
INFORMATICA, 2008, Vol. 19, No. 4, 567–596 567
© 2008 Institute of Mathematics and Informatics, Vilnius

A New Applied Approach for Executing
Computations with Infinite and Infinitesimal
Quantities

Yaroslav D. SERGEYEV
Dipartimento di Elettronica, Informatica e Sistemistica, Università della Calabria
87030 Rende (CS), Italy
e-mail: yaro@si.deis.unical.it

Received: November 2007; accepted: February 2008

Abstract. A new computational methodology for executing calculations with infinite and infinitesi-
mal quantities is described in this paper. It is based on the principle ‘The part is less than the whole’
introduced by Ancient Greeks and applied to all numbers (finite, infinite, and infinitesimal) and to
all sets and processes (finite and infinite). It is shown that it becomes possible to write down finite,
infinite, and infinitesimal numbers by a finite number of symbols as particular cases of a unique
framework. The new methodology has allowed us to introduce the Infinity Computer working with
such numbers (its simulator has already been realized). Examples dealing with divergent series,
infinite sets, and limits are given.
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1. Introduction

Throughout the whole history of humanity many brilliant thinkers studied problems re-
lated to the idea of infinity (Cantor, 1955; Cohen, 1966; Conway and Guy, 1996; Gödel,
1940; Hardy, 1910; Hilbert, 1902; Leibniz and Child, 2005; Newton, 1671; Robinson,
1996) and references given therein). To emphasize importance of the subject it is suffi-
cient to mention that the Continuum Hypothesis related to infinity has been included by
David Hilbert as the Problem Number One in his famous list of 23 unsolved mathemati-
cal problems (Hilbert, 1902) that have influenced strongly development of Mathematics
in the XXth century.

There exist different ways to generalize traditional arithmetic for finite numbers to the
case of infinite and infinitesimal numbers (Benci and Di Nasso, 2003; Cantor, 1955; Con-
way and Guy, 1996; Robinson, 1996) and references given therein). However, arithmetics
developed for infinite numbers are quite different with respect to the finite arithmetic we
are used to deal with. Moreover, very often they leave undetermined many operations
where infinite numbers take part (for example, ∞ − ∞, ∞

∞ , sum of infinitely many items,
etc.) or use representation of infinite numbers based on infinite sequences of finite num-
bers. In spite of these crucial difficulties and due to enormous importance of the concept
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of infinity in science, people try to introduce infinity in their work with computers. We
can mention the IEEE Standard for Binary Floating-Point Arithmetic containing repre-
sentations for +∞ and −∞ and incorporation of these notions in the interval analysis
implementations.

The point of view on infinity accepted nowadays takes its origins from the famous
ideas of Georg Cantor (Cantor, 1955) who has shown that there exist infinite sets having
different number of elements. However, it is well known that Cantor’s approach leads
to some situations that often are called by non mathematicians ‘paradoxes’. The most
famous and simple of them is, probably, Hilbert’s paradox of the Grand Hotel. In a normal
hotel having a finite number of rooms no more new guests can be accommodated if it is
full. Hilbert’s Grand Hotel has an infinite number of rooms (of course, the number of
rooms is countable, because the rooms in the Hotel are numbered). Due to Cantor, if a
new guest arrives at the Hotel where every room is occupied, it is, nevertheless, possible
to find a room for him. To do so, it is necessary to move the guest occupying room 1 to
room 2, the guest occupying room 2 to room 3, etc. In such a way room 1 will be ready
for the newcomer and, in spite of our assumption that there are no available rooms in the
Hotel, we have found one.

This result is very difficult to be fully realized by anyone who is not a mathematician
since in our every day experience in the world around us the part is always less than the
whole and if a hotel is complete there are no places in it. In order to understand how it is
possible to tackle the problem of infinity in such a way that Hilbert’s Grand Hotel would
be in accordance with the principle ‘the part is less than the whole’ let us consider a study
published in Science by Peter Gordon (Gordon, 2004) where he describes a primitive tribe
living in Amazonia – Pirahã – that uses a very simple numeral system1 for counting: one,
two, many. For Pirahã, all quantities larger than two are just ‘many’ and such operations
as 2 + 2 and 2 + 1 give the same result, i.e., ‘many’. Using their weak numeral system
Pirahã are not able to see, for instance, numbers 3, 4, 5, and 6, to execute arithmetical
operations with them, and, in general, to say anything about these numbers because in
their language there are neither words nor concepts for that. Moreover, the weakness of
their numeral system leads to such results as

‘many’ + 1 = ‘many’, ‘many’ + 2 = ‘many’,

which are very familiar to us in the context of views on infinity used in the traditional
calculus

∞ + 1 = ∞, ∞ + 2 = ∞.

This observation leads us to the following idea: Probably our difficulty in working with
infinity is not connected to the nature of infinity but is a result of inadequate numeral
systems used to express numbers.

1We remind that numeral is a symbol or group of symbols that represents a number. The difference between
numerals and numbers is the same as the difference between words and the things they refer to. A number is
a concept that a numeral expresses. The same number can be represented by different numerals. For example,
the symbols ‘3’, ‘three’, and ‘III’ are different numerals, but they all represent the same number.
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In this paper, we describe a new methodology for treating infinite and infinitesimal
quantities (examples of its usage see in (Sergeyev, 2003; Sergeyev, 2004a; Sergeyev,
2004b; Sergeyev, 2005; Sergeyev, 2006a; Sergeyev, 2006b; Sergeyev, 2007)) having a
strong numerical character. Its description is given in Section 2. The new methodology
allows us to introduce in Section 3 a new infinite unit of measure that is then used as the
radix of a new positional numeral system. Section 4 shows that this system allows one to
express finite, infinite, and infinitesimal numbers in a unique framework and to execute
arithmetical operations with all of them. Section 5 discusses some applications of the new
methodology. Section 6 establishes relations to some of the results of Georg Cantor. After
all, Section 7 concludes the paper.

We close this Introduction by emphasizing that the goal of the paper is not to con-
struct a complete theory of infinity and to discuss such concepts as, for example, ‘set
of all sets’. In contrast, the problem of infinity is considered from the point of view of
applied Mathematics and theory and practice of computations – fields being among the
main scientific interests (see, e.g., monographs (Sergeyev, 2003; Strongin and Sergeyev,
2000)) of the author. A new viewpoint on infinity is introduced in the paper in order to
give possibilities to solve new and old (but with higher precision) applied problems. Ed-
ucational issues (Mockus, 2006; Mockus, 2008; Sergeyev, 2006b) have also been taken
in account. In this connection, it is worthy to notice that a new kind of computers – the
Infinity Computer – able to execute computations with infinite and infinitesimal numbers
introduced in this paper has been recently proposed and its software simulator has already
been implemented (Sergeyev, 2004a; Sergeyev, 2004b; Sergeyev, 2006a).

2. A New Computational Methodology

The aim of this section is to introduce a new methodology that would allow one to work
with infinite and infinitesimal quantities in the same way as one works with finite num-
bers. Evidently, it becomes necessary to define what does it mean in the same way. Usu-
ally, in modern Mathematics, when it is necessary to define a concept or an object, lo-
gicians try to introduce a number of axioms describing the object. However, this way is
fraught with danger because of the following reasons. First of all, when we describe a
mathematical object or concept we are limited by the expressive capacity of the language
we use to make this description. A more rich language allows us to say more about the
object and a weaker language – less (remind Pirahã that are not able to say a word about
number 4). Thus, development of the mathematical (and not only mathematical) lan-
guages leads to a continuous necessity of a transcription and specification of axiomatic
systems. Second, there is no any guarantee that the chosen axiomatic system defines ‘suf-
ficiently well’ the required concept and a continuous comparison with practice is required
in order to check the goodness of the accepted set of axioms. However, there cannot be
again any guarantee that the new version will be the last and definitive one. Finally, the
third limitation latent in axiomatic systems has been discovered by Gödel in his two fa-
mous incompleteness theorems (Gödel, 1931).
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In this paper, we introduce a different, significantly more applied and less ambitious
view on axiomatic systems related only to utilitarian necessities to make calculations.
We start by introducing three postulates that will fix our methodological positions with
respect to infinite and infinitesimal quantities and Mathematics, in general. In contrast
to the modern mathematical fashion that tries to make all axiomatic systems more and
more precise (decreasing so degrees of freedom of the studied part of Mathematics),
we just define a set of general rules describing how practical computations should be
executed leaving so as much space as possible for further, dictated by practice, changes
and developments of the introduced mathematical language. Speaking metaphorically,
we prefer to make a hammer and to use it instead of describing what is a hammer and
how it works.

Usually, when mathematicians deal with infinite objects (sets or processes) it is sup-
posed (even by constructivists see, for example, (Markov Jr. and Nagorny, 1996)) that
human beings are able to execute certain operations infinitely many times. For example,
in a fixed numeral system it is possible to write down a numeral with any number of dig-
its. However, this supposition is an abstraction (courageously declared by constructivists
in (Markov Jr. and Nagorny, 1996)) because we live in a finite world and all human beings
and/or computers finish operations they have started. In this paper, this abstraction is not
used and the following postulate is adopted.

Postulate 1. We postulate existence of infinite and infinitesimal objects but accept that
human beings and machines are able to execute only a finite number of operations.

Thus, we accept that we shall never be able to give a complete description of infinite
processes and sets due to our finite capabilities. Particularly, this means that we accept
that we are able to write down only a finite number of symbols to express numbers.

The second postulate that will be adopted is due to the following consideration. In
natural sciences, researchers use tools to describe the object of their study and the used
instruments influence results of observations. When physicists see a black dot in their
microscope they cannot say: the object of observation is the black dot. They are obliged
to say: the lens used in the microscope allows us to see the black dot and it is not possible
to say anything more about the nature of the object of observation until we shall not
change the instrument – the lens or the microscope itself – by a more precise one.

Due to Postulate 1, the same happens in Mathematics when studying natural phenom-
ena, numbers, and objects that can be constructed by using numbers. Numeral systems
used to express numbers are among the instruments of observations used by mathemati-
cians. Usage of powerful numeral systems gives the possibility to obtain more precise
results in mathematics in the same way as usage of a good microscope gives the possibil-
ity to obtain more precise results in Physics. However, the capabilities of the tools will be
always limited due to Postulate 1. Thus, following natural sciences, we accept the second
postulate.

Postulate 2. We shall not tell what are the mathematical objects we deal with; we
just shall construct more powerful tools that will allow us to improve our capacities to
observe and to describe properties of mathematical objects.

Particularly, this means that from this applied point of view, axiomatic systems do
not define mathematical objects but just determine formal rules for operating with certain
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numerals reflecting some properties of the studied mathematical objects. For example,
axioms for real numbers are considered together with a particular numeral system S used
to write down numerals and are viewed as practical rules (associative and commutative
properties of multiplication and addition, distributive property of multiplication over ad-
dition, etc.) describing operations with the numerals. The completeness property is inter-
preted as a possibility to extend S with additional symbols (e.g., e, π,

√
2, etc.) taking

care of the fact that the results of computations with these symbols agree with the facts
observed in practice. As a rule, the assertions regarding numbers that cannot be expressed
in a numeral system are avoided (e.g., it is not supposed that real numbers form a field).

After all, we want to treat infinite and infinitesimal numbers in the same manner as we
are used to deal with finite ones, i.e., by applying the philosophical principle of Ancient
Greeks ‘The part is less than the whole’. This principle, in our opinion, very well reflects
organization of the world around us but is not incorporated in many traditional infinity
theories where it is true only for finite numbers.

Postulate 3. We adopt the principle ‘The part is less than the whole’ to all numbers
(finite, infinite, and infinitesimal) and to all sets and processes (finite and infinite).

Due to this declared applied statement, such concepts as bijection, numerable and
continuum sets, cardinal and ordinal numbers cannot be used in this paper because they
belong to theories working with different assumptions. However, the approach proposed
here does not contradict Cantor. In contrast, it evolves his deep ideas regarding existence
of different infinite numbers in a more applied way.

It is important to notice that the adopted Postulates impose also the style of exposition
of results in the paper: we first introduce new mathematical instruments, then show how
to use them in several areas of Mathematics, introducing each item as soon as it becomes
indispensable for the problem under consideration.

Let us introduce now the main methodological idea of the paper by studying a sit-
uation arising in practice and related to the necessity to operate with extremely large
quantities (see (Sergeyev, 2003) for a detailed discussion). Imagine that we are in a gra-
nary and the owner asks us to count how much grain he has inside it. Of course, nobody
counts the grain seed by seed because the number of seeds is enormous.

To overcome this difficulty, people take sacks, fill them in with seeds, and count the
number of sacks. It is important that nobody counts the number of seeds in a sack. If
the granary is huge and it becomes difficult to count the sacks, then trucks or even big
train waggons are used. Of course, we suppose that all sacks contain the same number
of seeds, all trucks – the same number of sacks, and all waggons – the same number of
trucks. At the end of the counting we obtain a result in the following form: the granary
contains 14 waggons, 54 trucks, 18 sacks, and 47 seeds of grain. Note, that if we add, for
example, one seed to the granary, we can count it and see that the granary has more grain.
If we take out one waggon, we again are able to say how much grain has been subtracted.

Thus, in our example it is necessary to count large quantities. They are finite but it is
impossible to count them directly by using an elementary unit of measure, u0, (seeds in
our example) because the quantities expressed in these units would be too large. There-
fore, people are forced to behave as if the quantities were infinite.
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To solve the problem of ‘infinite’ quantities, new units of measure, u1, u2, and u3,

are introduced (units u1 – sacks, u2 – trucks, and u3 – waggons). The new units have the
following important peculiarity: all the units ui+1 contain a certain number Ki of units
ui but this number, Ki, is unknown. Naturally, it is supposed that Ki is the same for all
instances of the units ui+1. Thus, numbers that it was impossible to express using only
the initial unit of measure are perfectly expressible in the new units we have introduced
in spite of the fact that the numbers Ki are unknown.

This key idea of counting by introduction of new units of measure will be used in the
paper to deal with infinite quantities together with the idea of separate count of units with
different exponents used in traditional positional numeral systems.

3. The Infinite Unit of Measure

The infinite unit of measure is expressed by the numeral ©1 called grossone and is intro-
duced as the number of elements of the set, N, of natural numbers. Remind that the usage
of a numeral indicating totality of the elements we deal with is not new in Mathematics.
It is sufficient to mention the theory of probability (axioms of Kolmogorov) where events
can be defined in two ways. First, as union of elementary events; second, as a sample
space, Ω, of all possible elementary events (or its parts Ω/2, Ω/3, etc.) from which some
elementary events have been excluded (or added in case of parts of Ω). Naturally, the
latter way to define events becomes particularly useful when the sample space consists of
infinitely many elementary events.

Grossone is introduced by describing its properties (similarly, in order to pass from
natural to integer numbers a new element – zero – is introduced by describing its proper-
ties) postulated by the Infinite Unit Axiom (IUA) consisting of three parts: Infinity, Iden-
tity, and Divisibility. This axiom is added to axioms for real numbers (remind that we
consider axioms in sense of Postulate 2). Thus, it is postulated that associative and com-
mutative properties of multiplication and addition, distributive property of multiplication
over addition, existence of inverse elements with respect to addition and multiplication
hold for grossone as for finite numbers2. Let us introduce the axiom and then give com-
ments on it.

Infinity. Any finite natural number n is less than grossone, i.e., n < ©1 .
Identity. The following relations link ©1 to identity elements 0 and 1

0 · ©1 = ©1 · 0=0, ©1 − ©1 =0,
©1
©1 = 1, ©1 0 = 1, 1©1 = 1, 0©1 = 0. (1)

2It is important to emphasize that we speak about axioms of real numbers in sense of Postulate 2, i.e.,
axioms define formal rules of operations with numerals in a given numeral system. Therefore, if we want to
have a numeral system including grossone, we should fix also a numeral system to express finite numbers. In
order to concentrate our attention on properties of grossone, this point will be investigated later.
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Divisibility. For any finite natural number n sets Nk,n, 1 � k � n, being the nth
parts of the set, N, of natural numbers have the same number of elements indicated by
the numeral ©1

n where

Nk,n = {k, k + n, k + 2n, k + 3n, . . .}, 1 � k � n,

n⋃
k=1

Nk,n = N. (2)

The first part of the introduced axiom – Infinity – is quite clear. In fact, we want to
describe an infinite number, thus, it should be larger than any finite number. The second
part of the axiom – Identity – tells us that ©1 behaves itself with identity elements 0 and
1 as all other numbers. In reality, we could even omit this part of the axiom because, due
to Postulate 3, all numbers should be treated in the same way and, therefore, at the mo-
ment we have told that grossone is a number, we have fixed usual properties of numbers,
i.e., the properties described in Identity, associative and commutative properties of multi-
plication and addition, distributive property of multiplication over addition, existence of
inverse elements with respect to addition and multiplication. The third part of the axiom
– Divisibility – is the most interesting, it is based on Postulate 3. Let us first illustrate it
by an example.

EXAMPLE 3.1. If we take n = 1, then N1,1 = N and Divisibility tells that the set, N, of
natural numbers has ©1 elements. If n = 2, we have two sets N1,2 and N2,2

N1,2 = {1, 3, 5, 7, . . . }

N2,2 = { 2, 4, 6, . . . }
(3)

and they have ©1
2 elements each. If n = 3, then we have three sets

N1,3 = {1, 4, 7, . . . }

N2,3 = { 2, 5, . . . }

N3,3 = { 3, 6, . . . }

(4)

and they have ©1
3 elements each.

It is important to emphasize that to introduce ©1
n we do not try to count elements

k, k+n, k+2n, k+3n, . . . one by one in (2). In fact, we cannot do this due to Postulate 1.
By using Postulate 3, we construct the sets Nk,n, 1 � k � n, by separating the whole,
i.e., the set N, in n parts (this separation is highlighted visually in formulae (3) and (4)).
Again due to Postulate 3, we affirm that the number of elements of the nth part of the set,
i.e., ©1

n , is n times less than the number of elements of the whole set, i.e., than ©1 . In terms
of our granary example ©1 can be interpreted as the number of seeds in the sack. Then, if
the sack contains ©1 seeds, its nth part contains n times less quantity, i.e., ©1

n seeds. Note
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that, since the numbers ©1
n have been introduced as numbers of elements of sets Nk,n,

they are integer.
The new unit of measure allows us to calculate easily the number of elements of sets

being union, intersection, difference, or product of other sets of the type Nk,n. Due to
our accepted methodology, we do it in the same way as these measurements are executed
for finite sets. Let us consider two simple examples (a general rule for determining the
number of elements of infinite sets having a more complex structure will be given in
Section 5) showing how grossone can be used for this purpose.

EXAMPLE 3.2. Let us determine the number of elements of the set Ak,n = Nk,n\{a},

a ∈ Nk,n, n � 1. Due to the IUA, the set Nk,n has ©1
n elements. The set Ak,n has been

constructed by excluding one element from Nk,n. Thus, the set Ak,n has ©1
n − 1 elements.

The granary interpretation can be also given for the number ©1
n − 1: the number of seeds

in the nth part of the sack minus one seed. For n = 1 we have ©1 − 1 interpreted as the
number of seeds in the sack minus one seed.

EXAMPLE 3.3. Let us consider the following two sets

B1 = {4, 9, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 69, 74, 79, . . .},

B2 = {3, 14, 25, 36, 47, 58, 69, 80, 91, 102, 113, 124, 135, . . .}

and determine the number of elements in the set B = (B1 ∩ B2) ∪ {3, 4, 5, 69}. It follows
immediately from the IUA that B1 = N4,5, B2 = N3,11. Their intersection

B1 ∩ B2 = N4,5 ∩ N3,11 = {14, 69, 124, . . .} = N14,55

and, therefore, due to the IUA, it has ©1
55 elements. Finally, since 69 belongs to the set

N14,55 and 3, 4, and 5 do not belong to it, the set B has ©1
55 + 3 elements. The granary

interpretation: this is the number of seeds in the 55th part of the sack plus three seeds.

One of the important differences of the new approach with respect to the non-standard
analysis consists of the fact that ©1 ∈ N because grossone has been introduced as the
quantity of natural numbers (similarly, the number 5 being the number of elements of
the set {1, 2, 3, 4, 5} is the largest element in this set). The new numeral ©1 allows one to
write down the set, N, of natural numbers in the form

N = {1, 2, 3, . . . ©1 − 3, ©1 − 2, ©1 − 1, ©1 }, (5)

where the numerals

. . . ©1 − 3, ©1 − 2, ©1 − 1, ©1 (6)

indicate infinite natural numbers.



Executing Computations with Infinite and Infinitesimal Quantities 575

It is important to emphasize that in the new approach the set (5) is the same set of
natural numbers

N = {1, 2, 3, . . . } (7)

we are used to deal with and infinite numbers (6) also take part of N. Both records, (5)
and (7), are correct and do not contradict each other. They just use two different numeral
systems to express N. Traditional numeral systems do not allow us to see infinite natural
numbers that we can observe now thanks to ©1 . Similarly, Pirahã are not able to see fi-
nite natural numbers greater than 2. In spite of this fact, these numbers (e.g., 3 and 4)
belong to N and are visible if one uses a more powerful numeral system. Thus, we have
the same object of observation – the set N – that can be observed by different instruments
– numeral systems – with different accuracies (see Postulate 2).

Now the following obvious question arises: Which natural numbers can we express
by using the new numeral ©1 ? Suppose that we have a numeral system, S , for expressing
finite natural numbers and it allows us to express KS numbers (not necessary consecutive)
belonging to a set NS ⊂ N. Note that due to Postulate 1, KS is finite. Then, addition of ©1
to this numeral system will allow us to express also infinite natural numbers i©1

n ±k � ©1
where 1 � i � n, k ∈ NS , n ∈ NS (note that since ©1

n are integers, i©1
n are integers too).

Thus, the more powerful system S is used to express finite numbers, the more infinite
numbers can be expressed but their quantity is always finite, again due to Postulate 1. The
new numeral system using grossone allows us to express more numbers than traditional
numeral systems thanks to the introduced new numerals but, as it happens for all numeral
systems, its abilities to express numbers are limited.

EXAMPLE 3.4. Let us consider the numeral system, P , of Pirahã able to express only
numbers 1 and 2 (the only difference will be in the usage of numerals ‘1’ and ‘2’ instead
of original numerals I and II used by Pirahã). If we add to P the new numeral ©1 ,
we obtain a new numeral system (we call it P̂ ) allowing us to express only ten numbers
represented by the following numerals

1, 2︸︷︷︸
finite

, . . .
©1
2

− 2,
©1
2

− 1,
©1
2

,
©1
2

+ 1,
©1
2

+ 2︸ ︷︷ ︸
infinite

, . . . ©1 − 2, ©1 − 1, ©1︸ ︷︷ ︸
infinite

. (8)

The first two numbers in (8) are finite, the remaining eight are infinite, and dots show
natural numbers that are not expressible in P̂ . As a consequence, P̂ does not allow us
to execute such operation as 2 + 2 or to add 2 to ©1

2 + 2 because their results cannot be
expressed in it. Of course, we do not say that results of these operations are equal (as
Pirahã do for operations 2 + 2 and 2 + 1). We just say that the results are not expressible
in P̂ and it is necessary to take another, more powerful numeral system if we want to
execute these operations.

Note that crucial limitations discussed in Example 3.4 hold for sets, too. As a con-
sequence, the numeral system P allows us to define only the sets N1,2 and N2,2 among
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all possible sets of the form Nk,n from (2) because we have only two finite numerals, ‘1’
and ‘2’, in P . This numeral system is too weak to define other sets of this type because
numbers greater than 2 required for these definition are not expressible in P . These lim-
itations have a general character and are related to all questions requiring a numerical
answer (i.e., an answer expressed only in numerals, without variables). In order to ob-
tain such an answer, it is necessary to know at least one numeral system able to express
numerals required to write down this answer.

We are ready now to formulate the following important result being a direct conse-
quence of the accepted methodological postulates.

Theorem 3.1. The set N is not a monoid under addition.

Proof. Due to Postulate 3, the operation ©1 + 1 gives us as the result a number greater
than ©1 . Thus, by definition of grossone, ©1 + 1 does not belong to N and, therefore, N

is not closed under addition and is not a monoid.

This result also means that adding the IUA to the axioms of natural numbers defines
the set of extended natural numbers indicated as N̂ and including N as a proper subset

N̂ =
{
1, 2, . . . , ©1 − 1, ©1 , ©1 + 1, . . . , ©1 2 − 1, ©1 2, ©1 2 + 1, . . .

}
. (9)

The extended natural numbers greater than grossone are also linked to sets of numbers
and can be interpreted in the terms of grain.

EXAMPLE 3.5. Let us determine the number of elements of the set

C =
{
(a1, a2, . . . , am): ai ∈ N, 1 � i � m

}
.

The elements of C are m-tuples of natural numbers. It is known from combinatorial
calculus that if we have m positions and each of them can be filled in by one of l symbols,
the number of the obtained m-tuples is equal to lm. In our case, since N has grossone
elements, l = ©1 . Thus, the set C has ©1 m elements. The granary interpretation: if we
accept that the numbers Ki from page 572 are such that Ki = ©1 , 1 � i � m − 1, then
©1 2 can be viewed as the number of seeds in the truck, ©1 3 as the number of seeds in the
train waggon, etc.

The set, Ẑ, of extended integer numbers can be constructed from the set, Z, of integer
numbers by a complete analogy and inverse elements with respect to addition are intro-
duced naturally. For example, 7©1 has its inverse with respect to addition equal to −7©1 .

It is important to notice that, due to Postulates 1 and 2, the new system of counting
cannot give answers to all questions regarding infinite sets. What can we say, for instance,
about the number of elements of the sets N̂ and Ẑ? The introduced numeral system based
on ©1 is too weak to give answers to these questions. It is necessary to introduce in a way
a more powerful numeral system by defining new numerals (for instance, ©2 , ©3 , etc).
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We conclude this section by the following remark. The IUA introduces a new number
– the quantity of elements in the set of natural numbers – expressed by the new nu-
meral ©1 . However, other numerals and sets can be used to state the idea of the axiom.
For example, the numeral •1 can be introduced as the number of elements of the set, E,
of even numbers and can be taken as the base of a numeral system. In this case, the IUA
can be reformulated using the numeral •1 and numerals using it will be used to express
infinite numbers. For example, the number of elements of the set, O, of odd numbers will
be expressed as |O| = |E| = •1 and |N| = 2· •1 . We emphasize through this note that
infinite numbers (similarly to the finite ones) can be expressed by various numerals and
in different numeral systems.

4. Arithmetical Operations in the New Numeral System

We have already started to write down simple infinite numbers and to execute arithmeti-
cal operations with them without concentrating our attention upon this question. Let us
consider it systematically.

4.1. Positional Numeral System with Infinite Radix

Different numeral systems have been developed to describe finite numbers. In positional
numeral systems, fractional numbers are expressed by the record

(
anan−1 . . . a1a0.a−1a−2 . . . a−(q−1)a−q

)
b
, (10)

where numerals ai, −q � i � n, are called digits, belong to the alphabet {0, 1, . . . , b−1},
and the dot is used to separate the fractional part from the integer one. Thus, the numeral
(10) is equal to the sum

anbn+an−1b
n−1+· · ·+a1b

1+a0b
0+a−1b

−1+· · ·+a−(q−1)b
−(q−1)+a−qb

−q. (11)

Record (10) uses numerals consisting of one symbol each, i.e., digits ai ∈ {0, 1,

. . . , b − 1}, to express how many finite units of the type bi belong to the number (11).
Quantities of finite units bi are counted separately for each exponent i and all symbols in
the alphabet {0, 1, . . . , b − 1} express finite numbers.

To express infinite and infinitesimal numbers we shall use records that are similar to
(10) and (11) but have some peculiarities. In order to construct a number C in the new
numeral positional system with base ©1 , we subdivide C into groups corresponding to
powers of ©1 :

C = cpm ©1 pm + . . . + cp1 ©1 p1 + cp0 ©1 p0 + cp−1 ©1 p−1 + . . . + cp−k
©1 p−k . (12)

Then, the record

C = cpm ©1 pm . . . cp1 ©1 p1cp0 ©1 p0cp−1 ©1 p−1 . . . cp−k
©1 p−k (13)
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represents the number C, where all numerals ci 	= 0, they belong to a traditional numeral
system and are called grossdigits. They express finite positive or negative numbers and
show how many corresponding units ©1 pi should be added or subtracted in order to form
the number C. Grossdigits can be expressed by several symbols using positional systems,
the form Q

q where Q and q are integer numbers, or in any other finite numeral system.
Numbers pi in (13) called grosspowers can be finite, infinite, and infinitesimal (the in-

troduction of infinitesimal numbers will be given soon), they are sorted in the decreasing
order

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(k−1) > p−k

with p0 = 0.
In the traditional record (10), there exists a convention that a digit ai shows how

many powers bi are present in the number and the radix b is not written explicitly. In
the record (13), we write ©1 pi explicitly because in the new numeral positional system
the number i in general is not equal to the grosspower pi. This gives possibility to write,
for example, such a number as 7.6©1 244.5 34©1 32 having grospowers p2 = 244.5, p1 =
32 and grossdigits c244.5 = 7.6, c32 = 34 without indicating grossdigits equal to zero
corresponding to grosspowers less than 244.5 and greater than 32. Note also that if a
grossdigit cpi = 1 then we often write ©1 pi instead of 1©1 pi .

Finite numbers in this new numeral system are represented by numerals having only
one grosspower p0 = 0. In fact, if we have a number C such that m = k = 0 in represen-
tation (13), then due to (1), we have C = c0©1 0 = c0. Thus, the number C in this case
does not contain grossone and is equal to the grossdigit c0 being a conventional finite
number expressed in a traditional finite numeral system.

Infinitesimal numbers are represented by numerals C having only negative finite or in-
finite grosspowers. The following two numbers are examples of infinitesimals: 3©1 −3.2,
37©1 −211©1 −15. The simplest infinitesimal number is ©1 −1 = 1

©1 being the inverse
element with respect to multiplication for ©1 :

1
©1 · ©1 = ©1 · 1

©1 = 1. (14)

Note that all infinitesimals are not equal to zero. Particularly, 1
©1 > 0 because it is a result

of division of two positive numbers. It also has a clear granary interpretation. Namely, if
we have a sack containing ©1 seeds, then one sack divided by the number of seeds in it is
equal to one seed. Vice versa, one seed, i.e., 1

©1 , multiplied by the number of seeds in the
sack, ©1 , gives one sack of seeds. Note that the usage of infinitesimals as grosspowers
can lead to more complex constructions, particularly, again to infinitesimals, see, e.g., the
number ©1 ©1 −1

(−1)©1 0.
Infinite numbers in this numeral system are expressed by numerals having at least one

finite or infinite grosspower greater than zero. Thus, they have infinite parts and can also
have a finite part and infinitesimal ones. If power ©1 0 is the lowest in a number then we
often write simply grossdigit c0 without ©1 0, for instance, we write 23©1 145 instead of
23©1 145©1 0.



Executing Computations with Infinite and Infinitesimal Quantities 579

EXAMPLE 4.1. The left-hand expression below shows how to write down numbers in the
new numeral system and the right-hand shows how the value of the number is calculated:

15©1 1.4©1 (−17.2045)©1 37©1 052.1©1 −6

= 15©1 1.4©1 − 17.2045©1 3 + 7©1 0 + 52.1©1 −6.

The number above has one infinite part having the infinite grosspower, one infinite part
having the finite grosspower, a finite part, and an infinitesimal part.

Finally, numbers having a finite and infinitesimal parts can be also expressed in the
new numeral system, for instance, the number −3.5©1 0(−37)©1 −211©1 −15©1 +2.3 has a
finite and two infinitesimal parts, the second of them has the infinite negative grosspower
equal to −15©1 + 2.3.

4.2. Arithmetical Operations

We start the description of arithmetical operations for the new positional numeral system
by the operation of addition (subtraction is a direct consequence of addition and is thus
omitted) of two given infinite numbers A and B, where

A =
K∑

i=1

aki ©1 ki , B =
M∑

j=1

bmj ©1 mj , C =
L∑

i=1

cli ©1 li , (15)

and the result C = A + B is constructed by including in it all items aki ©1 ki from A

such that ki 	= mj , 1 � j � M, and all items bmj ©1 mj from B such that mj 	= ki,
1 � i � K. If in A and B there are items such that ki = mj , for some i and j, then this
grosspower ki is included in C with the grossdigit bki + aki , i.e., as (bki + aki)©1 ki .

EXAMPLE 4.2. We consider two infinite numbers A and B, where

A = 16.5©1 44.2(−12)©1 1217©1 0, B = 6.23©1 310.1©1 015©1 −4.1.

Their sum C is calculated as follows:

C = A + B

= 16.5©1 44.2+ (−12)©1 12+ 17©1 0+ 6.23©1 3 + 10.1©1 0+ 15©1 −4.1

= 16.5©1 44.2 − 12©1 12 + 6.23©1 3 + 27.1©1 0 + 15©1 −4.1

= 16.5©1 44.2(−12)©1 126.23©1 327.1©1 015©1 −4.1.

The operation of multiplication of two numbers A and B in the form (15) returns, as
the result, the infinite number C constructed as follows:

C =
M∑

j=1

Cj , Cj = bmj ©1 mj · A =
K∑

i=1

akibmj ©1 ki+mj , 1 � j � M. (16)
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EXAMPLE 4.3. We consider two infinite numbers

A = 1©1 18(−5)©1 2.4(−3)©1 1, B = −1©1 10.7©1 −3

and calculate the product C = B · A. The first partial product C1 is equal to

C1 = 0.7©1 −3 · A = 0.7©1 −3
(

©1 18 − 5©1 2.4 − 3©1 1
)

= 0.7©1 15 − 3.5©1 −0.6 − 2.1©1 −2 = 0.7©1 15(−3.5)©1 −0.6(−2.1)©1 −2.

The second partial product, C2, is computed analogously

C2 = −©1 1 · A = −©1 1(©1 18 − 5©1 2.4 − 3©1 1) = −©1 195©1 3.43©1 2.

Finally, the product C is equal to

C = C1 + C2 = −1©1 190.7©1 155©1 3.43©1 2(−3.5)©1 −0.6(−2.1)©1 −2.

In the operation of division of a number C by a number B from (15), we obtain a result
A and a reminder R (that can be also equal to zero), i.e., C = A · B+R. The number A is
constructed as follows. The first grossdigit akK

and the corresponding maximal exponent
kK are established from the equalities

akK
= clL/bmM

, kK = lL − mM . (17)

Then the first partial reminder R1 is calculated as

R1 = C − akK
©1 kK · B. (18)

If R1 	= 0 then the number C is substituted by R1 and the process is repeated with a com-
plete analogy. The grossdigit akK−i

, the corresponding grosspower kK−i and the partial
reminder Ri+1 are computed by formulae (19) and (20) obtained from (17) and (18) as
follows: lL and clL are substituted by the highest grosspower ni and the corresponding
grossdigit rni of the partial reminder Ri that, in turn, substitutes C:

akK−i
= rni/bmM

, kK−i = ni − mM , (19)

Ri+1 = Ri − akK−i
©1 kK−i · B, i � 1. (20)

The process stops when a partial reminder equal to zero is found (this means that the final
reminder R = 0) or when a required accuracy of the result is reached.

EXAMPLE 4.4. Let us divide the number C = −10©1 316©1 042©1 −3 by the number
B = 5©1 37. For these numbers we have

lL = 3, mM = 3, clL = −10, bmM
= 5.



Executing Computations with Infinite and Infinitesimal Quantities 581

It follows immediately from (17) that akK
©1 kK = −2©1 0. The first partial reminder R1

is calculated as

R1 = −10©1 316©1 042©1 −3 − (−2©1 0) · 5©1 37

= −10©1 316©1 042©1 −3 + 10©1 314©1 0 = 30©1 042©1 −3.

By a complete analogy we should construct akK−1 ©1 kK−1 by rewriting (17) for R1. By
doing so we obtain equalities

30 = akK−1 · 5, 0 = kK−1 + 3

and, as the result, akK−1 ©1 kK−1 = 6©1 −3. The second partial reminder is

R2 = R1 − 6©1 −3 · 5©1 37 = 30©1 042©1 −3 − 30©1 042©1 −3 = 0.

Thus, we can conclude that the reminder R = R2 = 0 and the final result of division is
A = −2©1 06©1 −3.

Let us now substitute the grossdigit 42 by 40 in C and divide this new number
C̃ = −10©1 316©1 040©1 −3 by the same number B = 5©1 37. This operation gives
us the same result Ã2 = A = −2©1 06©1 −3 (where subscript 2 indicates that two partial
reminders have been obtained) but with the reminder R̃ = R̃2 = −2©1 −3. Thus, we
obtain C̃ = B · Ã2 + R̃2. If we want to continue the procedure of division, we obtain
Ã3 = −2©1 06©1 −3(−0.4)©1 −6 with the reminder R̃3 = 0.28©1 −6. Naturally, it fol-
lows C̃ = B · Ã3 + R̃3. The process continues until a partial reminder R̃i = 0 is found
or when a required accuracy of the result will be reached.

5. Examples of Problems where Computations with New Numerals Can Be Useful

5.1. The Work with Infinite Sequences

We start by reminding traditional definitions of the infinite sequences and subsequences.
An infinite sequence {an}, an ∈ A, n ∈ N, is a function having as the domain the set
of natural numbers, N, and as the codomain a set A. A subsequence is a sequence from
which some of its elements have been removed. The IUA allows us to prove the following
result.

Theorem 5.1. The number of elements of any infinite sequence is less or equal to ©1 .

Proof. The IUA states that the set N has ©1 elements. Thus, due to the sequence definition
given above, any sequence having N as the domain has ©1 elements.

The notion of subsequence is introduced as a sequence from which some of its ele-
ments have been removed. Thus, this definition gives infinite sequences having the num-
ber of members less than grossone.
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One of the immediate consequences of the understanding of this result is that any
sequential process can have at maximum ©1 elements. Due to Postulate 1, it depends on
the chosen numeral system which numbers among ©1 members of the process we can
observe.

EXAMPLE 5.1. Let us consider the set, N̂, of extended natural numbers from (9). Then,
starting from the number 1, the process of the sequential counting can arrive at maximum
to ©1

1, 2, 3, 4, . . . ©1 − 2, ©1 − 1, ©1︸ ︷︷ ︸
©1

, ©1 + 1, ©1 + 2, ©1 + 3, . . .

Starting from 3 it arrives at maximum to ©1 + 2

1, 2, 3, 4, . . . ©1 − 2, ©1 − 1, ©1 , ©1 + 1, ©1 + 2︸ ︷︷ ︸
©1

, ©1 + 3, . . .

It becomes appropriate now to define the complete sequence as an infinite sequence
containing ©1 elements. For example, the sequence of natural numbers is complete, the
sequences of even and odd natural numbers are not complete. Thus, the IUA imposes
a more precise description of infinite sequences. To define a sequence {an} it is not
sufficient just to give a formula for an, we should determine (as it happens for sequences
having a finite number of elements) the first and the last elements of the sequence. If the
number of the first element is equal to one, we can use the record {an : k} where an is,
as usual, the general element of the sequence and k is the number (that can be finite or
infinite) of members of the sequence.

EXAMPLE 5.2. Let us consider the following two sequences, {an} and {cn}:

{an} =
{
5, 10, . . . 5(©1 − 1), 5©1

}
,

{bn} =
{

5, 10, . . . 5
(2©1

5
− 1

)
, 5 · 2©1

5

}
, (21)

{cn} =
{

5, 10, . . . 5
(4©1

5
− 1

)
, 5 · 4©1

5

}
. (22)

They have the same general element an = bn = cn = 5n but they are different because
they have different numbers of members. The first sequence has ©1 elements and is thus
complete, the other two sequences are not complete: {bn} has 2©1

5 elements and {cn}
has 4©1

5 members.

In connection with this definition the following natural question arises inevitably. Sup-
pose that we have two sequences, for example, {bn : 2©1

5 } and {cn : 4©1
5 } from (21)
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and (22). Can we create a new sequence, {dn : k}, composed from both of them, for
instance, as it is shown below

b1, b2, . . . b 2©1
5 −2

, b 2©1
5 −1

, b 2©1
5

, c1, c2, . . . c 4©1
5 −2

, c 4©1
5 −1

, c 4©1
5

and which will be the value of the number of its elements k?
The answer is ‘no’ because due to the definition of the infinite sequence, a sequence

can be at maximum complete, i.e., it cannot have more than ©1 elements. Starting from
the element b1 we can arrive at maximum to the element c 3©1

5

being the element num-

ber ©1 in the sequence {dn : k} which we try to construct. Therefore, k = ©1 and

b1, . . . b 2©1
5

, c1, . . . c 3©1
5︸ ︷︷ ︸

©1 elements

, c 3©1
5 +1

, . . . c 4©1
5︸ ︷︷ ︸

©1
5 elements

.

The remaining members of the sequence {cn : 4©1
5 } will form the second sequence,

{gn : l} having l = 4©1
5 − 3©1

5 = ©1
5 elements. Thus, we have formed two sequences, the

first of them is complete and the second is not.
It is important to emphasize that the above consideration on the infinite sequences

allows us to deal with recursively defined sets. Since such a set is constructed sequentially
by a process, it can have at maximum ©1 elements.

To conclude this subsection, let us return to Hilbert’s paradox of the Grand Hotel pre-
sented in Section 2. In the paradox, the number of the rooms in the Hotel is countable.
In our terminology this means that it has ©1 rooms. When a new guest arrives, it is pro-
posed to move the guest occupying room 1 to room 2, the guest occupying room 2 to
room 3, etc. Under the IUA this procedure does not help because the guest from room ©1

should be moved to room ©1 +1 and the Hotel has only ©1 rooms. Thus, when the Hotel
is full, no more new guests can be accommodated – the result corresponding perfectly to
Postulate 3 and the situation taking place in normal hotels with a finite number of rooms.

5.2. Calculating Divergent Series

Let us show how the new approach can be applied in such an important area as theory
of divergent series. We consider two infinite series S1 = 10 + 10 + 10 + · · · and S2 =
3 + 3 + 3 + · · ·. The traditional analysis gives us a very poor answer that both of them
diverge to infinity. Such operations as, e.g., S2

S1
and S2 − S1 are not defined.

Now, when we are able to express not only different finite numbers but also different
infinite numbers, it is necessary to indicate explicitly the number of items in the sums S1

and S2 and it is not important if it is finite or infinite. To calculate the sum it is necessary
that the number of items and the result are expressible in the numeral system used for
calculations. It is important to notice that even though a sequence cannot have more than
©1 elements, the number of items in a series can be greater than grossone because the
process of summing up is not necessary executed by a sequential adding items.
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Let us suppose that the series S1 has k items and S2 has n items. We can then define
sums (that can have a finite or an infinite number of items),

S1(k) = 10 + 10 + 10 + · · · + 10︸ ︷︷ ︸
k

, S2(n) = 3 + 3 + 3 + · · · + 3︸ ︷︷ ︸
n

,

calculate them, and execute arithmetical operations with the obtained results. The sums
then are obviously calculated as S1(k) = 10k and S2(n) = 3n. If, for instance, k = n =
5©1 then we obtain S1(5©1 ) = 50©1 , S2(5©1 ) = 15©1 and

S2(5©1 )/S1(5©1 ) = 0.3.

Analogously, if k = 3©1 and n = 10©1 we obtain S1(3©1 ) = 30©1 , S2(©1 ) = 30©1
and it follows S2(©1 ) − S1(3©1 ) = 0.

If k = 3©1 4 (we remind that we use here a shorter way to write down this infi-
nite number, the complete record is 3©1 14©1 0) and n = 10©1 we obtain S1(3©1 4) =
30©1 40, S2(©1 ) = 30©1 and it follows

S1(3©1 4) − S2(©1 ) = 30©1 40 − 30©1 = 40.

S1(3©1 2)/S2(©1 ) = 30©1 20/30©1 = 1©1 00.66667©1 −1 > 0.

We conclude this subsection by studying the series
∑∞

i=1
1
2i . It is known that it con-

verges to one. However, we are able to give a more precise answer. Due to Postulate 3,
the formula

k∑
i=1

1
2i

= 1 − 1
2k

can be used directly for infinite k, too. For example, if k = ©1 then

©1∑
i=1

1
2i

= 1 − 1
2©1 ,

where 1
2©1 is infinitesimal. Thus, the traditional answer

∑∞
i=1

1
2i = 1 is a finite appro-

ximation to our more precise result using infinitesimals. More examples related to series
can be found in (Sergeyev, 2007).

5.3. Calculating Limits and Expressing Irrational Numbers

Let us now discuss the problem of calculation of limits from the point of view of our
approach. In traditional analysis, if a limit limx→a f(x) exists, then it gives us a very poor
– just one value – information about the behavior of f(x) when x tends to a. Now we
can obtain significantly richer information because we are able to calculate f(x) directly
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at any finite, infinite, or infinitesimal point that can be expressed by the new positional
system even if the limit does not exist.

Thus, limits equal to infinity can be substituted by precise infinite numerals and limits
equal to zero can be substituted by precise infinitesimal numerals3. This is very important
for practical computations because these substitutions eliminate indeterminate forms.

EXAMPLE 5.3. Let us consider the following two limits

lim
x→+∞

(5x3 − x2 + 1061) = +∞, lim
x→+∞

(5x3 − x2) = +∞.

Both give us the same result, +∞, and it is not possible to execute the operation

lim
x→+∞

(5x3 − x2 + 1061) − lim
x→+∞

(5x3 − x2).

that is an indeterminate form of the type ∞ − ∞ in spite of the fact that for any finite x

it follows

5x3 − x2 + 1061 − (5x3 − x2) = 1061. (23)

The new approach allows us to calculate exact values of both expressions, 5x3 −x2+1061

and 5x3 − x2 +10, at any infinite (and infinitesimal) x expressible in the chosen numeral
system. For instance, the choice x = 3©1 2 gives the value

5(3©1 2)3 − (3©1 2)2 + 1061 = 135©1 6 − 9©1 41061

for the first expression and 135©1 6 − 9©1 4 for the second one. We can easily calculate
the difference of these two infinite numbers, thus obtaining the same result as we had for
finite values of x in (23):

135©1 6 − 9©1 41061 − (135©1 6 − 9©1 4) = 1061.

It is necessary to emphasize the fact that expressions can be calculated even when
their limits do not exist. Thus, we obtain a very powerful tool for studying divergent
processes.

EXAMPLE 5.4. The limit limn→+∞ f(n), f(n) = (−1)nn3, does not exist. However,
we can easily calculate expression (−1)nn3 at different infinite points n. For instance, for
n = ©1 it follows f(©1 ) = ©1 3 because grossone is even and for the odd n = 0.5©1 − 1
it follows

f(0.5©1 − 1) = −(0.5©1 − 1)3 = −0.125©1 30.75©1 2 − 1.5©1 11.

3Naturally, if we speak about limits of sequences, limn→ ∞ a(n), then n ∈ N and, as a consequence, it
follows that n should be less than or equal to grossone.
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Limits with the argument tending to zero can be considered analogously. In this case,
we can calculate the corresponding expression at any infinitesimal point using the new
positional system and obtain a significantly more reach information.

EXAMPLE 5.5. If x is a fixed finite number then

lim
h→0

(x + h)2 − x2

h
= 2x. (24)

In the new positional system we obtain

(x + h)2 − x2

h
= 2x + h. (25)

If, for instance, h = ©1 −1, the answer is 2x©1 0©1 −1, if h = 4.2©1 −2 we obtain the
value 2x©1 04.2©1 −2, etc. Thus, the value of the limit (24), for a finite x, is just the finite
approximation of the number (25) having finite and infinitesimal parts.

Let us make a remark regarding irrational numbers. Among their properties, they are
characterized by the fact that we do not know any numeral system that would allow us to
express them by a finite number of symbols used to express other numbers. Thus, special
numerals (e, π,

√
2,

√
3, etc.) are introduced by describing their properties in a way (sim-

ilarly, all other numerals, e.g., symbols ‘0’ or ‘1’, are introduced also by describing their
properties). These special symbols are then used in analytical transformations together
with ordinary numerals.

For example, it is possible to work directly with the symbol e in analytical transfor-
mations by applying suitable rules defining this number together with numerals taking
part in a chosen numeral system S . At the end of transformations, the obtained result will
be be expressed in numerals from S and, probably, in terms of e. If it is then required to
execute some numerical computations, this means that it is necessary to substitute e by a
numeral (or numerals) from S that will allow us to approximate e in some way.

The same situation takes place when one uses the new numeral system, i.e., while we
work analytically we use just the symbol e in our expressions and then, if we wish to
work numerically we should pass to approximations. The new numeral system opens a
new perspective on the problem of the expression of irrational numbers. Let us consider
one of the possible ways to obtain an approximation of e, i.e., by using the limit

e = lim
n→+∞

(
1 +

1
n

)n

= 2.71828182845904 . . . (26)

In our numeral system the expression (1 + 1
n )n can be written directly for finite and/or

infinite values of n. For n = ©1 we obtain the number e0 designated so in order to
distinguish it from the record (26)

e0 =
(
1 +

1
©1

)©1
=

(
©1 0©1 −1

)©1
. (27)
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It becomes clear from this record why the number e cannot be expressed in a positional
numeral system with a finite base. Due to the definition of a sequence under the IUA,
such a system can have at maximum ©1 numerals – digits – to express fractional part of a
number (see Subsection 5.5 for details) and, as it can be seen from (27), this quantity is
not sufficient for e because the item 1

©1 ©1 is present in it.

Naturally, it is also possible to construct more exotic e-type numbers by substituting
©1 in (27) by any infinite number written in the new positional system with infinite base.
For example, if we substitute ©1 in (27) by ©1 2 we obtain the number

e1 =
(
1 +

1
©1 2

)©1 2

=
(

©1 0©1 −2
)©1 2

.

The numbers considered above take their origins in the limit (26). Similarly, other for-
mulae leading to approximations of e expressed in traditional numeral systems give us
other new numbers that can be expressed in the new numeral system. The same way of
reasoning can be used with respect to other irrational numbers, too.

5.4. Measuring Infinite Sets with Elements Defined by Formulae

We have already discussed in Section 3 how we calculate the number of elements for
sets being results of the usual operations (intersection, union, etc.) with finite sets and
infinite sets of the type Nk,n. In order to have a possibility to work with infinite sets
having a more general structure than the sets Nk,n, we need to develop more powerful
instruments. Suppose that we have an integer function g(i) > 0 strictly increasing on
indexes i = 1, 2, 3, . . . and we wish to know how many elements are there in the set

G =
{
g(1), g(2), g(3), . . .

}
.

In our terminology this question has no any sense because of the following reason.
In the finite case, to define a set it is not sufficient to say that it is finite. It is necessary

to indicate its number of elements explicitly as, e.g., in this example

G1 =
{
g(i): 1 � i � 5

}
,

or implicitly, as it is made here:

G2 =
{
g(i): i � 1, 0 < f(i) � b

}
, (28)

where b is finite.
Now we have mathematical tools to indicate the number of elements for infinite sets,

too. Thus, analogously to the finite case and due to Postulate 3, it is not sufficient to say
that a set has infinitely many elements. It is necessary to indicate its number of elements
explicitly or implicitly. For instance, the number of elements of the set

G3 =
{
g(i): 1 � i � ©1 10

}
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is indicated explicitly: the set G3 has ©1 10 elements.
If a set is given in the form (28) where b is infinite, then its number of elements, J ,

can be determined as

J = max
{
i: g(i) � b

}
, (29)

if we are able to determine the inverse function g−1(x) for g(x). Then, J = [g−1(b)],
where [u] is integer part of u. Note that if b = ©1 , then the set G2 ⊆ N since all its
elements are integer, positive, and g(i) � ©1 due to (29).

EXAMPLE 5.6. Let us consider the following set, A1(k, n), having g(i) = k +n(i − 1),

A1(k, n) =
{
g(i): i � 1, g(i) � ©1

}
, 1 � k � n, n ∈ N.

It follows from the IUA that A1(k, n) = Nk,n from (2). By applying (29) we find for
A1(k, n) its number of elements

J1(k, n) =
[ ©1 − k

n
+ 1

]
=

[ ©1 − k

n

]
+ 1 =

©1
n

− 1 + 1 =
©1
n

.

EXAMPLE 5.7. Analogously, the set

A2(k, n, j) = {k + nij : i � 0, 0 < k + nij � ©1 }, 0 � k < n, n ∈ N, j ∈ N,

has J2(k, n, j) =
[

j

√
©1 −k

n

]
elements.

5.5. Measuring Infinite Sets of Numerals and Their Comparison

Let us calculate the number of elements in some well known infinite sets of numerals
using the designation |A| to indicate the number of elements of a set A.

Theorem 5.2. The number of elements of the set, Z, of integers is |Z| = 2©1 1.

Proof. The set Z contains ©1 positive numbers, ©1 negative numbers, and zero. Thus,

|Z| = ©1 + ©1 + 1 = 2©1 1. (30)

Traditionally, rational numbers are defined as ratio of two integer numbers. The new
approach allows us to calculate the number of numerals in a fixed numeral system. Let us
consider a numeral system Q1 containing numerals of the form

p

q
, p ∈ Z, q ∈ Z, q 	= 0. (31)

Theorem 5.3. The number of elements of the set, Q1, of rational numerals of the type
(31) is |Q1| = 4©1 22©1 1.
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Proof. It follows from Theorem 5.2 that the numerator of (31) can be filled in by 2©1 1
and the denominator by 2©1 numbers. Thus, number of all possible combinations is

|Q1| = 2©1 1 · 2©1 = 4©1 22©1 1.

It is necessary to notice that in Theorem 5.3 we have calculated different numerals
and not different numbers. For example, in the numeral system Q1 the number 0 can be
expressed by 2©1 different numerals

0
−©1 ,

0
−©1 + 1

,
0

−©1 + 2
, . . .

0
−2

,
0

−1
,

0
1
,

0
2
, . . .

0
©1 − 2

,
0

©1 − 1
,

0
©1 ,

and numerals such as −1
−2 and 1

2 have been calculated as two different numerals. The
following theorem determines the number of elements of the set Q2 containing numerals
of the form

− p

q
,

p

q
, p ∈ N, q ∈ N, (32)

and zero is represented by one symbol 0.

Theorem 5.4. The number of elements of the set, Q2, of rational numerals of the
type (32) is |Q2| = 2©1 21.

Proof. Let us consider positive rational numerals. The form of the rational numeral p
q , the

fact that p, q ∈ N, and the IUA impose that both p and q can assume values from 1 to ©1 .
Thus, the number of all possible combinations is ©1 2. The same number of combinations
we obtain for negative rational numbers and one is added because we count zero as well.

Let us now calculate the number of elements of the set, Rb, of real numbers expressed
by numerals in the positional system by the record(

an−1an−2 . . . a1a0.a−1a−2 . . . a−(q−1)a−q

)
b
, (33)

where the symbol b indicates the radix of the record and n, q ∈ N.

Theorem 5.5. The number of elements of the set, Rb, of numerals (33) is |Rb| = b2©1 .

Proof. In formula (33) defining the type of numerals we deal with there are two se-
quences of digits: the first one, an−1an−2 . . . a1a0, is used to express the integer part of
the number and the second, a−1a−2 . . . a−(q−1)a−q, for its fractional part. Due to defi-
nition of sequence and the IUA, each of them can have at maximum ©1 elements. Thus,
it can be at maximum ©1 positions on the left of the dot and, analogously, ©1 positions
on the right of the dot. Every position can be filled in by one of the b digits from the
alphabet {0, 1, . . . , b − 1}. Thus, we have b©1 combinations to express the integer part of
the number and the same quantity to express its fractional part. As a result, the positional
numeral system using the numerals of the form (33) can express b2©1 numbers.
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Note that the result of theorem 5.5 does not consider the practical situation of writing
down concrete numerals. Obviously, the number of numerals of the type (33) that can be
written in practice is finite and depends on the chosen numeral system for writing digits.

It is worthwhile to notice also that the traditional point of view on real numbers tells
that there exist real numbers that can be represented in positional systems by two different
infinite sequences of digits. In contrast, under the IUA all the numerals represent different
numbers. In addition, minimal and maximal numbers expressible in Rb can be explicitly
indicated.

EXAMPLE 5.8. For instance, in the decimal positional system R10 the numerals

1. 999. . .99︸ ︷︷ ︸
©1 digits

, 2. 000 . . . 00︸ ︷︷ ︸
©1 digits

represent different numbers and their difference is equal to

2. 000 . . . 00︸ ︷︷ ︸
©1 digits

−1. 999. . .9︸ ︷︷ ︸
©1 digits

= 0. 000 . . . 01︸ ︷︷ ︸
©1 digits

.

Analogously the smallest and the largest numbers expressible in R10 can be easily indi-
cated. They are, respectively,

− 999. . .9︸ ︷︷ ︸
©1 digits

. 999. . .9︸ ︷︷ ︸
©1 digits

, 999. . .9︸ ︷︷ ︸
©1 digits

. 999. . .9︸ ︷︷ ︸
©1 digits

.

Theorem 5.6. The sets Z, Q1, Q2, and Rb are not monoids under addition.

Proof. The proof is obvious and is so omitted.

6. Relations to Results of Georg Cantor

It is obligatory to say in this occasion that the results presented above should be consid-
ered as a more precise analysis of the situation discovered by the genius of Cantor. He has
proved, by using his famous diagonal argument, that the number of elements of the set N

is less than the number of real numbers at the interval [0, 1) without calculating the latter.
To do this he expressed real numbers in a positional numeral system. We have shown that
this number will be different depending on the radix b used in the positional system to
express real numbers. However, all of the obtained numbers, b2©1 , are more than the num-
ber of elements of the set of natural numbers, ©1 , and, therefore, the diagonal argument
maintains its force.

We can now calculate the number of points of the interval [0, 1), of a line, and of the
N -dimensional space. To do this we need a definition of the term point and mathematical
tools to indicate a point. Since this concept is one of the most fundamental, it is very
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difficult to find an adequate definition. If we accept (as is usually done in modern Math-
ematics) that the point x in an N -dimensional space is determined by N numerals called
coordinates of the point

(x1, x2, . . . xN −1, xN ) ∈ SN ,

where SN is a set of numerals, then we can indicate the point x by its coordinates and we
are able to execute the required calculations. It is worthwhile to emphasize that we have
not postulated that (x1, x2, . . . xN −1, xN ) belongs to the N -dimensional set, RN , of real
numbers as it is usually done because we can express coordinates only by numerals and,
as we have shown above, different choices of numeral systems lead to various sets of
numerals.

We should decide now which numerals we shall use to express coordinates of the
points. Different variants can be chosen depending on the precision level we want to
obtain. For example, if the numbers 0 � x < 1 are expressed in the form p−1

©1 , p ∈ N,

then the smallest positive number we can distinguish is 1
©1 . Therefore, the interval [0, 1)

contains the following ©1 points

0,
1

©1 ,
2

©1 , . . .
©1 − 2

©1 ,
©1 − 1

©1 .

Then, due to the IUA and the definition of sequence, there are ©1 intervals of the form
[a − 1, a), a ∈ N, on the ray x � 0. Hence, this ray contains ©1 2 points and the whole
line consists of 2©1 2 points.

If we need a higher precision, within each interval

[
a − 1 +

i − 1
©1 , a − 1 +

i

©1
)
, a, i ∈ N,

we can distinguish again ©1 points and the number of points within each interval [a −
1, a), a ∈ N, will become equal to ©1 2. Consequently, the number of the points on the
line will be equal to 2©1 3.

This situation is a direct consequence of Postulate 2 and is typical for natural sciences
where it is well known that instruments influence the results of observations. It is similar
as to work with a microscope: we decide the level of the precision we need and obtain a
result which is dependent on the chosen level of accuracy. If we need a more precise or a
more rough answer, we change the lens of our microscope.

Continuing the analogy with the microscope, we can also decide to change our micro-
scope with a new one. In our terms this means to change the numeral system with another
one. For instance, instead of the numerals considered above, we choose a positional nu-
meral system to calculate the number of points within the interval [0, 1); then, as we have
already seen before, we are able to distinguish b©1 points of the form

(
.a−1a−2 . . . a−(©1 −1)

a− ©1
)
b
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on it. Since the line contains 2©1 unit intervals, the whole number of points of this type
on the line is equal to 2©1 b©1 .

In this example of counting, we have changed the tool to calculate the number of
points within each interval, but used the old way to calculate the number of intervals, i.e.,
by natural numbers. If we are not interested in subdividing the line at intervals and want
to obtain the number of the points on the line directly by using positional numerals of the
type (33) with possible infinite n and q, then we are able to distinguish at maximum b2©1

points on the line.
Let us now return to the problem of comparison of infinite sets and consider Cantor’s

famous result showing that the number of points over the interval (0, 1) is equal to the
number of points over the whole real line, i.e.,

|R| = |(0, 1)|. (34)

The proof of this counterintuitive fact is given by establishing a one-to-one correspon-
dence between the elements of the two sets. Such a mapping can be done by using for
example the function

y = tan(0.5π(2x − 1)), x ∈ (0, 1), (35)

illustrated in Fig. 1. Cantor shows by using Fig. 1 that to any point x ∈ (0, 1) a point y ∈
(−∞, ∞) can be associated and vice versa. Thus, he concludes that the requested one-
to-one correspondence between the sets R and (0, 1) has been established and, therefore,
this proves (34).

Our point of view is different: the number of elements is an intrinsic characteristic
of each set (for both finite and infinite cases) that does not depend on any object outside
the set. Thus, in Cantor’s example from Fig. 1 we have (see Fig. 2) three mathematical

Fig. 1. Due to Cantor, the interval (0, 1) and the entire real number line have the same number of points.
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Fig. 2. Three independent mathematical objects: the set XS1 represented by dots, the set YS2 represented by
stars, and function (35).

objects: (i) a set, XS1 , of points over the interval (0, 1) which we are able to distinguish
using a numeral system S1; (ii) a set, YS2 , of points over the vertical real line which we
are able to distinguish using a numeral system S2; (iii) the function (35) described using
a numeral system S3. All these three mathematical objects are independent each other.
The sets XS1 and YS2 can have the same or different number of elements.

Thus, we are not able to evaluate f(x) at any point x. We are able to do this only at
points from XS1 . Of course, in order to be able to execute these evaluations it is necessary
to conciliate the numeral systems S1, S2, and S3. The fact that we have made evaluations
of f(x) and have obtained the corresponding values does not influence minimally the
numbers of elements of the sets XS1 and YS2 . Moreover, it can happen that the number
y = f(x) cannot be expressed in the numeral system S2 and it is necessary to approx-
imate it by a number ỹ ∈ S2. This situation, very well known to computer scientists, is
represented in Fig. 2.

Let us remind one more famous example related to the one-to-one correspondence
and taking its origins in studies of Galileo Galilei: even numbers can be put in a one-to-
one correspondence with all natural numbers in spite of the fact that they are a part of
them:

even numbers: 2, 4, 6, 8, 10, 12, . . .

� � � � � �
natural numbers: 1, 2, 3, 4 5, 6, . . .

(36)

Again, our view on this situation is different since we cannot establish a one-to-one
correspondence between the sets because they are infinite and we, due to Postulate 1,
are able to execute only a finite number of operations. We cannot use the one-to-one
correspondence as an executable operation when it is necessary to work with infinite sets.
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However, we already know that the number of elements of the set of natural numbers
is equal to ©1 and ©1 is even. Since the number of elements of the set of even numbers
is equal to ©1

2 , we can write down not only initial (as it is usually done traditionally) but
also the final part of (36)

2, 4, 6, 8, 10, 12, . . . ©1 − 4, ©1 − 2, ©1
� � � � � � � � �

1, 2, 3, 4 5, 6, . . .
©1
2 − 2,

©1
2 − 1,

©1
2

(37)

concluding so (36) in a complete accordance with Postulate 3. Note that record (37)
does not affirms that we have established the one-to-one correspondence among all even
numbers and a half of natural ones. We cannot do this due to Postulate 1. The symbols
‘. . .’ indicate an infinite number of numbers and we can execute only a finite number
of operations. However, record (37) affirms that for any even number expressible in the
chosen numeral system it is possible to indicate the corresponding natural number in the
lower row of (37).

We conclude the paper by the following remark. With respect to our methodology,
the mathematical results obtained by Pirahã, Cantor, and those presented in this paper do
not contradict to each other. They all are correct with respect to mathematical languages
used to express them. This relativity is very important and it has been emphasized in Pos-
tulate 2. For instance, the result of Pirahã 1 + 2 = ‘many’ is correct in their language in
the same way as the result 1 + 2 = 3 is correct in the modern mathematical languages.
Analogously, the result (36) is correct in Cantor’s language and the more powerful lan-
guage developed in this paper allows us to obtain a more precise result (37) that is correct
in the new language.

The choice of the mathematical language depends on the practical problem that are
to be solved and on the accuracy required for such a solution. Again, the result of Pirahã
‘many’ +1 = ‘many’ is correct. If one is satisfied with its accuracy, the answer ‘many’
can be used (and is used by Pirahã) in practice. However, if one needs a more precise
result, it is necessary to introduce a more powerful mathematical language (a numeral
system in this case) allowing one to express the required answer in a more accurate way.

7. A Brief Conclusion

In this paper, a new computational methodology has been introduced. It allows us to
express, by a finite number of symbols, not only finite numbers but infinite and infinitesi-
mals, too. All of them can be viewed as particular instances of a general framework used
to express numbers.

It has been emphasized that the philosophical triad – researcher, object of investiga-
tion, and tools used to observe the object – existing in such natural sciences as Physics
and Chemistry, exists in Mathematics, too. In natural sciences, the instrument used to
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observe the object influences the results of observations. The same happens in Mathe-
matics where numeral systems used to express numbers are among the instruments of
observations used by mathematicians. The usage of powerful numeral systems gives the
possibility to obtain more precise results in Mathematics, in the same way as the usage
of a good microscope gives the possibility to obtain more precise results in Physics.
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Naujas taikomasis būdas vykdyti skaičiavimus su begaliniais ir be
galo mažais dydžiais

Yaroslav D. SERGEYEV

Šiame straipsnyje aprašoma nauja skaičiuojamoji metodologija vykdyti skaičiavimus su be-
galiniais ir be galo mažais dydžiais. Ji yra pagr↪ista senovės graik ↪u pasiūlytu principu äDalis yra
mažesnė už visum ↪a" ir pritaikyta visiems skaičiams (baigtiniams, begaliniams ir be galo mažiems)
bei visoms aibėms ir procesams (baigtiniams ir begaliniams). Yra parodyta, kad ↪imanoma užrašyti
baigtinius, begalinius ir be galo mažus skaičius baigtiniu kiekiu simboli ↪u. Nauja metodologija

↪igalino pasiūlyti begalybės kompiuter↪i, operuojant↪i tokiais skaičiais (jo imitatorius jau yra real-
izuotas). Pavyzdžiai su diverguojančiomis sekomis, begalinėmis aibėmis ir ribomis yra pateikti.


