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Abstract. This paper is concerned with the problem of image analysis based detection of local
defects embedded in particleboard surfaces. Though simple, but efficient technique developed is
based on the analysis of the discrete probability distribution of the image intensity values and the
2D discrete Walsh transform. Robust global features characterizing a surface texture are extracted
and then analyzed by a pattern classifier. The classifier not only assigns the pattern into the quality
or detective class, but also provides the certainty value attributed to the decision. A 100% correct
classification accuracy was obtained when testing the technique proposed on a set of 200 images.

Keywords: defect detection, image analysis, Walsh transform.

1. Introduction

Particleboards are made of pressed wood particles and a suitable binder. Bigger particles
compound the inner part of the material and smaller ones – the outer surface. Such struc-
ture makes particleboards strong and smooth. During the production process, defects may
appear on a board’s surface. The most common defects in particleboards are hollows in
a surface near the border as shown in Fig. 1 (top-right). Such defects may occur during
the cutting phase or due to bad trimming after compression. Other types of defects are
various blots. Two examples of such blots are shown in Fig. 1 (bottom).

To increase the competitiveness of the products, defective particleboards must be de-
tected and prevented from being sent to a customer. Thus industrial quality inspection
is required. Image analysis and soft computing techniques are being increasingly used
to automate industrial inspection in various fields and for surveillance as well (Kisel et
al., 2008; Ghita et al., 2005; Verikas et al., 2003; Kumar, 2003; Verikas et al., 2005; Ba-
causkiene and Verikas, 2004; Ribaric et al., 2008; Verikas et al., 2000). Most of the avail-
able image analysis based defect detection systems focus on non-textured surfaces such as
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Fig. 1. Examples of particleboard surfaces: (top-left) quality surface, (top-right) hollow near the border, (bot-
tom-left) pool of oil, (bottom-right) blot.

glass panel (Ghita et al., 2005; Tsai and Lin, 2002), sheet steel (Pernkopf, 2004), and tex-
tile materials (Kumar, 2003; Bodnarova et al., 2000; Nagan et al., 2005; Tsai and Hsieh,
1999). Defects in such images are rather easily detected because they manifest themselves
by distinctly measured values if compared to those of the uniform background.

A spotty surface of a particleboard generates a textured image, see Fig. 1 (top-left).
Techniques for automatic visual inspection of textured images generally compute a set
of textural features in the spatial or spectral domain and then search for significant local
deviations of the feature values if compared to those computed using defect free images.
The first and second-order statistics derived from the gray-level co-occurrence matrices
are the commonly used features in the spatial-domain (Latif-Amet et al., 2000). However,
using this technique it is difficult to locate the defect position. Another popular approach
is based on image filtering and simple thresholding. Fourier transform (Tsai and Huang,
2003; Chan and Pang, 2000), Gabor transform (Tsai and Lin, 2002) or Wavelet trans-
form (Nagan et al., 2005; Tsai and Huang, 2003) is usually applied before the threshold-
ing. However, since multiple filters are usually used, the image filtering phase is rather
time consuming. Large computation time characteristic to sophisticated techniques pre-
vents them from being implemented in industry for online detection of visual defects.
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Nonetheless the significant progress in automated image analysis based industrial vi-
sual inspection, currently, the inspection process in particleboard production still depends
mainly on human sight. The nature of this work is very dull and repetitive. Moreover,
there could be many human errors in this process. According to some studies, due to
tiredness and human errors, human visual inspection can only catch around 60–75% of
the significant visual defects (Schicktanz, 1993).

In this study, we present a simple, but efficient technique for surface defect detec-
tion in particleboards. A low computation time and a high defect detection reliability are
two characteristic features the technique is aiming at. A textured image recorded from
a particleboard surface is first subjected to the global histogram based analysis. Dark
large scale blobs are already detected in this stage of the analysis. To detect other de-
fects, features characterizing the surface texture are extracted and analyzed by a pattern
classifier designed to categorize feature vectors into the quality and defective classes.
Features characterizing the shape and position of the image intensity histogram and the
coefficients of the 2D discrete Walsh transform constitute the feature vector. Some visual
defects can be effectively detected by analyzing the frequency content of an image. The
2D discrete Walsh transform is a very simple tool to represent an image in a frequency
domain. Therefore, the Walsh transform has been utilized in this study. Along with the
decision regarding the class of the surface being analyzed, the certainty of the decision is
also provided. In the following sections the technique proposed is thoroughly described.
All the experimentally chosen parameters the analysis results depend on are discussed at
the beginning of Section 4.

2. The Approach

2.1. Image Acquisition

Surface hollows are not distinguishable from the background if the light source used is
diffusive or directed in parallel to the camera view. This is because the defective and
background areas are of the same material and just relief is different. To solve the prob-
lem, we use spotlight directed to the surface almost in parallel to the board. When using
such illumination, edges of the hollows make shadows, which are much easer to detect.

To cope with the problem of uneven illumination, an average image computed from a
large number of defect-free surfaces is subtracted from an image being analyzed. Having
an image f , the normalized image fn is given by

fn = f − f + m (1)

where f is the average image and m is an image with gray values of all pixels equal to
the mean gray of f .
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2.2. Feature Extraction

Two information sources are used to extract features in this study, namely, the discrete
probability distribution given by the histogram of the image intensity values and the co-
efficients of the 2D discrete Walsh transform. Some defects like large dark blobs can
be easily detected by simple image thresholding, for example histogram based. Fig. 2
presents two examples of images taken from defective particleboard surfaces. It is ob-
vious that the defect seen in the left-hand-side image can be easily detected by simple
thresholding applied to the low-pass filtered image. However, this is not the case with
the image shown on the right. The gray value histograms of the images shown in Fig. 3
substantiate the fact.

To find the optimal threshold value t∗ for accomplishing the thresholding, we use the
histogram based technique (Otsu, 1979).

Let L be the number of grey levels in the image and Ki the number of pixels at a
grey level i. The total number of pixels in a given image is then equal to K =

∑L
i=1 Ki

and the probability of a grey level i is defined as pi = Ki/K. The histogram of the
image is then given by h(i) = Ki. The optimal t∗ sought is such that the between-cluster
variance σ2

B(t) is maximized when dividing the histogram into two clusters C0 and C1 at

Fig. 2. Examples of two images taken from defective particleboard surfaces.

Fig. 3. Intensity histograms of the images shown in Fig. 2.
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the image intensity (gray) value equal to t∗:

σ2
B(t∗) = max

t∈T
σ2

B(t), (2)

where T is a set of the gray values restricted by the boundary values of the histogram.
The between-cluster variance is given by

σ2
B(t) = P0(μ0 − μT )2 + P1(μ1 − μT )2, (3)

where P0 and P1 stand for the cluster occurrence probabilities, μ0 and μ1 are means of
the clusters, and μT is the total mean. A high σ2

B(t∗) value (exceeding some predeter-
mined threshold) indicates the fact of reliable defect detection via the histogram based
image thresholding. We defined the following measure to assess the reliability of the
thresholding result:

γT (f) = 1 − exp
{

− αT σ2
B(t∗)

}
, (4)

where the experimentally chosen parameter αT determines the sensitivity of the measure.
The measure ranges between 0 and 1.

If for a given image f(x, y) the reliability of the thresholding step is below a pre-
determined value (γT (f) < δT ), features characterizing the histogram shape and the
coefficients of the 2D Walsh transform are extracted for further analysis.

2.2.1. Characterizing Histogram
Fig. 4 presents two histograms computed using the defect free surface (left) and the sur-
face contaminated by a small hollow. As it can be seen from Fig. 4, the histogram cal-
culated using the defective surface has a longer tail. This is a characteristic feature of
histograms obtained from defective surfaces.

We use several features to characterize a histogram, namely:

• mean value m,
• standard deviation σ,

Fig. 4. Intensity histograms of images obtained from the quality (left) and defective (right) surfaces.
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• skewness μ3,
• kurtosis μ4,
• percentile 5 value,
• percentile 95 value,
• σ2

B(t∗) value.

The standard deviation is given by

σ =

√√√√ 1
K − 1

L∑
i=1

(i − m)2h(i), (5)

where m = 1
K

∑L
i=1 h(i)i is the mean value and K is the total number of pixels in a

given image.
Skewness μ3 is a measure of the asymmetry degree of a histogram around the mean

value. The more asymmetric is the histogram, the larger is the skewness value. A his-
togram skewed to the left possesses a negative μ3 value, while a positive μ3 value is
computed for a histogram skewed to the right (Theodoridis and Koutroumbas, 2003).
Skewness is given by

μ3 = σ−3
L∑

i=1

(i − m)3h(i). (6)

Kurtosis (excess kurtosis) is defined as

μ4 = σ−4
L∑

i=1

(i − m)4h(i) − 3. (7)

The normal distribution has kurtosis μ4 = 0. Positive kurtosis is a sign of a “peaked” dis-
tribution while negative kurtosis indicates a “flat” distribution. We expect that defective
surfaces produce non-symmetrical histograms with non-zero skewness and large kurtosis
values. By large kurtosis values we mean values resulting in the average kurtosis value
that is statistically significantly different from the average kurtosis value computed for
defect-free surfaces.

2.2.2. The 2D Discrete Walsh Transform Based Analysis
The 2D discrete Walsh transform (Gonzalez and Woods, 2002; Petrou et al., 1996) is
a simple tool for representing an image in a frequency domain. The Walsh functions
constitute a system of orthogonal functions acquiring values equal to only ±1. The Walsh
functions can be generated using the Hadamard matrix H. The Hadamard matrices can
be defined recursively:

H2 =
[

+1 +1
+1 −1

]
, (8)
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H4 = H2 ⊗ H2 =
[

+H2 +H2

+H2 −H2

]
=

⎡
⎢⎢⎣

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

⎤
⎥⎥⎦ , (9)

where ⊗ stands for the Kroneker’s product. Similarly, a 2k × 2k Hadamard matrix can be
obtained.

Given an image f(x, y) of N × N pixels, where N is a power of 2, the 2D discrete
Walsh transform W of the image is defined as

W =
1
N

HN f HN . (10)

Fig. 5 (left) presents an image taken from a particleboard surface and its correspond-
ing 2D Walsh transform (middle). The lowest frequencies are placed at the top-left corner.

To be able to utilize frequencies (u, v) from only some frequency region R in the
feature extraction process, a frequency mask ν(u, v)R is defined:

ν(u, v)R =
{

1, if u, v ∈ R,
0, if u, v �∈ R.

(11)

The region of low frequencies RL used to extract features for defect detection is delimited
by an arc drawn at the chosen frequency fL. Thus,

ν(u, v)L =
{

1, if 0 <
√

u2 + v2 < fL,
0, otherwise.

(12)

The mask used to extract features for defect detection is illustrated in Fig. 5 (right). Ob-
serve that we set ν(0, 0) = 0. Then, having the filtered 2D Walsh transform image, the
Walsh transform based features are given by the following parameters:

mW =
1

card{RL}
∑

u,v∈RL

|Wu,v |, (13)

Fig. 5. An image (left), its corresponding 2D Walsh transform (middle), and the frequency mask (right).
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sW =
√

1
card{RL} − 1

∑
u,v∈RL

(
|Wu,v | − mW

)2
, (14)

where Wu,v stands for the coefficients of the transform and card{RL} is the cardinality
of the set RL. The parameters mW and sW express the average magnitude of the Walsh
transform coefficients and the standard deviation of the magnitude, respectively. Images
taken from even surfaces exhibit lower values of mW than from uneven ones.

2.3. Decision Making

Extracted features are collected into a vector z and used by a classifier to make a deci-
sion about the particleboard class the image was recorded from – defective or quality.
The feature vector z consists of nine components: the seven features characterizing a
histogram and the parameters mW and sW . The best feature subset, the one providing
the highest classification accuracy, was found experimentally, by applying the sequential
forward feature selection procedure. Two types of classifiers have been used in this study,
the linear discriminant function and the multilayer perceptron.

Let z be a feature vector. The discriminant function g(z) is then given by

g(z) = w0z0 + w1z1 + w2z2 + · · · + wnzn, (15)

where z0 = 1, n stands for the number of features used and w denotes a parameter
vector. A given pattern characterized by a feature vector z is assigned to the quality class
if g(z) > 0 and the defective class otherwise. The optimal values of the parameter vector
w are found by solving a system of linear equations.

A feed-forward multilayer perceptron with one hidden layer and the hyperbolic tan-
gent transfer functions in both the hidden and the output layers has been used. The op-
timal number of the hidden nodes has been found experimentally. Cross-validation data
set based early stopping is usual way to control overfitting. However, due to the relatively
small data sets available, we avoided using cross-validation data sets. To avoid overfitting,
we used Bayesian regularization (MacKay, 1992; Bishop, 1995), which is implemented
by minimizing the following objective function:

E =
β

2

ND∑
i=1

Q∑
j=1

{
yi

j(zi;w) − tij
}2 +

α

2

NW∑
s=1

(ws)2, (16)

where zi is the input data point, ND is the number of training data points, Q is the number
of outputs in the network (one in our case), w is the weight vector, NW is the number of
weights, yi

j(zi;w) is the output value of the jth output node, tij is the target value for the
jth output node given the input pattern zi, and α and β are the hyper parameters.

The second term of the objective function performs regularization. In the Bayesian
approach, the weights of the network are considered as random variables and the optimal
values of the hyper-parameters α and β are found automatically in the learning process.
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2.4. Assessing the Reliability of the Analysis

The analysis results obtained from the techniques are evaluated by calculating values of
reliability measures. Values of the measures give an indication to which extent we can
trust the analysis results. The reliability measure used to asses the thresholding result has
already been discussed and is given by (4).

A linear discriminant function g(z) divides the feature space into two parts by a hyper-
plane. Given a pattern z, the distance d(z) of the pattern from the hyper-plane can be
defined as

d(z) = g(z)/| |w| |, (17)

where | | · | | stands for the vector norm. We exploit this distance, to assess the classification
reliability. The classification reliability measure γg(z) is given by

γg(z) = 1 − exp
{

− αg

∣∣g(z)
∣∣}, (18)

where αg is a parameter chosen experimentally. The γg(z) measure ranges between 0
and 1. The larger the value, the more reliable is the decision. For a feature vector z lying
on the separating hyper-plane, γg(z) = 0. In the neural network case, we directly used
the network output value to assess the decision reliability.

In addition to the defective and quality classes a rejection class is also used in the
decision making process. A given image f(x, y) taken from a particleboard surface is
assigned to the rejection class if

γg(f) < δg (19)

with δg being a threshold chosen experimentally.

3. Localizing Defects

Defects can be detected in the histogram thresholding phase or in the second phase during
the classification based on the histogram and Walsh transform features. Defects detected
in the first phase are localized directly during the thresholding. Localization of defects
detected during the second phase is based on the inverse Walsh transform of the filtered
Walsh transform image.

First, a filtered Walsh transform image Wf is obtained

Wf = W · ν, (20)

where · stands for the element-wise multiplication and ν is the mask defined in (12). Next,
a reconstructed image fr is created using the inverse Walsh transform

fr =
1
N

HNWfHN . (21)
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Fig. 6. An image of the defective surface (left) and the defect detection result (right).

The reconstructed image fr is then subjected to the histogram-based thresholding dis-
cussed in Section 2.2. Fig. 6 presents an example of the defect localization result. As
one can see, even the small hollow at the left-bottom corner has been detected. Defect
shape angularity is a result of the Walsh transform specific constituents – orthogonal step
functions.

4. Experiments

Images we used in the experiments were of 256 × 256 pixels size and L = 256 gray
levels. All the images were taken by a still photo camera. In total, 100 quality and 100
defective surfaces were available. Fig. 1, Fig. 2 and Fig. 5 present some examples of the
images used. It is worth noting that the average intensity value of the images used in the
experiments varied in a rather broad range. Estimation of the correct classification rate
obtained from the technique proposed was carried out using the leave-one-out approach,
meaning that all the available data points, D, were used for training, except one left aside,
which was used for testing. This process is repeated D times, each time leaving aside a
different data point. Thus, the size of the training set used in the experiments is 199.

Values of the parameters fL, αg , αT , δg, and δT have been chosen experimentally.
The values of αg = 1, αT = 10, and δT = 0.7 worked well in all the tests. The value
of δg depends on the cost of accepting a wrong decision. In this work, we set the value
to δg = 0.7. The parameter fL affects the discrimination power of the Walsh transform
based features. Fig. 7 illustrates the dependence of the feature mW on the parameter fL

for the quality and defective classes. One hundred images from each class have been used
to obtain the dependencies. Based on the experimental tests, we set fL = 75.

4.1. Results

First, we assessed the discrimination power of the features by calculating the Fisher index.
The Fisher index of the ith feature is given by

Ji =
(μiq − μid)2

σ2
iq + σ2

id

(22)
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Fig. 7. The feature mW as a function of the parameter fL for the quality and defective classes.

with μiq , σ2
iq , μid, and σ2

id being the mean value and the variance of the ith feature for
the quality and defective class, respectively. The index values of features are given in
In Table 1. In Table 1, p5 and p95 denote the percentile 5 and percentile 95 feature,
respectively. As it can be seen from Table 1, all the features exhibit rather low Fisher
index vales. Features mW , σ, and p5 are the most discriminative ones. However, the
linear correlation between these three features is very high, see Table 2. Therefore, one
can expect that these three features are mutually redundant.

Table 1

Fisher index values of features used to detect defects

Feature Criterion value

m 0.0091

σ 0.0178

μ3 0.0083

μ4 0.0077

p5 0.0118

p95 0.0013

σ2
B(t∗) 0.0051

mW 0.0204

sW 0.0091

Table 2

Correlation coefficient values for the three most discriminative features

σ p5 mW

σ 1 −0.954 0.955

p5 −0.954 1 −0.892

mW 0.955 −0.892 1
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Table 3

The correct classification rate (%) obtained from the multilayer perceptron

Features Quality surfaces Defective surfaces

σ, mW , p5 100 100

mW , p5 99 81

σ, mW 98 81

σ, p5 98 83

All 81 76

Table 4

The correct classification rate (%) obtained from the linear discriminant function

Features Quality surfaces Defective surfaces

σ, mW , p5 95 77

mW , p5 95 76

σ, mW 94 70

σ, p5 93 76

All 95 75

To find the best feature subset, the sequential forward feature selection procedure was
employed. It was found, rather surprisingly, that the three most discriminative features
constitute the best feature subset. In spite of the high correlation, all the three features
are utilized. It means that in spite of the fact that the three features reflect approximately
the same properties of images, there also some specific image properties captured by
each of the features. All the attempts to remove or add any feature led to decrease of
the correct classification rate. Table 3 summarizes the correct classification rate obtained
for the large scale defects when using different feature subsets. The results presented are
for the multilayer perceptron containing 3 nodes in the hidden layer. The number of the
hidden nodes has been found experimentally. As it can be seen from Table 3, a perfect
classification was obtained using the three very simple features.

The linear discriminant function provided a lower performance. The results obtained
from the linear discriminant function are summarized in Table 4.

At the rather conservative reliability level chosen, δg = 0.7, four images were as-
signed to the rejection class. Fig. 8 illustrates the reliability of the decisions made. As it
can be seen from Fig. 8, most of the decisions are made with a very high reliability.

5. Conclusions

In this paper, the problem of detecting visual defects embedded in particleboard surfaces
has been considered. Though simple, but very efficient technique has been presented. De-
fects like relatively large blobs are already detected in the histogram thresholding phase.
If the histogram thresholding does not result into reliable defect detection, the second
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Fig. 8. The reliability γg of the decisions made for the quality surfaces (left) and the defective ones (right) along
with the reliability threshold δg = 0.7.

phase based on the analysis of the discrete probability distribution of the image intensity
values and the 2D discrete Walsh transform is activated. The final decision is made by
a classifier utilizing three very simple features characterizing the histogram shape and
the average power of the Walsh transform coefficients. The location of the defects found
is also estimated during the analysis. Two classifiers, namely a multilayer perceptron
and a linear discriminant function, were tested. The multilayer perceptron trained with
Bayesian regularization provided higher performance than the linear classifier. The rejec-
tion class inferred in the analysis allows avoiding decisions of low reliability. Surfaces
leading to such decisions are allocated for posterior human inspection. A 100% correct
classification rate was obtained when testing the technique proposed on a set of 200 im-
ages. Due to the type of features used, the detection results were rather insensitive to the
quite large variation of the average intensity value of the images analyzed. The technique
can be easily implemented in a simple hardware and used on production line.
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Efektyvi procedūra vizualiems defektams aptikti drožli ↪u plokšči ↪u
paviršiuje
Jonas GUZAITIS, Antanas VERIKAS

Šio darbo tikslas vaizd ↪u analize ir automatiniu klasifikavimu gr↪ista paprasta ir efektyvi
procedūra vizualiems defektams aptikti drožli ↪u plokšči ↪u paviršiuje. Vaizdo intensyvumo verči ↪u
tikimybinis pasiskirstymas bei vaizdo dvimatės diskrečios Uolšo transformacijos koeficintai tai du
automatinėje analizėje naudojami informacijos šaltiniai, pasitelkiant kuriuos išskiriami globalūs
paviršiaus tekstūr ↪a charakterizuojantys požymiai. Defektai aptinkami klasifikuojant ši ↪u požymi ↪u
vektori ↪u ↪i dvi klases: defektinis, kokybiškas. Klasifikatorius ne tik atlieka minėt ↪a sprendim ↪a, bet ir

↪ivertina šio sprendimo patikimum ↪a. Atliekant eksperimentus su 200 vaizd ↪u imtimi, visi šios imties
vaizdai buvo klasifikuoti teisingai.


