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Abstract. We investigate applicability of quantitative methods to discover the most fundamental
structural properties of the most reliable political data in Lithuania. Namely, we analyze voting data
of the Lithuanian Parliament. Two most widely used techniques of structural data analysis (cluste-
ring and multidimensional scaling) are compared. We draw some technical conclusions which can
serve as recommendations in more purposeful application of these methods.
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1. Introduction

Quantitative methods constitute a well established tool box of Western political re-
searchers. Besides of academic sphere quantitative methods are used also, e.g., by orga-
nizations that monitor parliaments and other governmental institutions (Irving and Todd,
2007). Contrary, in Eastern Europe quantitative analysis of political behavior is a rather
new research area. Possibly, analysts tend to avoid quantitative methods because of gen-
eral fuzziness in application of traditional political concepts in new democratic states.
However, the contrary reaction would be more constructive: wider application of quanti-
tative methods would extend description of actual political behavior by correct theoretical
terms.

To investigate some technical aspects of applicability of quantitative methods to the
investigation of behavior of Lithuanian political parties we consider the most fundamen-
tal structural properties of the most reliable data. Namely, we analyze voting data of the
Lithuanian Parliament. Two most widely used techniques of structural data analysis (clus-
tering and multidimensional scaling) are compared. We draw some technical conclusions
which can serve as recommendations in more purposeful application of these methods.
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Table 1

Lithuanian parliamentarian parties

Abbr. Party name Party name in Lithuanian

DP Labour party Darbo partija

LSDP Lithuanian Social Democratic Party Lietuvos socialdemokrat ↪u partija

NS New Union (Social Liberals) Naujoji s ↪ajunga (socialliberalai)

VLP Peasants and People’s Valstieči ↪u liaudinink ↪u partija

PDP Civil Democracy (faction) Pilietinės demokratijos grupė

MG Mixed Group (not party) Mišri Seimo nari ↪u grupė

TTLD Order and Justice (Liberal Democrats) Tvarka ir Teisingumas (liberalai demokratai)

LCS Liberal and Center Union Liberal ↪u ir centro s ↪ajunga

LP Liberals Movement Liberal ↪u s ↪ajūdis

TS Homeland Union Tėvynės s ↪ajunga

2. Data to Analyze

The Lithuanian Parliament, Seimas, after election of 2004 is constituted of 10 factions
under umbrellas of corresponding parties; they are listed in Table 1. Parties have declared
their political, economic, etc. goals in their programmes. The actual political behavior,
however, not always corresponds to the declarations. This research aims to highlight
proximity/dissimilarity of parties based not on declarations but on the most important
aspect of political behavior, i.e., parliamentarian voting. The discovered structure is com-
pared to the theoretically expected one. Such a structural analysis is interesting to us
from the point of view of possible extension of application of the considered methods to
the relatively new area of political data of new democratic states; the extension can be
challenging, and we will discuss needed enhancing of the known methods.

For this investigation data has been collected from the Lithuanian Parliament web
page (Seimas2007):

• only roll call voting1 is considered,
• voting information over period from 2005-01-12 to 2007-01-16 is used (term of

office is Seimas 2004–2008),
• at overall 243 plenary sittings (numbers 1379–1621).

The number of members of parliament (MP) is equal to 141; however the data of
voting of 138 members, whose membership covered all the considered period, is taken
into account. Below MPs are coded by numbers; for decoding (name, party membership)
we refer to (Krilavičius et al., 2007).

Only voting with more than 20% disagreement was selected for analysis to emphasize
differences among MPs (however, some experiments were performed with whole data set,
but we do not discuss them in this paper). As a consequence of such choice, 370 roll calls
out of 3838 were taken into account, while others were ignored.

1A roll call vote is a vote held on the record. The name of the Representative and her/his voting position
are noted together.
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We specify the following possible voting behavior of MP’s:

1) yes;
2) no;
3) abstain;
4) did not participate in the plenary sitting (during voting);
5) did not vote, but participated in the plenary during voting.

It is easy to see that voting is not just a binary procedure. Even standard MP voting
behavior amounts to the three kinds, i.e., yes, no and abstain. Furthermore, no so
rarely MPs exhibit the following behavior: they do not participate in the plenary sitting
during the voting or they do not vote at all.

There is no standard technique for mapping such a data to numerical values, e.g., (Hix
et al., 2006) use several different mappings for Europarliament voting analysis. In (Irving
and Todd, 2007) slightly different mapping is used where voting together with party and
against party has different weights:

1) yes (aye) maps to 2;
2) yes while voting with MP’s party (tellaye) maps to 1;
3) no (no) maps to 4;
4) no while voting with MP’s party (tellno) maps to 5;
5) abstain (both) maps to 3;
6) Non-participation maps to −9.

Notions in the parentheses (aye, tellaye, no, tellno, both) are the original notions used in
the (Irving and Todd, 2007).

Of course, other mappings can be defined. Political analysts can choose appropriate
mappings based on their intuition, theoretical considerations and results of preliminary
experimentation. For this technical investigation we have chosen rather simple mapping
reflecting that yes and no are opposite while other votes are somewhere in between,
e.g., abstain is exactly between the yes and no:

1) yes= 1;
2) no= −1;
3) abstain= 0;
4) Non-voting equals to 0.

The voting matrix V (·, ·) corresponding to the discussed data and notation is pre-
sented in (Krilavičius et al., 2007), where V (k, i) denotes the voting result of kth MP at
ith roll call.

2.1. Natural Embedding of Data

We are going to highlight the structure of Lithuanian parliament defined by voting data
and to compare it to the formal structure defined by the membership of MP to parties.
In both cases it is a structure of a set of N object, where N = 138 is the number of
considered MPs. For the analysis of a structure of a set of objects a proximity/dissimilarity
measure of the objects is needed.
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The formal party based structure of the parliament is defined by a simplest dissimilar-
ity measure of MPs: dissimilarity between members of the same parliamentary faction is
equal to 0, and dissimilarity between members of different factions is equal to 1. Math-
ematically the simplest dissimilarity measure on a set of objects can be interpreted as an
equivalence relation implying factorization of the set, and factor sets represent a structure
of the considered set. Therefore natural embedding of minimal but a structure implying
data about MPs is in a finite set factorized according to the equivalence relation where
factor sets correspond to parliamentary factions.

However, actual political behavior not always is fully defined by the party member-
ship. The most important official activity of a MP is voting. Therefore embedding of the
most rich data about a MP is in s-dimensional vector space where s = 370 is number
of the considered roll calls. To discover the voting based structure of the parliament we
consider MPs as points in s-dimensional vector space, and dissimilarity between MPs is
defined by means of a metric over this space. Usually, Minkowski metric is used, and
dissimilarity between kth and mth MP is evaluated as Minkowski (p-norm) distance

dp(k, m) =
( s∑

i=1

∣∣V (k, i) − V (m, i)
∣∣p)1/p

, (1)

where V (·, ·) is the voting matrix, and p � 1 is a parameter.
In this paper we use dissimilarities defined by two most frequently used distances:

• 1-norm distance, also known as Manhattan or city block distance

d1(k, m) =
s∑

i=1

∣∣V (k, i) − V (m, i)
∣∣, (2)

• 2-norm distance widely known as Euclidean distance

d2(k, m) =

√√√√ s∑
i=1

(
V (k, i) − V (m, i)

)2
. (3)

For the discussion on choice of a metric in the problems of visualization of multidi-
mensional data we refer to (Žilinskas and Žilinskas, 2006).

3. Data Reduction for Structural Analysis

Below we investigate applicability to our problem of two popular methods of structural
analysis: cluster analysis (Theodoridis and Koutroumbas, 2006) and multidimensional
scaling (Borg and Groenen, 2005; Cox and Cox, 2001). In both cases a set of objects
characterized by pairwise dissimilarities is considered. Particularly the objects can be
points in a multidimensional vector space where dissimilarity is measured using a metric
defined in this space. For the further analysis the data presented as voting matrix should
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be reduced to a dissimilarity matrix Dp = (dp(k, m)) where dissimilarities dp(·, ·) can
be measured by both, city block (p = 1) and Euclidean (p = 2) distances.

The reduction of data is illustrated by the following example. Let there are three MPs
and they have voted four times. Let the first MP all the time voted yes, the second MP
yes, no, yes and no, and the third has chosen to abstain the first two times, voted
yes third time, and has skipped the last voting. The voting results are represented by the
following voting matrix

V =

⎛
⎝ 1 1 1 1

1 −1 1 −1
0 0 1 0

⎞
⎠ . (4)

The date presented in matrix (4) applying formulae (2) and (3) is reduced to the fol-
lowing dissimilarity matrices

D1 =

⎛
⎝ 0 4 3

4 0 3
3 3 0

⎞
⎠ , D2 =

⎛
⎝ 0 2.83 1.73

2.83 0 1.73
1.73 1.73 0

⎞
⎠ . (5)

4. Results of Cluster Analysis

Clustering is a technique for indicating not intersecting subsets (called clusters) of a given
set of objects in such a way that the objects in the same subset are more similar than
the objects belonging to the different subsets (Theodoridis and Koutroumbas, 2006; pp.
541–587). The prerequisite for clustering is a measure of similarity/dissimilarity defined
over pairs of objects. However this measure does not define a unique partitioning of the
considered set of objects. Generally speaking, results of clustering are method dependent,
particularly they are dependent on some heuristically chosen parameters.

Hierarchical clustering algorithms produce a hierarchy of nested clusters (Theodori-
dis and Koutroumbas, 2006; p. 541–587).

Basically, there are two categories of hierarchical clustering algorithms: agglomer-
ative and divisive. The first starts from the single objects as clusters and groups them
by merging two most similar (by a predefined criteria) at a step, and ultimately ends-up
with a hierarchy of clusters closed by one cluster containing all objects. The last one fol-
lows the inverse path, i.e., by splitting initially one cluster of objects to a set of clusters
consisting of one object, in such a way producing a whole hierarchy of clusters.

In this paper we apply agglomerative clustering, which we present concisely here. Let
xi ∈ R

s, i = 1 . . . N be a set of objects (points in an s-dimensional space). Dissimilarity
between xi, xj is measured by means of Minkowski distance dp(xi, xj). Let Ck and Cl

be two clusters, i.e., two not intersecting subsets of the set of xi, i = 1 . . . N . We will
measure the distance between clusters by means of furthest neighbor

Δp(Ck, Cl) = max
xi ∈Ck,xj ∈Cl

{dp(xi, xj)}. (6)
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An abstract algorithm (following lines of Generalized Agglomerative Scheme (Theo-
doridis and Koutroumbas, 2006)) can be defined as follows.

• Choose an initial clustering R0 = {Ci = {xi}, i = 1 . . . N } and set a step t = 0.
• Repeat until all objects lie in a single cluster.

– Increment step t = t + 1.
– Among all possible pairs of clusters find the pair of minimal distance (Ci, Cj).
– Merge the selected pair resulting in the new cluster Cq = Ci ∪ Cj . Produce

new clustering Rt = (Rt−1 \ {Ci, Cj }) ∪ {Cq } by removing clusters Ci, Cj

from the clustering and adding new cluster Cq .

The outcome of experiments depends on the proximity measure used to calculate
distances between clusters, e.g., single linkage or complete linkage. In this investigation
only complete linkage, corresponding to (6), is used since in the case of small distances
single linkage often implies chaining phenomena, i.e., objects are added to the same
cluster one by one until all of them lie in the same single cluster. Early experiments with
voting data produced the above mentioned effect, and therefore the complete linkage was
chosen.

Clustering was performed using both, city block (d1(·, ·)) and Euclidean (d2(·, ·)) dis-
similarities in voting space. Implementation of clustering and distance functions from
Matlab Statistics Toolbox 6 (StatToolbox2007) was used. Experiments with full and se-
lected set of roll calls were performed, using both single and complete linkage proximity
measures, but because of space limitation we present only the most interesting results.

The results of clustering (2 and 4 clusters, city block and Euclidean dissimilarity mea-
sures) are presented in Figs. 1 and 2, and Table 2. Dendrograms (Figs. 1 and 2) illustrate
hierarchical arrangement of clusters produced by clustering algorithm. Leaves represent
data points or clusters, and upsidedown U-shaped lines connect the leaves forming new
clusters. The height of the lines represents the distance between the objects being con-
nected. Here dendrograms illustrate the order of clusters merging, i.e., in both, Euclidean
and city block, cases, the first and the second clusters are merged, then the third and
fourth follow, see Table 2 for clusters.

Fig. 1. Dendrogram for clustering with city block dis-
tances.

Fig. 2. Dendrogram for clustering with Euclidean dis-
tances.
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Table 2

Clustering of voting results, 4 clusters

City block Euclidean

Cluster: 1; Cluster size: 9;
MG(1): 9; PDF(1): 67; TTLDF(7): 1 33 56 68 86
129 134;

Cluster: 1; Cluster size: 10;
LSDPF(1): 108; MG(1): 40; PDF(1): 67;
TTLDF(7): 1 33 56 68 86 129 134;

Cluster: 2; Cluster size: 45;
LCSF(8): 13 21 22 60 61 81 99 123; LF(11): 3
14 23 32 38 41 54 65 118 121 124; MG(1): 144;
TSF(25): 2 4 10 24 25 27 28 31 34 45 46 48 58 59
63 66 88 96 98 104 115 116 130 138 139;

Cluster: 2; Cluster size: 45;
LCSF(8): 13 21 22 60 61 81 99 123; LF(11): 3
14 23 32 38 41 54 65 118 121 124; MG(1): 144;
TSF(25): 2 4 10 24 25 27 28 31 34 45 46 48 58 59
63 66 88 96 98 104 115 116 130 138 139;

Cluster: 3; Cluster size: 27;
LF(1): 141; LSDPF(14): 5 11 19 50 53 55 70 77
82 103 106 108 133 143; NSF(1): 128; PDF(3): 78
97 146; VLF(8): 9 73 76 93 95 101 114 125;

Cluster: 3; Cluster size: 46;
LF(1): 141; LSDPF(22): 5 11 16 19 49 50 53 55 70
77 82 83 90 100 103 106 107 110 120 133 142 143;
MG(1): 112; NSF(9): 44 52 74 84 105 109 113 117
128; PDF(3): 78 97 146; VLF(10): 9 73 76 89 93
95 101 111 114 125;

Cluster: 4; Cluster size: 57;
DPF(24): 8 15 17 18 26 30 35 37 39 51 57 64 71
72 75 91 92 119 122 135 136 137 140 145 147; LS-
DPF(12): 16 43 49 83 85 90 100 107 110 120 132
142; MG(1): 112; NSF(8): 44 52 74 84 105 109
113 117; PDF(7): 7 42 47 62 126 131 148; VLF(4):
29 79 89 111;

Cluster: 4; Cluster size: 37;
DPF(25): 8 15 17 18 26 30 35 37 39 51 57 64 71
72 75 91 92 119 122 135 136 137 140 145 147;
LSDPF(3): 43 85 132; PDF(7): 7 42 47 62 126 131
148; VLF(2): 29 79;

Table 3

Members of factions

Faction title Faction members

DPF 8 15 17 18 26 30 35 37 39 51 57 64 69 71 72 75 91 92 119 122 127 135 136 137 140 145 147

LCSF 13 21 22 60 61 81 99 123

LF 3 14 23 32 38 41 54 65 118 121 124 141

LSDPF 5 11 16 19 43 49 50 53 55 70 77 82 83 85 90 100 103 106 107 108 110 120 132 133 142 143

MG 40 112 144

NSF 44 52 74 84 105 109 113 117 128

PDF 148 7 42 47 62 67 78 97 126 131 146

TSF 2 4 10 24 25 27 28 31 34 45 46 48 58 59 63 66 88 96 98 104 115 116 130 138 139

TTLDF 1 6 33 56 68 86 129 134

VLF 9 12 29 73 76 79 89 93 95 101 111 114 125
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5. Results of Multidimensional Scaling

Multidimensional scaling (MDS) is a technique for exploratory analysis of multidimen-
sional data widely usable in different applications (Borg and Groenen, 2005; Cox and
Cox, 2001). By means of this technique the set of considered objects is mapped to the
low dimensionality space of images where objects are represented by points, and dissim-
ilarities are represented by interpoint distances. Frequently a two dimensional space of
images is considered aiming to visualize the results of MDS. Formally MDS does not
produce partitioning of the considered set of objects. However, when objects are exposed
for visual analysis they can be not only heuristically clustered but also analyzed from
different angles, e.g., how compact are clusters, how they are located with respect to each
other, etc. Figuratively speaking, MDS extends heuristic abilities of human experts to
multidimensional spaces where they naturally do not work.

Let us give a short formulation of the problem. The dissimilarity between pairs of N

objects is given by the matrix D = (d(k, m)), k, m = 1, . . . , N , and it is supposed that
d(k, m) = d(m, k). The points zi ∈ Rr, i = 1, . . . , N , in an r-dimensional space of
images should be found whose interpoint distances fit the given dissimilarities. Different
measures of accuracy of fit can be chosen defining different images of the considered
set of objects. In the case the objects are points in a high dimensional vector space such
images can be interpreted as different nonlinear projections of the set of points in high
dimensional space of originals to a lower dimensionality space of images. The problem
of construction of images of the considered objects is reduced to minimization of an
accuracy of fit criterion, e.g., of the most frequently used least squares STRESS function

STRESS(Z) =
∑
i<j

wij

(
δij(Z) − d(i, j)

)2
, (7)

where Z = (z11, . . . , xN1, x12, . . . , xNr)T is vector of coordinates of images; δij(X)
denotes the distance between the ith and jth points in image space zi and zj ; it is supposed
that the weights are positive: wij > 0, i, j = 1, . . . , n.

Since different distances δij(Z) can be defined, the formula (7) defines a class of ac-
curacy criteria. To define a particular criterion a norm in R

r should be chosen implying
the particular formula for calculating distances δij(Z). The most frequently used dis-
tances are Euclidean. However, MDS with other Minkowski distances in space of images
can be even more informative than MDS with Euclidean distances. Results of MDS with
different, e.g., city block and Euclidean, distances can be useful to grasp different prop-
erties of the considered objects as discussed in (Žilinskas and Žilinskas, 2007). For the
algorithmic aspects of implementation of MDS algorithms with city block distances we
refer to (Žilinskas and Žilinskas, 2007). Multidimensional scaling of voting data have
been performed using both distances in the space of images: Euclidean distances were
used in case of d2(·, ·) dissimilarities in voting space, and city block distances were used
in case of d1(·, ·) dissimilarities. The results of MDS with two dimensional space of im-
ages are presented in Figs. 3 and 4. Let us note that adding of one or several points to
the images can be done without of repeated solution of augmented optimization prob-
lem (Bernataviciene et al., 2007).
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Fig. 3. Visualization of voting results using Euclidean distances.

6. Comparative Analysis

Both considered methods can be described as exploratory methods since they do not
produce uniquely interpretable quantitative results. However, they produce results which
can be interpreted heuristically and which induce ideas for future qualitative analysis.

The results of cluster analysis show that voting results first of all cluster according to
membership of MPs to party blocks which can be specified as position and opposition.
Taking into account smaller dissimilarity, more peculiar structure can be grasped, e.g.,
dissimilarity between groups of factions within position and within opposition is quite
similar. The latter conclusion follows from closeness of second branching thresholds in
dendrograms (see Fig. 1 and Fig. 2).

Discussing dissimilarities between clusters, however, it should be taken into account
that furthest neighbor distance (e.g., given on vertical axis of Fig. 1 and Fig. 2) not nec-
essary well represents heuristic concept of dissimilarity albeit it is suitable from the algo-
rithmic point of view. The dendrogram correctly shows only pairwise distances between
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Fig. 4. Visualization of voting results using city block distances.

clusters but is not very helpful in understanding mutual disposition of larger number of
clusters. However, the order of clusters merging shows the precedence of the relations
among them. Summarizing, we can conclude that clustering algorithms offer a modest
support in analysis of voting data; to enhance their applicability they should be augmented
with visualization algorithms and algorithms of multidimensional statistical analysis.

MDS algorithms present the voting data in the form of a picture prone to heuris-
tic analysis. The clusters indicated by means of clustering method described above are
clearly visible in Fig 3 and Fig 4, e.g., position factions at the left part of the figures and
opposition factions at the right part of the figures. Let us mention that the figures are in-
variant with respect to translation and some rotations; here they are rotated to place TSF
(who declares its rightism the most strongly) at the right side of the picture. We discuss
the possibility of indication of left/right in political science sense below.

These figures give rather fine grained structure of data set, e.g., the well known
strongest opposition between DPF and TSF is clearly highlighted. Especially interesting
is to see the leading position and opposition factions (LSDPF and TSF) with the faction
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naming itself Liberal and Center Faction between them separated from others with main
diagonal.

We have mentioned that the pictures of Fig. 3 and Fig. 4 are rotated rather arbitrary. It
seems desirable to chose orientation of such pictures in such a way that the axes could be
named sensibly. For example, in some applications choice of axes Left-Right/Libertarian-
Authoritarian, North-South/West-East can be helpful in interpretation of the results. How-
ever, in our study such interpretation does not have a justification. Moreover, it is even not
clear if in our case two dimensional representation of data can catch such subtle properties
as Left-Right oriented politic.

Assessment of dimensionality of voting space is an active research field (Poole, 2005).
A possibility to assess the actual dimensionality of data space is important advantage of
MDS. This can be done by means of successive mapping of data set into image spaces
of growing dimensionality and observing the decrease of mapping error. In Fig. 5 de-
pendence of a relative visualization error (see (Žilinskas and Žilinskas, 2007)) on dimen-
sionality of the image space is presented. Rather slow decrease of this error shows that
explanation of voting results in the considered case by means of two political concepts
would be superficial.

Important advantage of MDS is visual representation of voting data, including, e.g.,
the possibility of lightening of voting of an individual MP. This advantage is especially
important for monitoring political behavior of parties and individual MPs. Wider imple-
mentation of such a method would be helpful to people for more objective assessment of
candidates in current election of the parliament.

For political scientist the usefulness of MDS would be enhanced if the algorithm
would be augmented with statistical analysis enabling interactive calculation of different
statistical characteristics of voting of chosen subsets of MPs. Besides of such a technically
simple enhancement, applicability of MDS in analysis of voting data would became more
attractive if dynamics of voting results would be visualized; solution of this problem is
indeed challenging.

Fig. 5. Dependence of mapping error on dimensionality of the space of images.
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Notice, how behavior of the MP number 108 illustrates faction hopping2 and depen-
dency on the chosen dissimilarity measure. When city block distance is chosen, MP 108
appears at the bottom of Fig. 3 and is clusterized together with the left wing parties Ta-
ble 2, while in the case of Euclidean distances MP 108 is at the top of Fig. 4 and is
clusterized with the right wing.

7. Conclusions

• Both, MDS and hierarchical, clusterings produce grouping of MPs well explainable
in general political context.

• MDS and hierarchical clustering supplement each other, and they could be used as
essential elements in development of a special toolbox for quantitative analysis of
voting data.

• Voting data visualized by means of MDS well suit for monitoring of political be-
havior of parties and individul MPs, and such a monitoring could be recommended
for unprejudiced reporting about political activities of parliaments of new demo-
cratic states.
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Struktūrinė seimo nari ↪u balsavimo analizė

Tomas KRILAVIČIUS, Antanas ŽILINSKAS

Tiriamas populiari ↪u kiekybini ↪u metod ↪u tinkamumas analizuoti struktūrines savybes duomen ↪u,
atspindinči ↪u Lietuvoje vykstančius fundamentalius politinius procesus. Analizuojami Lietuvos
Seimo balsavimo duomenys. Lyginami du dažniausiai taikomi struktūrinės analizės metodai: klas-
terizavimas ir daugiamatės skalės. Pateikiamos techninės išvados, kurios gali būti naudingos
tolimesniam ši ↪u metod ↪u adaptavimui ir taikymui politik ↪a atspindinči ↪u duomen ↪u analizėje.


