(K∗
2 →)

S2 = P, K∗
2P, K∗

1 K2P → K1 DP, DR
(Kp

1)

S1 = K2P, K∗
1 K2P → K1 DP, DR

(K∗
2 →)

S = K1 K2P → K1 DP, DR
(K∗

1 →)

The sequent S5 is an axiom. C(S) =< 3, 2, 8 >, C(S1) =< 3, 1, 10 >, C(S2) =
< 3, 0, 11 >, C(S3) =< 1, 1, 7 >, C(S4) =< 1, 0, 8 >, C(S5) =< 0, 1, 4 >; thus,
C(S5) < C(S4) < C(S3) < C(S2) < C(S1) < C(S).

REMARK 1. Relying on definition of C(S) we get PSPACE complexity of the proce-
dure to determine a termination of backward derivations of a safety sequent S∗. For
every safety sequent S from a constructed derivation of a given sequent S∗ we have
c2k(S) + cn(S) + l(S), where c = l(S∗). PSPACE complexity for mono-modal S4 pre-
sented in (Heuerding et al., 1996) depends on lengths of components sequent with two
halves and history. In (Ladner, 1977) PSPACE complexity for propositional mono-modal
logics including S4 is obtained relying on Gentzen-like calculus with loop-checking.
Propositional mono-modal logics correspond to one agent knowledge logics. In (Halpern
and Moses, 1992), Ladner results from (Ladner, 1977) were extended to many agents and
common knowledge logics.

Relying on the calculus G3S4nD, definition of derivability in G3S4nD, Lemmas 11,
15, 16, and using invertibility of the logical rules and reflexivity rules we get loop-check-

610 R. Pliuškevičius, A. Pliuškevičienė

free PSPACE procedure with restricted backtracking to determine a termination for back-
ward proof search of a safety sequent. The procedure consists of several levels. Each level
contains three main parts:

• the considered safety sequent S is reduced to a set of primary sequents;
• the obtained set of primary sequents is checked. If the considered primary sequent

is an axiom then the considered branch of derivation is finished and a derivation of
the next primary sequent is constructed;

• if the considered primary sequent is not an axiom then, according to Lemma 15,
rules (Kp

i) and (Ip
c) are backward applied (in all possible ways). The premise of

this application is used to start a new level of algorithm.

Thus a derivation in G3S4nD consists of repeating reductions to primary sequents
and following backward application of one-in-two rules (Kp

i), (Ip
c) to each received pri-

mary sequent. It is obvious that algorithm finishes a search when either in all branches an
axiom is obtained or a final sequent is obtained in all possible derivations. This algorithm
does not use loop-check. Termination of the algorithm follows from Lemma 16.

6. Conclusions and Further Investigations

In the paper the transitive distributed knowledge logic is considered. For the safety frag-
ment of this logic the new method to determine a termination of derivations is pre-
sented. The method is based on the sequent calculus and exploits marked knowledge and
distributed knowledge operators. The marked operators and the rules corresponding to
knowledge and distributed knowledge operators allow us to obtain termination of deriva-
tions in the considered safety fragment of the transitive distributed knowledge logic. By
relying on the constructed loop-check-free sequent calculus a PSPACE decision procedure
for the safety fragment of the considered logic is presented.

The following research looks promising:

• application of deduction-based methods for specification and verification of
knowledge-based distributed systems;

• investigation of various knowledge-based (including common knowledge) logics
with the aim to obtain effective tools allowing to determine a termination of deriva-
tions.

Appendix

In the Appendix proofs of Lemma 2 (Section 2) and Lemmas 3 and 5 (Section 3) are
presented.

We now prove Lemma 3 for the calculus GS4nD. For the calculus G1S4nD Lemma 3
can be proved in just the same way as for GS4nD. The proof of Lemma 3 is carried out
by splitting this lemma to several separate lemmas.

Termination of Derivations in a Fragment of Transitive Distributed Knowledge Logic 611

Lemma 17 (admissibility of structural rule of weakening). The structural rule of weak-
ening

Γ → Δ
∇, Γ → Δ, Θ

(W)

is admissible in GS4nD.

Proof. Let GS4nD + (W) be a calculus obtained from the calculus GS4nD by adding
structural rule of weakening. Let us prove the following

PROPOSITION 1. Let GS4nD + (W) �V S. Let the last step in derivation V be the
application of the rule (W), and V ∗ is a derivation of the premise of the considered
application of (W) in GS4nD. Then GS4nD � S.

The proof of the proposition is carried out using induction on h(V ∗), i.e., the height
of derivation of the premise Γ → Δ of (W). Let h(V ∗) = 0, i.e., the sequent Γ → Δ is
an axiom. Then the conclusion of (W), i.e., the sequent ΠΓ → Δ, Θ is an axiom as well.
Let h(V ∗) > 0 and (j) is a rule applied last in V ∗. Let us consider the following cases:

1. (j) = (I):

Γ → A

Π, KΓ → Δ, DA
(I)

∇, Π, KΓ → Δ, Θ, DA
(W)

Then desired derivation has the following shape:

Γ → A

∇, Π, KΓ → Δ, Θ, DA
(I)

2. (j) ∈ {(Ki), (D)}; both these cases are considered analogously to the previous
one;

3. (j) is any logical rule or a reflexivity rule, for example, (j) = (Ki →):

Π, A, KiA → Δ

Π, KiA → Δ
(Ki →)

∇, Π, KiA → Δ, Θ
(W)

By induction assumption we get GS4nD � S∗ = ∇, Π, A, KiA → Δ, Θ. Apply-
ing (Ki →) to S∗ we get desired derivation.

Thus the proofs of Proposition 1 and admissibility of structural rule of weakening
(W) in the calculus GS4nD are finished.

REMARK 2. The cases 1 and 2 in the proof of Proposition 1 demonstrate that the struc-
tural rule of weakening is incorporated in the rules (Ki), (D), and (I).

612 R. Pliuškevičius, A. Pliuškevičienė

Lemma 18 (admissibility of structural rules of contraction). The structural rules of con-
traction

Γ → Δ, A, A

Γ → Δ, A
(→ C)

A, A, Γ → Δ
A, Γ → Δ

(C →),

are admissible in GS4nD.

Proof. Let GS4nD+(C →) be a calculus obtained from the calculus GS4nD by adding
the structural rule (C →). Let us prove the following

PROPOSITION 2. Let GS4nD + (C →) �V S. Let the last step in derivation V be the
application of the rule (C →), and V ∗ is a derivation of the premise of the considered
application of (C →) in GS4nD. Then GS4nD �V ∗ ∗

S, moreover h(V ∗ ∗) � h(V ∗).

The proof of the proposition is carried out using induction on h(V ∗), i.e., the height of
derivation of the premise A, A, Γ → Δ of (C →). The case when h(V ∗) = 0 is obvious.
Let h(V ∗) > 0 and (j) be a rule applied last in V ∗. Let us consider only the following
two cases.

1. (j) = (Ki →) and the main formula of (Ki →) coincides with an explicit occur-
rence of A, i.e., A = KiM :

Π, M, KiM, KiM → Δ

Π, KiM, KiM → Δ
(Ki →)

Π, KiM → Δ
(C →)

By induction assumption we get GS4nD � S∗ = Π, M, KiM → Δ. Applying
(Ki →) to S∗ we get desired derivation.

2. (j) = (Ki) and one from additional formulas of (Ki) coincides with an explicit
occurrence of A, i.e., A = KiM :

M, M, Γ, KiM, KiM, KiΓ → B

Π, KiM, KiM, KiΓ → Δ, KiB
(Ki)

Π, KiM, KiΓ → Δ, KiB
(C →)

Let the derivation of a sequent M, M, Γ, KiM, KiM, KiΓ → B is denoted by
V ′. By induction assumption we get GS4nD �V ′ ∗

M, M, Γ, KiM, KiΓ → B and
h(V ′ ∗) � h(V ′). It is obvious that h(V ′) < h(V ∗). Using induction assumption once
more we get GS4nD � S∗ = M, Γ, KiM, KiΓ → B. Applying (Ki →) to S∗ we get
desired derivation.

Other cases are considered analogously. Thus, the proofs of Proposition 2 and admis-
sibility of structural rule (C →) in GS4nD are finished.

The admissibility of structural rule (→ C) in GS4nD is proved analogously.

Termination of Derivations in a Fragment of Transitive Distributed Knowledge Logic 613

Lemma 19 (admissibility of cut rule). The cut rule

Γ → Δ, A; A, Π → Θ
Γ, Π → Δ, Θ

(cut),

is admissible in GS4nD.

Proof. Let GS4nD + (cut) be a calculus obtained from the calculus GS4nD by adding
the structural rule (cut). Let us prove the following

PROPOSITION 3. Let GS4nD + (cut) �V S. Let the last step in derivation V be the ap-
plication of (cut), and V1 (V2) is a derivation of the left (right, correspondingly) premise
of the considered application (cut) in GS4nD. Then GS4nD � S.

The proof of the proposition is carried out using double induction on < g(A), h(V1)+
h(V2) >, where g(A) is the length of the (cut) formula A, h(Vi)(i ∈ {1, 2}) is the height
of derivation Vi of the premise. The case when h(Vi) = 0 (i ∈ {1, 2}) is obvious. Let
h(V1) + h(V2) > 0 and (li) be a rule applied last in Vi. Let us consider the case when
(l1) = (Ki), (l2) = (Ki →), and the main formulas of (Ki) and (Ki →) coincide
with the (cut) formula A:

V1

{
Γ, KiΓ → A

Π, KiΓ → Δ, KiA
(Ki) ;

V ′
2 {A, KiA, ∇ → Θ

KiA, ∇ → Θ
(Ki →)

Π, KiΓ, ∇ → Δ, Θ
(cut)

Applying (cut) to sequents Π, KiΓ → Δ, KiA and A, KiA, ∇ → Θ and using
induction on h(V1) + h(V ′

2) we get GS4nD � Π, KiΓ, A, ∇ → Δ, Θ. Applying (cut)
to sequents Γ, KiΓ → A and Π, KiΓ, A, ∇ → Δ, Θ and using induction on g(A) and
admissibility of contraction we get GS4nD � S∗ = Γ, Π, KiΓ, ∇ → Δ, Θ. Applying n

time (where n is the number of members in Γ) the rule (Ki →) from the sequent S∗ we
obtain the desired derivation of the sequent Π, KiΓ, ∇ → Δ, Θ in GS4nD.

Other cases are considered analogously. Thus, Proposition 3 and admissibility of (cut)
in GS4nD are proved.

Now let us prove an equivalence of the calculi HS4nD and GS4nD.

Lemma 20. Let S be a sequent A1, . . . , An → B1, . . . , Bm and T (S) =
∧n

i=1 Ai ⊃∨m
j=1 Bj , n, m � 0. Let HS4nD �V T (S), then GS4nD � S.

Proof. The proof is carried out using induction on h(V). Let h(V) = 0, i.e., the formula
T (S) is an axiom. Let us consider only the case when T (S) is an interaction axiom.
Then desired derivation of this axiom is obtained using the rule (I). Let h(V) > 0 and
the last step in the derivation of T (S) is application of the rule (Ri)(i ∈ {1, 2, 3}). The
case when i = 1 is considered using admissibility of (cut) in GS4nD. Let i = 2, i.e.,
the rule A

KiA
(R2) was applied as the last step of the derivation. In this case, according

614 R. Pliuškevičius, A. Pliuškevičienė

to induction hypothesis we get GS4nD � → A and applying the rule (Ki) we get
GS4nD � → KiA. The case when i = 3 is considered analogously to previous case.

Let us prove the inverse lemma, i.e.,

Lemma 21. Let GS4nD �V S, then HS4nD � T (S).

Proof. The proof is carried out using induction on h(V). Let us consider only the case
when the last step in derivation V of the sequent S is the application of the rule (I):

Γ → A

Π, KΓ → Δ, DA
(I)

Let Γ = A1, . . . , An, then using induction hypothesis we get HS4nD �
∧n

i=1 Ai ⊃
A (1). Using the rule (R3), distributivity axiom for the operator D, and the fact that
HS4nD � D(A∧B) ≡ DA∧ DB, from (1) we get HS4nD �

∧n
i=1 DAi ⊃ DA (2).

Let us note that deduction theorem for the calculus HS4nD can be proved in the
same way as for HS4 (see, e.g., (Hughes and Cresswell, 1968)). Using interaction ax-
iom, properties of logical connectives, and deduction theorem from (2) we obtain the
desired derivation in HS4nD of the formula

∧
Π ∧

∧n
i=1 KiAi ⊃

∨
Δ ∨ DA where∧

Π (
∨

Δ) means conjunction (disjunction, correspondingly) of formulas from Π (Δ,
correspondingly).

Other cases are considered in a similar way.

Lemma 2, i.e., for any sequent S, HS4nD � T (S) if and only if GS4nD � S,
follows from Lemmas 20 and 21.

Now let us prove Lemma 5 (Section 3). Let us recall that we start backward derivation
in the calculus G1S4nD from a sequent not containing occurrences of marked operators,
i.e., an end-sequent of any derivation in the calculus G1S4nD is an arbitrary sequent
without marked operators. With a view to prove the Lemma 5 let us establish the follow-
ing two propositions.

PROPOSITION 4. The rule (D∗d →) is admissible in G1S4nD.

Proof. Let Gd
1S4nD �V S. The proof of lemma is carried out using induction on the

number of applications of the rule (D∗d →) in V denoted by n(V). Let us consider
the lowest application of the rule (D∗d →) in V . Let D∗A be the main formula of this
lowest application of the rule (D∗d →). Let S1 = A, D∗A, Γ → Δ be the premise
of this lowest application of the rule (D∗d →). Since the end-sequent S of V does not
contain marked operator D∗, below this lowest application must be an application of the
rule (D∗ →) with the main formula DA. Let S2 = A, D∗A, Π → Θ be the premise
of the considered application of the rule (D∗ →). Let V1 be the part of V between the
sequents S1 and S2. Let us consider the following cases:

Termination of Derivations in a Fragment of Transitive Distributed Knowledge Logic 615

1. The part V1 does not contain an application of the rule (D∗). In this case let us drop
the considered lowest application of the rule (D∗d →) in V and leave fixed the
applications of other rules in V1. Instead of V1 we get the part V ∗

1 with end-sequent
S∗

2 = A, A, D∗A, Π → Θ. Relying on admissibility of the rule of contraction and
applying the rule (D∗ →) from S∗

2 we get the sequent DA, Π → Θ. As a result
we get V + instead of V such that n(V +) < n(V). So, by induction assumption
we get G1S4nD �V ∗

S.
2. The part V1 contains an application of the rule (D∗). Let us consider the topmost

application of the rule (D∗) in V1.

S′
1 = A, ∇, D∗A, D∇ → B

S′ ′
1 = Ω1, D∗A, D∇ → Ω2, DB

(D∗).

Let V ′
1 be the part of V1 between the sequents S1 (i.e., the premise of the lowest

application of (D∗d →)) and S′
1. Let us drop the considered lowest application of the

rule (D∗d →) in V and leave fixed the applications of other rules in the part V ′
1 . Instead

of V ′
1 we get the part with end-sequent S

′ ∗
1 = A, A, ∇, D∗A, D∇ → B. Relying on

admissibility of the rule of contraction and applying the rule (D∗) from S
′ ∗
1 we get the

same sequent S′ ′
1 = Ω1, D∗A, D∇ → Ω2, DB. As a result we get V + instead of V

such that n(V +) < n(V). Therefore, by induction assumption we get G1S4nD �V ∗
S.

In the same way we can prove

PROPOSITION 5. The rule (K∗d
i →) is admissible in G1S4nD.

References

Clarke, E., O. Grumberg and D. Peled (2000). Model Checking. MIT Press.
Cerrito, S., and M. Cialdea Mayer (1997). A polynomial translation of S4 into T and contraction-free tableaux

for S4. Journal of the Interest Gropup in Pure and Applied Logic, 5(2), 287–300.
Demri, S. (1995). Uniform and non uniform strategies for tableaux calculi for modal logics. Journal of Applied

Non-Classical Logics, 5(1), 77–96.
Dyckhoff, R. (1992). Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic Logic, 57,

795–807.
Fagin, R., and M.Y. Vardi (1986). Knowledge and implicit knowledge in a distributed enviroment. In

J.Y. Halpern (Ed.), Proceedings of the 1st Conference on Theoretical Aspects of Knowledge. Morgan Kauf-
mann, Los Altos. pp. 187–206.

Fagin, R., J.Y. Halpern and M.Y. Vardi (1992). What can machines know? On the properties of knowledge in
distributed systems. Journal of the ACM, 39(2), 328–376.

Fagin, R., J.Y. Halpern, Y. Moses and M.Y. Vardi (1995). Reasoning about Knowledge. MIT Press, Cambridge,
Mass.

Fagin, R., J.Y. Halpern, Y. Moses and M.Y. Vardi (1997). Knowledge-based programs. Distributed Computing,
10(4), 199–225.

Fitting, M. (1983). Proof methods for modal and intuitionistic logics. Synthese Library, 169. D. Reidel Publish-
ing Co., Dordrecht, Holland.

Fitting, M. (1993). Basic modal logic. In D.M. Gabbay, C.J. Hogger, J.A. Robinson (Eds.), Handbook for Logic
in Artificial Intelligence and Logic Programming. Logical Foundations, vol. 1. pp. 365–447.

Fitting, M. (1996). First-Order Logic and Automated Theorem Proving, 2nd ed. Graduate texts in computer
science. Springer-Verlag, New York Inc.

616 R. Pliuškevičius, A. Pliuškevičienė

Gallier, J.H. (1986). Logic for Computer Science, Foundations of Automatic Theorem Proving. Harper Row,
New York.

Goré, R. (1999). Chapter 6: Tableau methods for modal and temporal logics. In M. D’Agostino, D.M. Gabbay,
R. Hähnle, J. Posegga (Eds.), Handbook of Tableau Methods. Kluwer Academic Publishers. pp. 297–396.

Halpern, J.Y. (1987). Using reasoning about knowledge to analyze didtributed systems. Annual Review of Com-
puter Science, 2, 37–68.

Halpern, J.Y., and Y. Moses (1992). A guide to completeness and complexity for modal logics of knowledge
and belief. Artificial Intelligence, 54(3), 319–379.

Heuerding, A., M. Seyfried and H. Zimmermann (1996). Efficient loop-check for backward proof search in
some non-classical propositional logics. Lecture Notes in Computer Science, 1071, 210–225.

Hudelmaier, J. (1992). Bounds for cut-elimination in intuitionistic propositional logic. Arch. Math. Logic, 31,
331–353.

Hudelmaier, J. (1996). A contraction-free sequent calculus for S4. In H. Wansing (Ed.), Proof Theory for Modal
Logic. Kluwer Academic Publishers, Dordrechts, Boston/London. pp. 3–16.

Hughes G.E., and M.J. Cresswell (1968). An Introduction to Modal Logic. Methuen & Co. Ltd, London.
Huth, M., and M. Ryan (2000). Logic in Computer Science: Modeling and Reasoning about Systems. Cambridge

University Press.
Kanger, S. (1957). Provability in Logic. Almgvist & Wiksell, Stockholm.
Ladner, R. (1977). The computational complexity of provability in systems of modal propositional logic. SIAM

Journal of Computing, 6(3), 467–480.
Maslov, S.J. (1967). Invertible sequential variant of intuitionistic predicate calculus. Zapiski Nauchnykh Semi-

narov V.A.Steklov Matemat. Institute Akademii Nauk SSSR, (LOMI), 4, 96–111.
Massacci, F. (2000). Single step tableaux for modal logics. Journal of Automated Reasoning, 24(3), 319–364.
Meyer, J.J.Ch., and W. van der Hoek (1995). Epistemic Logic for AI and Computer Science. Cambridge Uni-

versity Press, Cambridge.
Pliuškevičius, R., and A. Pliuškevičienė (2004). Decision procedure for temporal logic of belief and actions.

Informatica, 15(3), 379–398.
Pliuškevičius,R., and A. Pliuškevičienė (2006). Decision procedure for a fragment of mutual belief logic with

quantified agent variables. Lecture Notes in Artificial Intelligence, 3900, 0112–0128.
Yoshioka, N., Y. Tahara, A. Ohsuga and S. Honiden (2001). Security for mobile agents. Lecture Notes in Com-

puter Science, 1957, 223–234.

R. Pliuškevičius, hab. doctor of mathematical sciences, associated professor, is a head of
Mathematical Logic Department at the Institute of Mathematics and Informatics. He is
a member of Lithuanian Mathematical Society and American Mathematical Society. His
main research interests include computer-aided calculi for temporal logics, modal logics,
agent-based and knowledge-based logics; loop-check-free and backtracking-free sequent
calculi for non-classical logics.

A. Pliuškevičienė, doctor of mathematical sciences, associated professor, is a senior sci-
entific researcher of Mathematical Logic Department at the Institute of Mathematics and
Informatics. The field of research – proof theory of classical and non-classical logics
including modal logics, temporal logics, agent-based and knowledge-based logics.

Išvedim ↪u baigtinumas paskirstyto žinojimo tranzityvios logikos
fragmentui

Regimantas PLIUŠKEVIČIUS, Aida PLIUŠKEVIČIENĖ

Nagrinėjama paskirstyto žinojimo logika, kurios bazė yra multi-modalinė logika S4n. Tiriamas
šios logikos fragmentas skirtas paskirstyt ↪u sistem ↪u saugumo savybi ↪u verifikavimui. Nagrinėjamam
fragmentui pateiktas išvedimo paieškos algoritmas, leidžiantis nustatyti išvedim ↪u baigtinum ↪a ne-
naudojant cikl ↪u.

