
INFORMATICA, 2008, Vol. 19, No. 4, 477–486 477
© 2008 Institute of Mathematics and Informatics, Vilnius

Neural Network with Matrix Inputs

Povilas DANIUŠIS, Pranas VAITKUS
Vilnius University, Faculty of Mathematics and Informatics
Naugarduko 24, LT-03225 Vilnius, Lithuania
e-mail: povilas.daniusis@mif.vu.lt, vaitkuspranas@yahoo.com

Received: January 2008; accepted: April 2008

Abstract. In this paper we propose and analyze a multilayer perceptron-like model with matrix
inputs. We applied the proposed model to the financial time series prediction problem, compared it
with the standard multilayer perceptron model, and got fairly good results.

Keywords: neural networks, multilayer perceptron, matrix inputs, prediction, approximation.

1. Introduction and Motivation

In some regression and classification problems (for example image, textual data, multi-
dimensional time series analysis) we need to operate with matrices. One of standard gen-
eral approaches is to decompose the input matrix into the vector and work with it. Such
decomposition has two disadvantages:

• It can remove an important information about an inner structure of the input matrix.
• In most cases, when the inputs are matrices, they are relatively high dimensional.

If dimensionality of the input is high and cardinality of the training set is relatively
low, we can face a small training sample problem.

In such cases we need other techniques to deal with the matrix inputs.
Cai et al. (2006) proposed a linear model ŷ(X) = uT Xv, where X – m × n matrix,

ui ∈ R
m and vi ∈ R

n – weight vectors. From the definition we see, that in this model
we need to estimate only m + n parameters, and in the standard linear regression (if
we represent X as m · n dimensional vector) we have to estimate m · n parameters.
For example, if m = n = 1000, in the standard linear regression we need to estimate
1,000,000 parameters and in Cai’s model – only 2000.

In this article we generalize Cai’s linear model in the multilayer perceptron framework
(Haykin, 1998), analyze some theoretical properties of this model, and apply it to the
financial time series prediction problem.

2. The Model

The multilayer perceptron (MLP) with single hidden layer is defined by the following
formula:

ŷ(x) =
N∑

i=1

αiσ
(

< wi, x > +bi

)
, (1)

478 P. Daniušis, P. Vaitkus

where wi ∈ R
k, αi, bi ∈ R, σ(.) is an activation function, < . , . > – an inner product.

Sometimes MLP’s with two or even more hidden layers are used. For example, an
MLP with two hidden layers can be written as follows:

ŷ(x) =
N∑

i=1

αiσ

(Mi∑
j=1

βi,jσ
(

< wi,j , x > +bi,j

)
+ ci

)
. (2)

In this article we introduce the model (and call it MNN model).

ŷ(X) =
N∑

i=1

αiσ
(
uT

i Xvi + bi

)
, (3)

where X is the input matrix, αi, bi are scalars, ui and vi are weight vectors, and σ(.) is an
activation function. This model is an adaptation of the MLP neural network with a single
hidden layer and vector inputs to that with matrix inputs.

3. Parameter Estimation

Various techniques can be employed to estimate the parameters of model (3). In this sec-
tion we will paraphrase to the MNN model two known training algorithms: the gradient
descend and the extreme learning machines (Huang et al., 2005).

Denote the training set by T = (Xi, yi)M
i=1, where Xi – m × n matrices (inputs) and

yi – scalars (outputs).

3.1. Gradient Descend

Using the gradient descend algorithm (Haykin, 1998) we minimize the mean squared
error:

Err(..) =
1

2M

∑
(X,y)∈T

(
ŷ(X) − y

)2
. (4)

For that we compute the partial derivatives of (4):

δErr(..)
δαk

=
1
M

∑
(X,y)∈T

(
ŷ(X) − y

)
σ
(
uT

k Xvk + bk

)
, (5)

δErr(..)
δuk,l

=
αk

M

∑
(X,y)∈T

(
ŷ(X) − y

)
σ′(uT

k Xvk + bk

) n∑
i=1

vk,iXl,i, (6)

δErr(..)
δvk,l

=
αk

M

∑
(X,y)∈T

(
ŷ(X) − y

)
σ′(uT

k Xvk + bk

) m∑
j=1

uk,jXj,l, (7)

δErr(..)
δbk

=
αk

M

∑
(X,y)∈T

(
ŷ(X) − y

)
σ′(uT

k Xvk + bk

)
, (8)

Neural Network with Matrix Inputs 479

since

uT
k Xvk =

n∑
i=1

vk,i

m∑
j=1

uk,jXj,i =
m∑

j=1

uk,j

n∑
i=1

vk,iXj,i. (9)

Algorithm

1. Fix the initial weights αi, bi, ui, and vi, number ε > 0 and the learning rate η > 0,
sufficiently large natural number N and i = 0;

2. By (5), (6), (7), (8) we compute weight changes:

(a) Δαk = −η
δErr(..)

δαk
,

(b) Δuk,l = −η
δErr(..)

δuk,l
,

(c) Δvk,l = −η
δErr(..)

δvk,l
,

(d) Δbk = −η
δErr(..)

δbk
;

3. i := i + 1;
4. Repeat Step 2 until the cost (4) is greater than ε and i < N .

3.2. Extreme Learning Machines

The gradient descend algorithm has many well known disadvantages (for example, it
is quite slow, tends to stick in local extremums, a user should have enough experience
to correctly estimate various parameters, like a learning speed η, desired error ε, etc.
(Haykin, 1998)). Huang (2006) proposed simple yet effective technique, called Extreme
Learning Machines to overcome these problems. The ELM learning consists of these two
phases:

1. The internal weights ui, vi, and bi, is initialized according to some probablistic
distribution with zero mean and small variance (small weights imply better gener-
alization (see Bartlet, 1998)).

2. The external weights αi are calculated by the formula: W = (HT H)−1HT Y (the
least squares method), where

H =

⎛
⎜⎜⎝

σ(uT
1 X1v1 + b1) σ(uT

2 X1v2 + b2) . . . σ(uT
nX1vn + bn)

σ(uT
1 X2v1 + b1) σ(uT

2 X2v2 + b2) . . . σ(uT
nX2vn + bn)

.

σ(uT
1 XM v1 + b1) σ(uT

2 XM v2 + b2) . . . σ(uT
nXM vn + bn)

⎞
⎟⎟⎠ ,

Y =

⎛
⎜⎜⎝

y1

y2

...

yM

⎞
⎟⎟⎠ , W =

⎛
⎜⎜⎝

α1

α2

...

αn

⎞
⎟⎟⎠ ,

and (Xi, yi), i = 1, . . . , M – the training set.

480 P. Daniušis, P. Vaitkus

This learning method is very fast and simple. The numerical simulations show that in
many cases it is more effective than the gradient descend learning algorithm (Huang et
al., 2005; Huang, 2006). The only parameter that a user must set by hand is the number
of hidden units N . In the next section we discuss one algorithm proposed by Chen et al.
(2005) which can be used to estimate N .

3.3. Optimal Architecture

Following the ELM theory we set an internal weights (ui, vi, and bi) with a small pseu-
dorandom numbers. Denote the training set by T = (Xi, yi)M

i=1, where Xi are m × n

order matrices (inputs), yi – scalars (outputs). We will find an optimal parameters αi and
order N of the (3) model (ŷ(X) =

∑N
i=1 αiσ(uT

i Xvi + bi)). Denote

y
(0)
i = yi, y

(k)
i = y

(k−1)
i − αk · σ

(
uT

k Xivk + bk

)
, (10)

where i = 1, 2, . . . , M .
Then Errk(..) = 1

2M

∑M
i=1(y

(k)
i)2 = 1

2M

∑M
i=1(

∑k
j=1 αjσ(uT

j Xivj + bj) − yi)2 –
mean squared error when model has k neurones.

We will start with the simplest model: a single neurone with matrix inputs (N = 1).
By (11) (least squares method) we estimate the weight α1 and check the mean squared
error of the model. If the model is sufficiently good, then we stop the learning process. In
an opposite case we add a new neurone (N = 2). Weight α2 is also estimated by (11) .
In that way, by adding new neurones we stop when the model is sufficiently good or too
complex (N is too large):

αk =
∑M

i=1 y
(k−1)
i · σ(uT

k Xivk + bk)∑M
i=1 σ2(uT

k Xivk + bk)
. (11)

4. Questions about Density

In this section we will prove two propositions about approximation of a continuous func-
tion with (3) model.

It is well known that the multilayer perceptron with single hidden layer and arbi-
trary non-polynomial continuous activation function σ(.) is a universal approximator in
the space of the continuous functions (Pinkus, 1999). In a general case our model does
not have this property. At first we will prove this proposition by applying Vostrecov–
Kreines’s theorem.

Theorem 1 (Vostrecov–Kreines, 1961). Let A ⊂ R
k. Then

R(A) =
{

f(x): f(x) =
n∑

i=1

gi

(
< wi, x >

)
, wi ∈ A, gi ∈ C(R), n ∈ N

}
(12)

is dense in C(Rk) in the topology of uniform convergence on compacta, if and only if
there is no nontrivial homogenous polynomial that vanishes on A.

Neural Network with Matrix Inputs 481

PROPOSITION 1. Let K ⊂ R
m×n is a compact set, S = {f(X): f(X) =∑N

i=1 αiσ(uT
i Xvi + bi), X ∈ K}, and min(m, n) > 1. Then S is not dense in C(K) in

the topology of uniform convergence on K.

Proof. If min(m, n) = 1, we have a standard case (the MLP with one hidden layer and
vector inputs), witch is proved to be a universal approximator (Pinkus, 1999)). So we
need to check the case when min(m, n) > 1.

Model (3) is a special case of model (1), since uT Xv, u ∈ R
m, v ∈ R

n can be
represented as an inner product <w, x>, where

w =
(
v1 · u, v2 · u, ..., vn · u

)
(13)

and x – the vector, constructed by concatenation of all n columns of the matrix X . Take
the subset of R

m×n

K :=
(

w :=
(
v1 · u, v2 · u, ..., vn · u

)
, u ∈ R

m, v ∈ R
n
)
. (14)

Now we need to check the condition of the Vostrecov–Kreines theorem when A = K.
We can look at K elements as into n × m matrices M with rank(M) = 1. But then,
if we take submatrix of M of size min(m, n) × min(m, n), we see that its determinant
equals to zero. This determinant is a homogenous m·n variable polynomial, that vanishes
on K. Therefore, model (3) is not a universal approximator in the space of the continuous
functions.

If we add the second hidden layer, MNN model is flexible enough to uniformly ap-
proximate any continuous function on the given compact set. We will prove the following
proposition by applying Kolmogorov’s superposition theorem (Pinkus, 1999) and one-
dimensional result achieved by Pinkus (1999).

Theorem 2 (Kolmogorov’s superposition theorem). There exist N constants λi > 0,
i = 1, 2, . . . , N ,

∑N
i=1 λi � 1 and 2N + 1 strictly increasing continuous functions φi:

[0, 1] → [0, 1], i = 1, 2, . . . , 2N + 1 that every continuous function of N variables f :
[0, 1]N → R can be represented in the form

f(x1, x2, ..., xN) =
2N+1∑
i=1

g

(N∑
j=1

λjφi(xj)
)

(15)

for some g ∈ C[0, 1] depending on f .

482 P. Daniušis, P. Vaitkus

Theorem 3 (Pinkus, 1999). Let σ ∈ C(R), ε > 0. Then for any f ∈ C(R) and for any
K ⊂ R real numbers αi, λi and θi, number n ∈ N exist, that

sup
t∈K

∣∣∣∣f(t) −
n∑

i=1

αiσ
(
λit − θi

)∣∣∣∣ < ε, (16)

if and only if σ is not a polynomial.

Theorem 4. Let K ⊂ Rm×n – a compact set. Then for any f : K → R exist constants
di, ci,j , bi,j , γi, vectors ui,j ∈ R

m and vi,j ∈ R
n, natural numbers K and Ki, such, that

for any ε > 0

sup
X∈K

∣∣∣∣f(X) −
K∑

i=1

diσ
(Ki∑

j=1

ci,jσ
(
uT

i,jXvi,j + bi,j

)
+ γi

)∣∣∣∣ < ε, (17)

where σ – any continuous, non-polynomial function.

Proof. Without the loss of generality we will prove the theorem for K = [0, 1]m×n. Take
ε > 0 and any f ∈ C([0, 1]N) (N = m×n). According to the Kolmogorov superposition
theorem

f(x) =
2N+1∑
i=1

g
(N∑

j=1

λjφi(xj)
)
, (18)

where x = (x1, x2, . . . , xN).
Since g is continuous, by Theorem 3 we have that for any compact set S ⊂ R exist

βm, am and bm, that

sup
t∈S

∣∣∣∣g(t) −
M∑

m=1

βmσ(amt + bm)
∣∣∣∣ <

ε

2(2N + 1)
. (19)

For convenience we denote that φi,j(X) = φi(xj). Again, by Theorem 3 we have
that for any δ > 0 the following inequality is correct:

sup
X∈[0,1]N

∣∣∣∣φi,j(X) −
ni,j∑
k=1

αk,i,jσ
(
uT

k,i,jXvk,i,j + θk,i,j

)∣∣∣∣ <
δ

|am| , (20)

since by the transformation uT Xv + θ we can access any linear combination λxi,j + θ

of any X element xi,j .
Because constants of the Kolmogorov superposition theorem λi > 0 and

∑N
i=1 λi �

1 we have

sup
X∈[0,1]N

∣∣∣∣
N∑

j=1

λjφi,j(X) −
N∑

j=1

λj

ni,j∑
k=1

αk,i,jσ(uT
k,i,jXvk,i,j + θk,i,j)

∣∣∣∣ <
δ

|am| .

Neural Network with Matrix Inputs 483

Since σ is continuous, it is uniformly continuous in any closed interval, therefore, we can
chose δ small enough, that

sup
X∈[0,1]N

∣∣∣∣σ
(

am

{ N∑
j=1

λjφi,j(X)
}

+ bm

)

− σ

(
am

{ N∑
j=1

λj

ni,j∑
k=1

αk,i,jσ
(
uT

k,i,jXvk,i,j + θk,i,j

)}
+ bm

)∣∣∣∣
<

ε

2(2N + 1)
∑M

m=1 |βm|
.

From these inequalities we have

sup
X∈[0,1]N

∣∣∣∣
2N+1∑
i=1

g
(N∑

j=1

λjφi,j(X)
)

−
2N+1∑
i=1

M∑
m=1

βmσ
(
am

N∑
j=1

λj

ni,j∑
k=1

αk,i,jσ(uT
k,i,jXvk,i,j + θk,i,j) + bm

)∣∣∣∣

�
2N+1∑
i=1

sup
X∈[0,1]N

∣∣∣∣g
(N∑

j=1

λjφi,j(X)
)

−
M∑

m=1

βmσ
(
am

N∑
j=1

λjφi,j(X) + bm

)∣∣∣∣

+
2N+1∑
i=1

sup
X∈[0,1]N

∣∣∣∣
M∑

m=1

βmσ
(
am

N∑
j=1

λjφi,j(X) + bm

)

−
M∑

m=1

βmσ
(
am

N∑
j=1

λj

ni,j∑
k=1

αk,i,jσ
(
uT

k,i,jXvk,i,j + θk,i,j

)
+ bm

)∣∣∣∣

< (2N + 1)
ε

2(2N + 1)
+ (2N + 1)

M∑
m=1

|βm| ε

2(2N + 1)
∑M

m=1 |βm|
= ε.

Therefore, f can be uniformly approximated by MNN model with two hidden layers.

PROPOSITION 2 (Pinkus, 1999). Let σ ∈ C(R). If the input x ∈ R
k is converted to

h(x) = (h1(x), h2(x), . . . , hm(x)) for some fixed functions hj ∈ C(Rk), then set

Fh(σ) =
{

f(x): f(x) =
N∑

i=1

αiσ
(

< wi, h(x) > +bi

)}
(21)

is dense in the topology of a uniform convergence on compacta in C(Rm) if and only if
σ is not a polynomial and h separates points, that is, x1 �= x2 implies h(x1) �= h(x2).

Note, that if an activation function σ(.) also has an inverse, proposition of the Theo-
rem 4 follows from an universal approximation property of a MLP with a single hidden

484 P. Daniušis, P. Vaitkus

layer and the Proposition 2. In Theorem 4 we considered a more general case when an
activation function is an arbitrary continuous, non-polynomial function.

5. Computer Experiment

Various methods (Raudys and Mockus, 1999) are used for the economic time series fore-
casting. In this section we will use the MNN model to predict the next day value of the
Euro (EUR). The purpose of this section is to compare the model (3) and the standard
MLP model with various settings and training algorithms.

5.1. The Data

We use the high frequency financial data. The open, high, low, and close prices of the
EUR are observed every 5 minutes from 2007-01-07 22:35:00 to 2007-01-09 16:11:00.
For convenience we preprocess the original data by subtracting the mean and dividing by
the standard deviation.

The input matrix at the time step t is defined by

Xt =
[
xopen(k), xhigh(k), xlow(k), xclose(k)

]t+w−1

k=t
, (22)

where w is the window parameter.
The target value for this matrix is defined by yt = xclose(t + w). The training

set is defined by Straining = (Xt, yt)300t=1 and the testing set is defined by Stesting =
(Xt, yt)493t=301.

5.2. Prediction Algorithms

We will use four prediction algorithms:

• MNN(ELM) – the MNN model, trained with the ELM algorithm.
• MNN(GD) – the MNN model, trained with the gradient descend algorithm.
• NN(ELM) – the standard MLP model, trained with the ELM algorithm.
• NN(GD) – the standard MLP model, trained with the gradient descend algorithm.

5.3. Experiment

The measure of performance we use is the sum squared error (SSE) over the testing set.
All algorithms are trained to minimize the regularized mean squared error (RMSE):

RMSE(..) = MSE(..) + λ ·
∑

θ

θ2 (23)

(second sum is over all parameters of the model) with regularization parameter λ = 0.05.
For the models, trained with gradient descend algorithm, the target RMSE is 0.07. We set
window parameter w = 6. Each prediction algorithm is trained and tested 100 times.

Neural Network with Matrix Inputs 485

5.4. Comparison of the Prediction Models

The Tables A and B show the average SSE over the test set for the NN(·) and MNN(·)
prediction algorithms with various settings. The differences of the predictions are statisti-
cally significant with the p-values in the “P” column (low p-values indicate the statistical
significance).

From the Tables A and B we see that the MNN model gives better predictions than
the NN model. The input matrices clearly have an inner structure, since columns (high,
low, open, and close prices of the EUR) are strongly correlated (in our data all correlation
coefficients between columns are > 0.97). We think, this is the reason why the MNN
model generalizes better on this data. MNN model have significantly less parameters
and we need less training examples to estimate them. When the ELM training algorithm
is used we need much more hidden units, since we have access only to the linear pa-
rameters of the model (see subsection 3.2). From the Tables A and B we see that the
much faster ELM training algorithm in most cases also predicted better than the GD
algorithm. As pointed by referee, many sophisticated time series prediction methods are
outperformed by “naive” hypothesis (prediction for the next period equals the value of the
current period). We tested for this, and found that for our Euro data the “naive” hypothe-
sis performed better (SSE = 8.57) than NN or MNN. We also tested the standard linear
regression (SSE = 8.53) and Cai’s linear regression with matrix inputs – ŷ(X) = uT Xv
(Cai et al., 2006), which can be interpreted as MNN model with one neurone and linear
activation function (SSE = 8.23). The prediction of Cai’s model was best (smallest SSE
over the test set). Thus we can conclude, that matrix-based models performed better than

Table A

Comparison of the MNN(ELM) and NN(ELM)

Hidden units MNN(ELM) NN(ELM) P

10 14.60 20.62 0.01

20 11.76 15.74 0.01

30 11.06 14.38 0.01

40 11.14 14.06 0.01

50 11.48 14.09 0.01

Table B

Comparison of the MNN(GD) and NN(GD)

Hidden units MNN(GD) NN(GD) P

1 11.12 19.20 0.01

2 12.89 23.34 0.01

3 13.56 16.05 0.07

4 11.56 15.00 0.01

5 12.61 13.92 0.01

486 P. Daniušis, P. Vaitkus

their vector-based analogues. This confirms the guess about importance of the inner struc-
ture of the data. The nature of our data seems to be linear, since linear models performed
better than non-linear ones.

References

Bartlett, P.L. (1998). The sample complexity of pattern classification with neural networks: the size of the
weights is more important than the size of the network. In IEEE Transactions on Information Theory.
pp. 522–536.

Cai, D., X. He and J. Han (2006). Learning with Tensor Representation. Preprint.
Chen, S., X.X. Wang and D.J. Brown (2005). Sparse incremental regression modeling using correlation criterion

with boosting search. IEEE Signal Processing Letters, 12(3), 198–201.
Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. 2nd Edition. Prentice Hall.
Hornik, K., M. Stinchcombe and H. White (1989). Multilayer feedforward networks are universal approxima-

tors. Neural Networks, 359–366.
Huang, G.-B. (2006). Universal approximation using incremental constructive feedforward networks with ran-

dom hidden nodes. In IEEE Transactions on Neural Networks. pp. 879–892.
Huang, G.-B., N.-Y. Liang, H.-J. Rong, P. Saratchandran and N. Sundararajan (2005). On line sequential ex-

treme learning machine. In The IASTED International Conference on Computational Intelligence (CI 2005).
Calgary, Canada, July 4–6.

Pinkus, A. (1999). Approximation theory of the MLP model in neural networks. Acta Numerica, 143–195.
Raudys, A., and J. Mockus (1999). Comparison of ARMA and multilayer perceptron based methods for eco-

nomic time series forecasting. Informatica, 10(2), 231–244.
Zuo, W.-M., K.-Q. Wang and D. Zhang (2006). Assembled matrix distance metric for 2DPCA-based face and

palmprint recognition. Pattern Recognition Letters.

P. Daniušis is a PhD student at Vinius University, Faculty of Mathematics and Informat-
ics. His research interests include machine learning, theoretical and practical aspects of
neural networks.

P. Vaitkus is an associate professor at Vilnius University, Faculty of Mathematics and
Informatics. His research interests include automated biosensor response analysis, evolu-
tionary algorithms and neural networks.

Neuroninis tinklas su matriciniais ↪iėjimais

Povilas DANIUŠIS, Pranas VAITKUS

Šiame darbe pasiūlytas daugiasluoksnio perceptrono tipo modelis su matriciniais ↪iėjimais, šio
modelio parametr ↪u radimo procedūros, ištirtos pasiūlyto modelio aproksimavimo savybės, modelis
palygintas su standartiniu daugiasluoksniu perceptronu prognozuojant euro kurs ↪a.

