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Abstract. The paper describes the development of the efficient interface sharpening procedure for
viscous incompressible flows governed by the Navier–Stokes equations. The moving interface has
been captured by a pseudo-concentration method. The solution domain has been discretised by
the space-time finite elements, while numerical schemes have been stabilised by the Galerkin least
squares method. The dam break problem including breaking waves has been solved in order to
validate the performance of the numerical technique. The computed position of the leading edge
of water column has been compared with the experimental measurements. The detailed investiga-
tion of numerical parameters governing the sharpness of the front and mass conservation has been
presented.
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1. Introduction

Many important industrial applications of viscous incompressible flows involve propaga-
tion of moving interfaces. Numerous examples include actual problems such as coating
process, ship in waves analysis, melting and solidification, crystal growth, nuclear fusion,
metal forming, tank sloshing and dam break. Numerical simulation of moving interface
flows presents great challenges to computational scientists, because the underlying phys-
ical problem is sensitive to small numerical perturbations. The developed software has to
identify the unknown interface, to follow its kinematics and to resolve a strong coupling
between the interface propagation and dynamics of the continuum.

Numerical methods developed for solving moving interface problems might be clas-
sified into two categories: interface tracking techniques (ITT) and interface capturing
techniques (ICT). In the first category of interface simulating methods, a moving inter-
face is represented and tracked explicitly either by making it with special marker points,
or by attaching it to a mesh surface. The earliest works (Hirt et al., 1970) were based
on the Lagrangian description of motion. A mesh deforms severely as a free surface
moves, making remeshing and rezoning necessary at each time step (Radovitzky and
Ortiz, 1998). In the Arbitrary Lagrange-Eulerian approach (Hirt et al., 1974), a mesh
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deforms in terms of an arbitrary velocity field, which is independent of the flow veloci-
ties, except at the moving interface. Various ITT (Masud and Hughes, 1997; Del Pin et
al., 2007) for attaching the interface to a mesh surface were developed during the past
decades using the finite element method (FEM). The ITT based on the Lagrangian ap-
proach or the Arbitrary Lagrange-Eulerian approach use moving unstructured meshes,
allowing us to employ the full power and flexibility of the FEM. However, these methods
are unable to cope naturally with interface interacting with itself by folding or rupturing.
Only at a cost of complex implementation they simulate the discussed phenomena.

In the second category of interface simulating methods, either massless particles or an
indicator function marks gas or fluid on either side of the interface. The ICT require no
geometry manipulations after the mesh is generated and can be applied to interfaces of a
complex topology. The marker-and-cell method (Harlow and Welch, 1965), the volume
of fluid method (Hirt and Nichols, 1981) and the level set method (Osher and Sethian,
1988) are well known methods using the ICT idea and the Eulerian approach. The volume
of fluid method is very efficient and practical (Mencinger and Žun, 2007), therefore, it is
implemented in a lot of commercial codes using the finite volumes. However, the location
of the interface is not explicit and, sometimes, the appropriate boundary conditions cannot
be prescribed with a required accuracy. The application of the continuum surface force
model (Brackbill et al., 1992) can resolve this complicated problem only partially.

The level set method is based on finite difference schemes. The mathematical model
of the level set method is very universal. This method automatically takes care of merg-
ing and breaking of the interface, therefore, it is capable of simulating interfaces that
undergo large topological changes. The bottleneck of such interface capturing techniques
as the level set method is excessive numerical diffusion which smears the sharpness of
the moving front. The level set function is initially a distance function, but this property
does not hold after several time steps. If the level set function is not re-initialized, areas of
small and large gradients change the thickness of the interface. It was also observed that
numerical diffusion introduces a normal motion proportional to the local curvature of the
interface, which leads to significant difficulties in preserving mass conservation. A lot of
re-initialization procedures (Sussman and Fatemi, 1999) were introduced to remedy the
undesirable effects, but their numerical implementation is quite complicated and requires
large computational resources. The first publications presenting attempts to combine the
level set method and finite elements appeared in the past decade (Kačeniauskas, 2000;
Quecedo and Pastor, 2001; Nagrath et al., 2005; Grooss and Hesthaven, 2006).

A pseudo-concentration method (Thompson, 1986) often used with the FEM is inter-
esting alternative for the level set method. This method uses a pseudo-concentration func-
tion defined in the entire domain and solves a hyperbolic equation to determine the mov-
ing interface. The choice of function features depends on different numerical schemes
employed in the solution procedure by different authors (Nakayama and Shibata, 1998;
Lewis and Ravindran, 2000). In the most cases, the pseudo-concentration method is more
efficient than the level set method, because it uses simpler front reconstruction techniques.
The FEM has become a powerful tool for solving many scientific and engineering appli-
cations, therefore, the demand for further investigation of the ICT and implementation in
commercial FEM codes is rapidly growing (Tezduyar, 2007).
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One of the concerns with the ICT has been sustaining the interface sharpness and
global mass conservation in long-time integrations. The function defining the inter-
face undergoes some diffusion as it is advected through the computational domain. It
leads to interface smearing and non-physical mass transfer between the two fluids. Re-
initialization procedures proposed within the framework of the level set method are based
on the numerical solution of the non-linear PDE on the whole solution domain or its
part (Sussman and Fatemi, 1999). The re-initialization may need more computational re-
sources than the whole flow solver (Kačeniauskas, 2000). The interface sharpening tech-
niques (Aliabadi and Tezduyar, 2000) employed together with the pseudo-concentration
method include various numerical parameters, which values might depend on the mesh
size, the time step and the physics of the flow. Thus, the choice of the numerical schema,
the interface sharpening procedure and numerical parameters remains state of the art
problem.

In the present paper, the efficient interface sharpening procedure is developed exam-
ining the influence of particular numerical parameters to the complex dam break flow. An
outline of the paper is as follows. Section 2 describes a mathematical model of the con-
sidered flow. Section 3 presents the developed interface sharpening procedure. Numerical
results and the values of governing numerical parameters are discussed in Section 4. Con-
clusions are given in Section 5.

2. Mathematical Model of the Flow

The laminar and Newtonian flow of viscous and incompressible fluids is described by the
Navier–Stokes equations in the Eulerian reference frame:

ρ
(∂ui

∂t
+ uj

∂ui

∂xj

)
= ρFi +

∂σij

∂xj
, (1)

∂ui

∂xi
= 0, (2)

where ui are the velocity components; ρ is the density; Fi are the gravity force compo-
nents and σij is stress tensor:

σij = −pδij + μ
( ∂ui

∂xj
+

∂uj

∂xi

)
, (3)

where μ is dynamic viscosity coefficient; p is pressure and δij is Kronecker delta. Slip
boundary conditions for velocity are prescribed on rigid walls:

uini = 0, (4)

where ni are components of a unit normal vector. This is usual choice of boundary condi-
tions used for modelling of moving interface flows. The zero stress boundary conditions
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are prescribed on the open upper boundary:

σijnj = 0. (5)

The reference pressure is prescribed on the upper wall. The zero initial conditions are
prescribed for the Eqs. (1)–(3) in the performed investigation.

The pseudo-concentration method (Thompson, 1986) is developed for moving inter-
face flows using the Eulerian approach and the interface capturing idea. The pseudo-
concentration function ϕ serves as a marker, identifying fluids A and B with densities ρA

and ρB and viscosities ρA and ρB . In this context, the density and viscosity are defined as

ρ = ϕρA + (1 − ϕ)ρB , (6)

μ = ϕμA + (1 − ϕ)μB , (7)

while ϕ = 1 for fluid A and ϕ = 0 for fluid B. The evolution of the interface is governed
by a time dependent convection equation

∂ϕ

∂t
+ uj

∂ϕ

∂xj
= 0. (8)

The velocity uj is obtained from the solution of the Navier–Stokes equations (1)–(3). The
initial conditions defined on the entire solution domain should be prescribed for the (8).

The space-time Galerkin least squares (GLS) finite element method (Masud and
Hughes, 1997) is applied as a general-purpose computational approach to solve the par-
tial differential equations (1)–(3), (8) with boundary conditions (4)–(5) applied. Equal
order bilinear shape functions are used for both the pressure and velocity components as
well as for the pseudo-concentration function. The stabilization nature of the formulation
prevents numerical oscillation of incompressible flows when equal-order interpolation
functions for velocity and pressure are used and preserves the consistency of the standard
Galerkin method when adaptive remeshing is performed. The detailed description of vari-
ational formulation and stabilization parameters can be found in the work (Kačeniauskas
and Rutschmann, 2004).

3. Interface Sharpening Procedure

The standard Galerkin formulation of the FEM yields oscillatory solutions when applied
to convection dominant problems in conjunction with classical time stepping algorithms.
Conventional stabilization techniques add to the (8) artificial viscosity terms, introducing
numerical diffusion and reducing numerical oscillations. In practical application of the
GLS stabilizing method to the complex problems governed by convective transport, some
overshoots and undershoots are observed (Kačeniauskas, 2004). In order to apply the
developed interface sharpening procedure, a simpler limiter should be implemented:

ϕ = min
[
max[ϕold, 0], 1

]
. (9)
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It removes the overshoots and undershoots, preventing the numerical technique from un-
expected incorrect values and the loss of accuracy.

While the (8) moves the interface at a correct velocity, the pseudo-concentration func-
tion may become significantly influenced by the numerical diffusion after some period of
time. It leads to interface smearing and problems with mass conservation. The pseudo-
concentration function should be reconstructed in order to maintain interface sharpness.
In this work, the investigated interface sharpening procedure is similar to that proposed in
the article (Aliabadi and Tezduyar, 2000). The values of the pseudo-concentration func-
tion ϕ are replaced by the values of the reconstructed function φ, considering the follow-
ing formula:

φ = c1−aϕa, 0 � ϕ � c, (10)

φ = 1 − (1 − c)1−a(1 − ϕ)a, c � ϕ � 1, (11)

where the parameter c represents mass conservation level, while a governs sharpness of
the moving interface. Fig. 1 illustrates the interface sharpening procedure for 1D case.
The curve F is smooth ϕ function, while other curves a20c05, a11c05, a15c07 are sharp-
ened by using sets of parameters a = 2.0 and c = 0.5, a = 1.1 and c = 0.5, a = 1.5 and
c = 0.7, respectively. The curves a20c05 and a11c05 illustrate the interface sharpening,
while the curve a15c07 shows mass correction combined with the interface sharpening.
The implicit parameter ns indicates how often this procedure should be applied. Usually,
the interface thickness tends to grow, occupying a wide band of finite elements (Fig. 2a).
Frequent application of the interface sharpening procedure (10)–(11) with large a values
easily resolves this problem, but it can distort the smoothness of the interface (Fig. 2c).
The moving front can adapt to the FE mesh proceeding “staircases”. In this undesirable
case, the accuracy of the ICT becomes directly limited by the mesh size. Thus, the val-
ues of parameters a and ns, controlling interface sharpness, should be considered very
carefully.

Fig. 1. Illustration of the interface sharpening procedure.
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Fig. 2. Illustration of the maximum interface thickness: (a) 8 elements, no sharpening, (b) 2 elements, ns = 10,
a = 1.5, (c) 1 element, ns = 5, a = 1.9.

Mass conservation is a very important issue of the interface sharpening algorithm.
Insignificant numerical errors which result in slight non-physical mass transfer between
the two fluids may lead to significant errors in long-term time integration of the problem.
In order to overcome this difficulty, the values of coefficient c should be computed con-
sidering precise mass distribution in the interface region. At any time, mass conservation
for fluid A can be described by the formula

MA = ρA

∫
Ω

φ dΩ, (12)

where MA is the initial mass of the fluid A. The equation for determining c can be ob-
tained by substituting φ from formulas (10)–(11) to (12). Assuming that a is given and
constant, the resulting equation can be written as follows:

K1c
1−a − K2(1 − c)1−a = MA − Mϕ

A , (13)

where coefficient K1 is defined on the narrow band of the moving interface:

K1 = ρA

∫
Ω

ϕa dΩ, 0 � ϕ � c. (14)

Coefficient K2 is computed on the remaining part of the interface:

K2 = ρA

∫
Ω

(1 − ϕ)a dΩ, Mϕ
A = ρA

∫
Ω

dΩ, c � ϕ � 1. (15)

Coefficient Mϕ
A represents the current mass of the fluid A, defined by the values of func-

tion ϕ. The right side of (13) means mass deviation from the initial mass MA. Despite
the fact that only one fluid is explicitly presented in Eqs. (12)–(15), the described proce-
dure conserves mass for each fluid. In the solved problems, the fluid A is heavy (water),
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while the fluid B is relatively light (air). Mass correction applied to the heavier fluid A
helps to ensure maximal accuracy of the procedure. A good starting value for c is 0.5,
which indicates satisfactory mass conservation. The final values of c are obtained solv-
ing one-dimensional non-linear (13). It can be solved by different iterative methods. The
numerical tests performed show good convergence for the investigated problem, there-
fore, the detailed convergence study and the implementation procedure are not presented
in this text. However, modelling breaking waves and other extreme phenomena, the fi-
nal c values vary in a relatively wide range from 0.2 to 0.8. After determining a and
c, the Eqs. (10)–(11) are satisfied at the node-level, and the new value of the pseudo-
concentration function is used to resume computations.

4. Numerical Results and Discussions

The discussed numerical algorithms have been implemented in the code FEMTOOL
(Kačeniauskas and Rutschmann, 2004), which allows implementation of any partial dif-
ferential equation with minor expenses. Time dependent problems are solved using space-
time finite elements. The order of shape functions is determined by input and is limited
neither in space nor in time. A given transient problem can be solved in several im-
plicit time steps from one time level to the other or in one single implicit step for all
time levels. Space-time finite element integration in time and the high order shape func-
tions generated automatically make FEMTOOL to be applicable to complex strongly
coupled problems of interest. Benchmark tests have been performed on the PC clus-
ter VILKAS of Vilnius Gediminas Technical University and on the LitGRID clusters
(http://www.litgrid.lt/).

4.1. Description of a Dam Break Problem

The developed interface sharpening procedure has been applied for modelling a dam
break flow, which has been the subject of extensive research for a long time (Martin and
Moyce, 1952). The breaking wave phenomena, occurring in some cases of a dam break
problem, includes it into the class of complex applications such as solitary wave propa-
gation, tank sloshing and water on a ship deck simulation. Some experimental measure-
ments were performed on the dam break flow. Photographs showing the time evolution
of the collapsing column as well as the wave returning after hitting a wall on the oppo-
site side (Koshizuka et al., 1995) are available for the purpose of evaluating the numeri-
cal methodology on the basis of flow visualization. Measurements of the exact interface
shape are not available, but some secondary data such as the reduction of the water col-
umn height can be employed for quantitative comparison of the obtained results (Martin
and Moyce, 1952). Several modifications of the broken dam problem have been exten-
sively used as classical test cases for numerical simulation of free surfaces and moving
interfaces (Hirt and Nichols, 1981; Soulis, 1992; Quecedo et al., 2005). However, the uni-
versal, accurate and efficient numerical technique for breaking wave simulation attracts
big attention of research community and software developers.
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Fig. 3. Geometry of the dam break problem.

The geometry of the solution domain is shown in Fig. 3. The dimensions of the reser-
voir and the water column correspond to those used in the experiment carried out by
Koshizuka et. al. The reservoir is made of glass, with a base length of 0.584m. The wa-
ter column, with a base length of 0.146m and the height of 0.292m (a = 0.146m), was
initially supported on the right by a vertical plate drawn up rapidly at time t = 0.0s. The
water falls by gravity (g = 9.81m/s2), acting vertically downwards. The density of wa-
ter is ρA = 1000kg/m3, while the dynamic viscosity coefficient is μA = 0.01kg/(m·s).
The density of air is taken to be ρB = 1kg/m3, and the dynamic viscosity coefficient is
μB = 0.0001kg/(m·s). The slip boundary conditions (4) are applied to the bottom and
sides of the reservoir. The stress boundary conditions (5) are prescribed on the upper open
boundary. They may be changed to fixed pressure and zero normal gradients of the veloc-
ities. The computations are performed on the structured finite element meshes of different
resolution – 120 × 90 and 240 × 180. The investigated time interval is t = [0.0; 1.0]s. The
size of the time step is Δt = 0.001667 for the 120 × 90 finite element mesh. The number
of time steps is equal to 600. The size of the time step for the 240 × 180 finite element
mesh is Δt = 0.000667. The number of the time steps used is equal to 1500.

4.2. Breaking Wave Phenomena and Validation of Numerical Results

Fig. 4 illustrates the breaking wave phenomena simulated by the pseudo-concentration
method and the developed interface sharpening technique. The pseudo-concentration
function value 0.5 represents the exact shape of moving interface. Grey colours show
the transition region between different fluids. Gravity causes the water column on the left
of the reservoir to seek the lowest possible level of potential energy. Thus, the column
will collapse and eventually come to rest. The initial stages of the flow are dominated by
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Fig. 4. The dam break flow visualization by the pseudo-concentration function on the stationary finite element
mesh: (a) t = 0.0s, (b) t = 0.1666s, (c) t = 0.3333s, (d) t = 0.5s, (e) t = 0.6666s, (f) t = 0.8333s.

inertia forces with viscous effects increasing as the water comes to rest. On such a large
scale, the effect of surface tension forces is insignificant. When t = 0.36s, water tends
to leave the computational domain. The appropriate boundary conditions could handle
this phenomenon. The natural mass loss is observed for the period of time approximately
equal to 0.24s. This leads to additional difficulties in global mass conservation for the
whole simulation time. The additional boundary conditions for ϕ are implemented on the
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upper boundary, which sometimes could be treated as inflow:

ϕ = 0 if uini < 0. (16)

The boundary conditions (16) are applied, when the computed current mass becomes
very close to initial mass, which indicates that the lost water has come back to the com-
putational domain. The implemented technique helps to simulate the fluid A, leaving and
entering the computational domain. The complexity of velocity fields, occurring at differ-
ent stages of breaking wave phenomena, can be easily captured using simple structured
meshes. To predict the behaviour of the small bubbles correctly is a more difficult task.
When t = 0.83s, the backward moving wave has folded over and a small amount of
air is trapped. However, in experiments, this air is present in the form of small bubbles.
The current methodology has been derived for sharp interfaces, therefore, the mesh needs
significant refinement to a resolution smaller than the bubble size.

The numerical results have been validated by the quantitative comparison with ex-
perimental measurements obtained for the early stages of this experiment (Martin and
Moyce, 1952; Koshizuka et al., 1995). Non-dimensional position of the leading edge of
the collapsing water column on the left wall versus non-dimensional time is shown in
Fig. 5. Non-dimensional time t∗ is defined by the formula

t∗ = t
√

2g/a. (17)

Two different sets of experimental data E1 and E2 were presented by Martin and
Moyce, illustrating the difficulty to determine the exact position of the leading edge. A
thin layer of water shoots over the bottom and the rest of the bulk flow follows behind
it. The initial numerical experiments have overestimated the position of the leading edge.
Almost identical values have been obtained by using two structured finite element meshes

Fig. 5. Quantitative comparison of the numerical results and experimental measurements (E1, E2).
Non-dimensional position of the leading edge z/a versus non-dimensional time t∗.
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of different resolution, 120 × 90 and 240 × 180 (the curve sm1 and the curve big1, respec-
tively). The curve sm1 has been computed by using the interface sharpening parameters
ns = 5 and a = 1.5. The curve big1 has been computed by using the interface sharp-
ening parameters ns = 20/Cu and a = 1.3. The numerical results have been improved
postponing the thin liquid layer by intensive sharpening of the moving interface. Low val-
ues of the pseudo-concentration function have been filtered by the interface sharpening
at each time step with high a values. The curves sm2sh and big2sh have been computed
by using ns = 1, a = 2.0. The numerical experiments have shown that the extreme
sharpening is necessary only at the beginning of the time interval t = [0; 0.09]s. Thus,
the accuracy of the obtained results is strongly influenced by the numerical parameters,
but it is almost independent of the resolution of the finite element mesh, if sufficiently
dense FE meshes are used.

4.3. The Interface Sharpness

The quantitative comparison of the numerical results and the experimental measurements
has shown that the detailed analysis of the interface sharpening parameters should be
performed in order to develop an accurate and efficient interface sharpening procedure.
The sharpening frequency ns determines how often the interface sharpening procedure
should be applied. Initially, interface sharpening has been performed at regular time in-
tervals (each k time step). Fig. 6a shows time evolution of the total number of nodes
totnum, belonging to the interface (0 < ϕ < 1). The value of parameter a is fixed and
equal to 1.5. The curve nsk0 illustrates how the interface grows without sharpening. It is
obvious that this process is drastically influenced by the numerical diffusion. On the con-
trary, the interface sharpening performed at each time step reduces the interface thickness
to one finite element (the curve nsk1). However, in this case, the moving interface loses
its smoothness (Fig. 2c). The results obtained in sharpening the interface less frequently
are quite acceptable. The case ns = 5 is illustrated by the curve nsk5. The curve nsk10
visualizes the case ns = 10.

Fig. 6b illustrates the influence of the parameter a on the total number of the interface
nodes. The sharpening frequency ns is fixed and equal to 5. Various values of a have been

Fig. 6. Time evolution of the total number of the interface nodes totnum: (a) the influence of the parameter ns,
(b) the influence of the parameter a.
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investigated, but only particular curves are shown in this figure. The application of the
interface sharpening procedure is not efficient in the case of a = 1.1 (the curve a11). The
decrease of the number of interface nodes is not significant. The improvement obtained
by using higher a values is not very large for the investigated sharpening frequency. The
difference between the curves a15 (a = 1.5) and a19 (a = 1.9) is quite small. The plotted
trend lines (a11tr, a15tr, a19tr), based on the sixth order polynomials, clearly illustrate
this issue. The values higher than 2.0 distort the interface smoothness, therefore, they
can be applied only in special cases for short time intervals. The shape of the interface
is very complicated and not known a priori. The length of the interface always changes,
therefore, it is difficult to compute its actual thickness either analytically or numerically.

In this work, the frequency of the interface sharpening is defined by a simple indicator,
based on the Courant number

ns = int
( k

Cu

)
, Cu = |v| Δt

Δx
, (18)

where Cu is the maximum Courant number, k is a coefficient, Δt is the time step, Δx

is the mesh size, |v| is a measure of maximum velocity. In general, the frequency of the
interface sharpening might depend on the time step, the mesh size and the flow. Thus,
the most important parameters are considered in the formula (18). If Cu < 1, the inter-
face cannot cross the whole finite element during this time step. Therefore, there is no
need to sharpen it more frequently than int(1/Cu). Fig. 7 shows time evolution of the
total number of the interface nodes obtained while sharpening the interface at every 10
time steps (the curve nsk10) and applying the indicator with k = 10 (the curve cuk10).
The trend lines (nsk10tr and cuk10tr), based on the sixth order polynomials, illustrate
quantitatively similar results, despite the different character of the interface sharpening.
Other indicators evaluating the relative interface thickness have also been investigated.

Fig. 7. Time evolution of the total number of the interface nodes totnum: the curve nsk10 is obtained by using
regular interface sharpening ns = 10, the curve cuk10 is obtained by using the indicator ns = 10/Cu.
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Fig. 8. Time evolution of the interface sharpening number shnum.

The ratio between the number of nodes, where ϕ is close to unity or zero, and the vari-
able totnum has been computed. The stochastic character of the obtained curves has not
allowed the information provided by these indicators to be efficiently exploited, therefore,
the detailed investigation is not presented in this work.

The developed interface sharpening procedure is very efficient. There is no need to
solve any PDE numerically (Čiegis and Starikovičius, 2003; Maknickas et al., 2006) on
the whole solution domain or its part (Sussman and Fatemi, 1999). The time-consuming
geometrical techniques for interface reconstruction has not been applied either. For-
mulas (10)–(11) are satisfied at the node level and can be implemented as any post-
processing of the numerical solution of the (8). In order to preserve mass conservation, the
non-linear one-dimensional (13) should be solved. The computation of the coefficients
defined by formulas (14)–(15) is more time consuming, but it can be implemented by
using additional conditional statements in the procedure devoted for the global mass cal-
culation. The interface sharpening procedure is not applied at every time step, therefore,
the interface sharpening number shnum can be treated as the relative efficiency measure.
Fig. 8 illustrates time evolution of the interface sharpening number shnum for different
strategies. The interface sharpening produced at regular time intervals (the curves nsk5
and nsk10) and that (the curves cuk5 and cuk10) defined by the formula (18) give very
similar quantitative efficiency results . Other curves (cuk5AM, cuk5OM and cuk10AM)
illustrate the attempts to improve the sharpening quality by evaluating the needs of mass
conservation.

4.4. Mass Correction

Mass conservation is one of the most important tasks for any interface sharpening proce-
dure. Sometimes, interface handling can be related to the unwanted instabilities caused by
large density ratios. This is due to the discontinuous density at the interface. In this work,
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density smoothing is performed carefully computing its values in the finite element area.
The density is taken to be constant in the finite element and ϕ values in the formula (6)
are averaged:

ϕEL =
∑n

i=1 Giϕi

area
, (19)

where n is the number of Gauss points; Gi are Gauss coefficients; ϕi are the values of
the pseudo-concentration function ϕ at Gauss points. The strategy implemented by using
the formula (19) works very well when the interface is not very sharp and its thickness
is greater than the size of an element. On the contrary, the global mass computations are
performed evaluating the non-smoothed density (equal to 1kg/m3 or 1000kg/m3) at the
Gauss points:

MEL =
n∑

i=1

Giρi, (20)

where MEL is the fluid mass in the finite element EL; ρi denotes the density values at
Gauss points. Formula (20) yields higher accuracy and higher oscillations of the global
mass curves as well.

Fig. 9 shows mass evolution in time for several interface sharpening cases. The time
interval t = [0.4; 0.7]s illustrates the case when water is leaving the computational do-
main and is coming back. In order to preserve the consistency between the flow physics
and the numerical techniques, mass correction is automatically switched off in this spe-
cial case. All plotted curves are actually of the same character, but quantitative results are
quite different. The significant mass loss is observed when interface sharpening is not ap-
plied (the curve nsk0). The interface sharpening without mass correction at regular time
intervals (the curve nsk10, ns = 10) does not significantly reduce the mass loss. The

Fig. 9. Time evolution of the global mass for different strategies of interface sharpening.
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Fig. 10. The global mass conservation in time: (a) the interface sharpening governed only by the ns values,
(b) the interface sharpening additionally handled by the mass error.

adaptation of the interface sharpening frequency to Cu number changes the character
of the numerical solution (the curve cuk10, k = 10). However, mass becomes overesti-
mated. Only the application of mass correction to regular interface sharpening (the curve
nsk10M, ns = 10) significantly improves mass conservation.

Mass corrections combined with interface sharpening can be applied in several differ-
ent ways. Fig. 10 illustrates the issues of interface sharpening additionally handled by the
mass error. The curves nsk5M and cuk5M are obtained performing interface sharpening
at regular time intervals and using the indicator (18), respectively. Mass correction is au-
tomatically switched on when interface sharpening is performed and mass error exceeds
the prescribed value 0.2kg. The interface sharpening governed by the indicator (the curve
cuk5M) better preserves mass at the beginning of computations and in the time interval
t = [0.5; 0.8]s. The results obtained by regular interface sharpening (the curve nsk5M)
are better in the time interval t = [0.4; 0.5]s. Other curves illustrate the modifications
of the interface sharpening frequency performed considering the mass error. The curve
cuk5AM illustrates the interface sharpening governed by the indicator and the mass error.
The interface sharpening is performed only if it is required by the indicator and the mass
error exceeding the prescribed value at the same time step. The logical AND operator is
present in the conditional IF statement. The interface is sharpened less frequently (Fig. 8),
therefore, mass conservation is not sufficiently improved. The curve cuk5OM is obtained
by substituting logical AND to logical OR in the conditional IF statement. The plotted
curve demonstrates the obvious improvement in mass conservation. However, the inter-
face sharpening number shnum is considerably increased (Fig. 8), while the efficiency is
reduced.

5. Conclusions

In this paper, the development of the efficient interface sharpening procedure for vis-
cous incompressible flows including breaking waves has been described. The dam break
problem has been solved by the pseudo-concentration method and the developed inter-
face sharpening technique. The numerical approach has been validated by quantitative
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comparison with the experimental measurements. The computed position of the leading
edge of the collapsing water column has been in good agreement with the experimen-
tal data. The accurate numerical solution of the dam break problem, including highly
non-linear breaking waves, proves that the developed interface sharpening technique is
capable of recovering interface sharpness and ensuring satisfactory mass conservation.
The detailed investigation of numerical parameters has revealed the importance of the
interface sharpening frequency for interface thickness as well as for the physics of the
flow. The interface sharpening procedure consumes significantly less then 1% of the total
computing time, therefore, it can be effectively applied to any complex 3D flows with
interfaces undergoing large topological changes.
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Efektyvios paviršiaus rekonstrukcijos procedūros, skirtos klampioms
nespūdžioms tėkmėms modeliuoti, kūrimas ir tobulinimas

Arnas KAČENIAUSKAS

Straipsnyje aprašomas efektyvios paviršiaus rekonstrukcijos procedūros, taikomos klampioms
nespūdžioms dvipusi ↪u pavirši ↪u tėkmėms modeliuoti, kūrimas ir tobulinimas. Tėkmė nusakoma
Navje ir Stokso lygtimis, o kintantis dvipusis paviršius modeliuojamas pseudokoncentracijos
metodu. Uždavinio apibrėžimo sritis diskretizuojama erdvės ir laiko baigtiniais elementais, o
skaitinės schemos stabilizuojamos Galiorkino mažiausi ↪u kvadrat ↪u metodu. Skaitinė procedūra
ištestuota sprendžiant sugriuvusios užtvankos uždavin↪i su lūžtančiomis bangomis. Skaitiniais
metodais apskaičiuota sklindančio vandens stulpelio krašto padėtis palyginta su eksperimentini ↪u
matavim ↪u rezultatais. Pateikta detali skaitini ↪u parametr ↪u, reguliuojanči ↪u dvipusio paviršiaus glo-
dum ↪a ir tėkmės masės tverm ↪e, studija.


