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Abstract. It is well known that a formal framework for the schema matching problem (SMP) is
important because it facilitates the building of algorithm model and the evaluation of algorithms.
An algebraic framework for schema matching is developed in this paper. First, based on universal
algebra, we propose a meta-meta structure for schema, which is named multi-labeled schema. This
definition has a distinctive feature: it is able to formally describe any particular style of schemas,
and transforms a schema and other available information into a finite structure over specific signa-
ture. Later, we introduce a formal definition of schema matching that is called multivalent matching.
Then, we formulize SMP as a schema homomorphism problem, and prove that SMP is equivalent
to finding a semantic homomorphism from one schema to another. These results lead to the main
contribution of this paper: an algebraic framework for SMP. This framework builds the algorithm
model for SMP. Thirdly, we show a classification of schema matching based on the algebraic frame-
work. Finally, we discuss the relations between matching cardinality and subclasses of schema
homomorphism.

Keywords: schema matching, schema homomorphism, schema isomorphism, graph homomor-
phism, labeled graph matching, computation complexity.

1. Introduction

The schema matching problem plays a key role in various database applications, such as
data integration, e-business, data warehousing, XML message mapping, metadata/model
management, semantic query processing, and peer-to-peer data management (Rahm and
Bernstein, 2001). Specifically, with the advance of Semantic web, for achieving semantic
interoperability, ontology (schema) matching has come a very important problem that has
to be solved effectively (Doan et al., 2003). The goal of schema matching is to find the
semantic correspondences between elements of two schemas.

For SMP, a major challenge is in properly addressing semantics: the semantic repre-
sentations associated with the schemas. There are many practical techniques for repre-
senting the semantics of schemas, such as semantic data models (Hull and King, 1987),
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description logics (Artale et al., 2003), and corpora or dictionaries (Madhavan et al.,
2004), etc. A second major challenge is in developing such a framework that is applicable
to a variety of data models, such as the relational, object-oriented, and XML models. The
framework facilitates the building of algorithm model and the evaluation of algorithms.

To cope with SMP, there are many methods have been proposed. Many matching
methods are based on machine learning techniques. Doan et al. (2003) developed a LSD
system that uses Bayesian learners to match a pair of schemas, producing a 1 : 1 atomic-
level mapping. This approach is primarily instance-oriented; Li and Clifton (2000) pre-
sented a prototype SEMINT that uses neural network to obtain schema matching; Berlin
and Motro (2001) devised Automatch system for database schema matching, which used
machine learning techniques, based primarily on Bayesian learning, to achieve automate
schema matching; Madhavan et al. (2004) implemented a CUPID system, which is a
hybrid matcher based on both element- and structure-level matching. In this prototype,
the authors proposed similar-based heuristics algorithms and tree matching algorithm to
achieve semi-automatic schema matching; Bouquet et al. (2003) viewed each seman-
tic schema as a context, and proposed an algorithm for automatically discovering the
relations across contexts, which is named CTXMATCH; Furthermore, based on CTX-
MATCH system, Shvaiko (2006) developed the S-Match algorithm to solve semantic
matching between schemas. Do and Rahm (2002) devised the COMA schema matching
system, which combines multiple matchers in a flexible way. Melnik (2004) carried out
a generic model-management tool – RONDO. The author used directed labeled graph
as internal schema model and proposed a graph-based algorithm – similarity flooding
for schema matching. Two substantial reviews of SMP and prototypes have been given
by Rahm and Bernstein (2001) and Do et al. (2002). However, these practical matching
approaches have not utilized the theoretical foundation and most of them have relied on
ad-hoc approaches.

The theoretical foundation and the formal framework for related problems of SMP
have been developed. Paolini and Pelagatti (1977) analyzed mappings between exter-
nal views of a database and conceptual views of the database itself, where database
was represented by many-sorted algebra and mappings were treated as homomorphisms.
They demonstrated how update operations on databases can be treated as mappings; Hull
(1997) presented a tutorial for describing fundamental problems that are raised by se-
mantic heterogeneity and surveyed theoretical frameworks that can provide solutions
for them. Most work focused on schema integration in federated databases. For schema
equivalence, Miller et al. (1994) proposed that two schemas could be compared by in-
formation capacity. They presented two concepts of equivalence: absolute equivalence
and internal equivalence. Based on a graph model (Schema Intension Graph), they pro-
posed that the isomorphic schemas are equivalent, and discussed the structural transfor-
mation of schemas; Alagić and Bernstein (2001) developed a categorical model theory
for generic schema management, and investigated the category-theoretic approach to se-
mantics in model management. By using the category to represent the schema, schema
morphisms are defined as mappings of schema signatures that preserve the integrity con-
straints. Schema transformations within a particular category of schemas are viewed as
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morphisms of that category. Then, they built the formal frameworks for schema integra-
tion and transformation. In fact, these formal frameworks are not applicable to schema
matching, specifically cannot characterize many-to-many matching. Since little attention
has been given to the theoretical foundation of SMP, in this paper, we address to develop
a formal framework for SMP.

Schema matching is inherently heuristic. In general, matching two schemas requires
information that is not present in the schemas, such as relational schemas, object-oriented
schemas, and XML schemas. To achieving schema matching, we need more semantics of
schemas. Therefore, it is a difficult problem to develop a formal framework for SMP. In
this paper, we propose a formally matching-oriented definition of schema at first, which
is a meta-meta model for schema and called multi-labeled schema. This definition has
a distinctive feature that is based on the universal algebra, which can formally describe
any particular style of schemas and transform them into the finite structures over specific
signatures, and the signatures include some useful information for matching.

By multi-labeled schema, we introduce two important definitions: one is the concept
of individual matching, the other is schema matching. We define schema matching as
multivalent matching, which means that one object of a schema may be matched with a
set of objects of another schema, i.e., this definition of schema matching can characterize
many-to-many matching.

Based on the foundational definitions discussed above, we propose the algebraic
framework for SMP. This framework is called schema homomorphism. We demonstrate
that SMP is equivalent to finding a semantic homomorphism from one schema to an-
other, which preserves the semantics between two schemas. Using this framework, we
formulize SMP as a schema homomorphism problem. Moreover, homomorphism is a
useful model for a wide variety of combinatorial problems dealing with mappings and
assignments (Hell, 2003). This algorithmic model can guide practitioner to design the
effective algorithms for SMP and evaluate the algorithms.

Based on this framework, we show a classification of schema matching. In addition,
there are various subclasses of homomorphism, and then we discuss the relations between
matching cardinality and subclasses of schema homomorphism. Finally, we use label
graph model as the internal schema model, which is the instantiation of multi-labeled
schema. We discuss the algorithmic complexity of SHOM and its subclasses. Most of
them are NP-complete in the general case and polynomial when the underlying graph of
schema is a tree.

The rest of this paper is organized as follows. Section 2 proposes a formal matching-
oriented definition of schema, which is called multi-labeled schema, and based on univer-
sal algebra. Section 3 focuses on individual matching, and introduces the formal defini-
tion of schema matching: multivalent matching. Further, Section 4 proposes the definition
of schema homomorphism. We prove that SMP is equivalent to finding a semantic ho-
momorphism from one schema to another. Section 5 presents a new taxonomy for SMP
under the algebraic framework. Section 6 investigates match cardinality and the vari-
ants of homomorphism. We present the relations between match cardinality and schema
homomorphisms. Section 7 addresses the algorithmic complexity of SMP. Section 8 sum-
marizes the contributions and suggests future research directions.
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2. Schema

To build the algebraic framework, we present a formal meta-meta structure (model) to de-
scribe the various schemas at first. As we know it, there are many kinds of schemas, such
as relational model, object-oriented model, ER model, conceptual graph, DTD, XML
schema, and UML, etc., which are also called meta-models. A meta-model can be thought
of as a model that describes the structure of another model. A meta-meta model is a rep-
resentation language in which models and meta-models are represented. For example, the
UML specification uses an object-oriented meta-meta model called MOF. All models and
meta-models can be viewed as instances of the meta-meta model (Melnik, 2004).

Schemas are finite structures over the specific signatures. The matching objects and
their properties are able to assemble in the structure. By the basic definition of struc-
ture (Dubhashi, 1995; Federa and Vardi, 1998; Federa et al., 2004), we define a meta-
meta structure for schema, which is based on universal algebra, and called multi-labeled
schema. Here, a signature σ is a collection of individual, label, relation and func-
tion symbols. A schema or structure of the signature σ can be denoted by a 4-tuples
S = (IS , LabS , F S , RS ).

DEFINITION 1 (schema). A schema S is a finite structure over a signature σ, consists
of individual set IS , label collection LabS , function set F S , relation set RS , written a
4-tuples S = (IS , LabS , F S , RS ), where,

1. σ is a finite collection that is composed of individual symbols, label symbols, func-
tion symbols, and relation symbols, where, each function symbol f or relation
symbol R, respectively comes associated with an arity, ar(f) and ar(R), which
are non-negative integers.

2. IS = {s1, s2, . . . , sn} is a finite nonempty set that includes individuals, which
denote the prepared-matching objects. Each of them is uniquely identified by an
object identifier (OID).

3. LabS = {LabS
1 , LabS

2 , . . . , LabS
i } is a finite constant collection that includes the

label sets for individuals. The labels are the strings for describing the properties of
individuals.1

4. F S = {f S
1 , f S

2 , . . . f S
j } is a finite set that includes the labeling functions, which are

partial function. The domain of each function is the individual set IS , accordingly,
the codomain is the label collection LabS . 2

1 REMARK 1. Each individual or relation can be associated with a set of labels that describe its prop-
erties, such as names, concept, and attributes, etc. In terms of different schema models and applications,
the label collection may consist of a name set, concept set, attribute set, and the combination of these la-
bels. These sets are different kinds of labels for representing the properties of individuals. For example,
nameS = {nS

1 , nS
2 , . . . , nS

m } = LabS
1 denotes a name label set, which includes names for individuals.

2 REMARK 2. For different kinds of labels, the labeling functions are different accordingly. For example,
if f S

1 : IS → conceptS is a labeling function of concept, cS
i ∈ conceptS , f S

1 (si) = cS
i means that si is

mapped to cS
i , where, dom(f S

1 ) ⊆ IS , codom(f S
2 ) ⊆ conceptS . If f S

2 : IS × IS → LabS
R is a labeling

function of binary relation, f S
2 (R(si, sj)) = lS

ij denotes that the label lS
ij is assigned to the relation R(si, sj),

where, dom(f S
2 ) ⊆ IS × IS , codom(f S

2 ) ⊆ LabS
R, LabS

R ⊆ LabS , lS
ij ∈ LabS

R.
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5. RS = {R1, R2, . . . , Rk } is a finite nonempty set that includes the relations be-
tween individuals. If R is a b-ary relation, then R ⊆ (IS )b. In general, the relations
are binary relations RS ⊆ IS × IS . 3

6. The size of schema S is the size of individuals and is denoted by |IS |.
Since an individual of schema can be labeled with several labels, the schema is called

multi-labeled schema. Unlike conventional schema, the schema defined by Definition 1
includes some available information for matching, such as the concepts of individuals,
which are developed by the external dictionary (WordNet). However, the conventional
schema does not contain these concepts directly. Alternatively, in this paper, a schema
can be regard as a semantic corpus in a broad sense.

In Example 1, we use an XML schema and a relational schema to illustrate the defi-
nition of schema (Definition 1).

EXAMPLE 1. In Fig. 1(a), there is an XML schema S . By Definition 1, we present a
multi-labeled schema representation of S . The signature σS includes individual symbols,
label symbols, function symbols, and relation symbols. The schema S is a finite structure
over σS , S = (IS , LabS , F S , RS ).

Fig. 1. An XML Schema S and a relational schema T .

a. Individual set: IS = {s1, s2, s3, s4}, |IS | = 4.
b. Label collection: LabS = {N S , CS ,T S

1 , T S
2 , LS

R}, where, N S is the name set of
individuals, CS is the concept set of individuals, T S

1 is the type set of individuals,
T S

2 is the data type set of individuals, and LS
R is the label set of relations:

N S = {Product, ProductID, ProductName, ProductType},
CS = {(product#n#1), (ID#n#2), (name#n#1), (type#n#1)} 4

T S
1 = {complexType, element}, T S

2 = {xs:int, xs:string}, LS
R = {include}.

c. Function set: F S = {f1, f2, f3, f4, f5}, where
f1(s1) = Product, f1(s2) = ProductID,
f1(s3) = ProductName, f1(s4) = ProductType;

3 REMARK 3. If every Ri ∈ R is a binary relation (i.e., R ⊆ IS × IS ), then schema S is transformed into
a graph structure. Each individual is a vertex of graph, and each Ri(si, sj) is an edge that connects vertex si

and sj . If f1 is a unary labeling function, we obtain vertex-labeled graph, and if f2 is a binary labeling function
for relations, then we obtain edge-labeled graph. One vertex and edge may have different kinds of labels in that
the graph is termed multi-labeled graph.

4We use WordNet 2.0 to obtain the concepts of individuals. Here, they are all nouns.
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f2(s1) = product, f2(s2) = ID, f2(s3) = name, f2(s4) = type;
f3(s1) = complexType, f3(s2) = element, f3(s3) = element, f3(s4) =
element;
f4(s2) = xs : int, f4(s3) = xs : string, f4(s4) = xs : string.

d. Relation set RS = {(s1, s2), (s1, s3), (s1, s4)},
f5((s1, s2)) = include, f5((s1, s3)) = include, f5((s1, s4)) = include,
where f5((s1, s2)) = include denotes that s1 includes s2.

Following the same procedure, we obtain a multi-labeled schema representation
of the relational schema T (Fig. 1(b)), which is a finite structure of σT , T =
(IT , LabT , F T , RT ).

a. Individual set: IT = {t1, t2, t3}, |IT | = 3.
b. Label collection: LabT = {N T , CT , T T

1 , T T
2 , LT

R },
N T = {PRODUCTS, PID, PName};
CT = {(product#n#1), (ID#n#2), (name#n#1)};
T T

1 = {TABLE, field}; T T
2 = {int, varchar}; LT

R = {include}
c. Function set: F T = {g1, g2, g3, g4, g5}, where

g1(t1) = PRODUCTS, g1(t2) = PID, g1(t3) = PName;
g2(t1) = product, g2(t2) = ID, g2(t3) = name;
g3(t1) = TABLE, g3(t2) = field, g3(t3) = field; g4(t2) = int, g4(t3) = varchar

d. Relation set: RT = {(t1, t2), (t1, t3)}
g5((t1, t2)) = include, g5((t1, t3)) = include.

3. Schema Matching

3.1. Problem Description

We describe SMP informally as follows:
INSTANCE: Given two schemas S = (IS , LabS , F S , RS ) and T = (IT, LabT, F T, RT),

S is a source schema, and T is a target schema.
QUESTION: To find the semantic correspondences between individuals in IS and IT ?

For convenience in later discussion, suppose that S = (IS , LabS , F S , RS ) and
T = (IT , LabT , F T , RT ) are two schemas of the same signature σ. Let S be the source
schema, and T be the target schema.

3.2. Individual Matching

For schema transformation, Hull (1986) and Miller et al. (1994) used information ca-
pacity to compare two schemas. A key question in the work on information capacity has
been whether a given database schema is more, less, or equally expressive than another
database schema, i.e., whether there exists a surjective or bijective function between S
and T (Melnik, 2004). In contrast, schema matching is inherently heuristic. The schema
matching approaches focus on obtaining the actual correspondences between S and T .
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A matching result of two schemas is a set of semantic correspondences between individ-
uals of two schemas. For this reason, we introduce a definition of individual matching
that based on the semantics of two individuals of schemas: if one or more labels of indi-
vidual s in S are semantically related to corresponding labels of individual t in T , or the
relations of s and the relations of t are semantically equivalent, then we define that s and
t are matched.

DEFINITION 2 (individual matching). If S is the source schema, T is the target schema,
s ∈ IS , t ∈ IT , s and t are matched, such that:

1. There exists a function symbol f of arity a, f S (s, s1, . . . , sa−1) = lS
i ⇒

f T (t, t1, . . . , ta−1) = lT
j , which means that lS

i is semantically associated with
lT
j , written lS

i → lT
j , where f ∈ σ, f S ∈ F S , f T ∈ F T , s1, . . . , sa−1 ∈ IS ,

t1, . . . , ta−1 ∈ IT , lS
i ∈ LabS , lT

j ∈ LabT . 5

2. There exists a relation symbol R of arity b, RS(s, s1, . . . , sb−1) holds ⇒
RT(t, t1, . . . , tb−1) holds, which denotes that the relation between s and s1, . . . ,

sb−1 is equivalent to the relation between t and t1, . . . , tb−1, where R ∈ σ,
RS (s, s1, . . . , sb−1) ∈ RS , RT (t, t1, . . . , tb−1) ∈ RT , s1, . . . , sb−1 ∈ IS ,
t1, . . . , tb−1 ∈ IT .

The matched individuals s and t can be denoted by a binary relation < s, t >, which
represents a semantic correspondence between s and t: s → t.

If s and t only satisfy Condition 1, then the correspondence of s and t is called label
matching.

If s and t only satisfy Condition 2, then the correspondence is termed relation match-
ing; If s and t satisfy two conditions at the same time, the correspondence is called struc-
ture matching.

In addition, for the correspondence between s and t, the more semantic functions
and relations can be matched (i.e., the more semantics can be preserved), the stronger
matching between s and t is.

Specifically, if ∀f ∈ σ, f S (s, s1, . . . , sa−1) = lS
i ⇒ f T (t, t1, . . . , ta−1) = lT

j , and
if ∀R ∈ σ, RS (s, s1, . . . , sb−1)holds ⇒ RT (t, t1, . . . , tb−1)holds, then the correspon-
dence of s and t is the strongest matching.

If s and t dissatisfy two conditions in Definition 2, then s cannot be matched with t.
If there does not exist an individual t in T that can be matched with s, then s is matched
to ε, written s → ε, where, ε stands for a void individual. In Formula 1, we show the
individual matching result, where, s ∈ IS , t ∈ IT .

individual
matching

{
s → t if s and t satisfy the conditions in Definition 2,
s → ε if s and ∀t ∈ IT dissatisfy the conditions in Definition 2,

(1)

i.e., ∀s ∈ IS , ∃ t ∈ IT ∪ ε, s → t, and ∀t ∈ IT , ∃s ∈ IS ∪ ε, s → t. (2)

5If f is a unary function, f S (s) = lS ⇒ f T (t) = lT indicates that lS and lT are equivalent, lS → lT ,
where, lS and lT stands for the semantic label of individual s and t. To measure the semantic similarity of two
labels or relations, there are many methods have been proposed (Bunke, 2000; Mugnier, 2000; Zhang et al.,
2006).



428 Z. Zhang, P. Shi, H. Che, J. Gu

Formula 1 and 2 imply that one individual of S may be associated with a possibly
empty set of individuals of T .

3.3. Schema Matching

For measuring the similarity of labeled graph, Champin and Solnon (2003) and Sorlin and
Solnon (2005) proposed multivalent mapping, which is used to characterize the many-to-
many matching between the vertices of two labeled graphs. Analogously, we introduce
multivalent matching for SMP, i.e., an individual of source schema may be associated
with a set of individuals of target schema. The matching results are called multivalent
correspondences.

DEFINITION 3 (multivalent correspondence). If S is the source schema, T is the target
schema, the matching result of two schemas is a set m ⊆ IS × IT that contains every
matched couple < s, t >∈ IS × IT .

Multivalent correspondences are binary relationships that establish many-to-many
correspondences between the individuals of two schemas.

DEFINITION 4 (partially match). If S is the source schema, T is the target schema, IS =
IS
1 ∪ IS

2 , ∀s ∈ IS
1 , ∃ t ∈ IT such that s and t are matched, and ∀s ∈ IS

2 hasn’t a matched
individual in IT , then we call schema S and T are partially matched, written S →P T ,
where IS

1 and IS
2 are nonempty sets.

Roughly speaking, the schema matching remains with partial matching. To illustrate
the definition of schema matching, we take two simple schemas in Fig. 1 for example.

EXAMPLE 2. By the results of Example 1, we find the semantic correspondences be-
tween S and T .

Here, the signature σ = σS ∪T = σS ∪ σT . In particular, the function symbols of
S and T are identical: {f1, f2, f3, f4, f5}, because S and T are two schemas of the
same signature, i.e., F S = {f S

1 , f S
2 , f S

3 , f S
4 , f S

5 }, F T = {f T
1 , f T

2 , f T
3 , f T

4 , f T
5 }. The

functions and the domains and codomains of them are shown in Table 1.
We will get:

< s2, t2 >, for
f1(s2) = ProductID ⇒ f1(t2) = PID; f2(s2) = ID ⇒ f2(t2) = ID;
f3(s2) = element ⇒ f3(t2) = field; f4(s2) = xs : int ⇒ f4(t2) = int;
(s1, s2) ⇒ (t1, t2); f5((s1, s2)) = include ⇒ f5((t1, t2)) = include.

< s3, t3 >, for
f1(s3) = ProductType ⇒ f1(t3) = PName; f2(s3) = name ⇒ f2(t3) = name
f3(s3) = element ⇒ f3(t3) = field; f4(s3) = xs : string ⇒ f4(t3) = varchar;
(s1, s3) ⇒ (t1, t3); f5((s1, s3)) = include ⇒ f5((t1, t3)) = include.

< s4, t3 >, for
f1(s4) = ProductName ⇒ f1(t3) = PName; f2(s3) = name ⇒ f2(t3) = name
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Table 1

Label type and labeling function (partial function)

label type function domain codomain

name f S
1 (x) IS N S

f T
1 (x) IT N T

concept f S
2 (x) IS CS

f T
2 (x) IT CT

type f S
3 (x) IS T S

1

f T
3 (x) IT T T

1

data type f S
4 (x) IS T S

2

f T
4 (x) IT T T

2

relation f S
5 (x, y) IS × IS LS

R

f T
5 (x, y) IT × IT LT

R

Fig. 2. The potential correspondences between S and T .

f3(s4) = element ⇒ f3(t3) = field; f4(s4) = xs : string ⇒ f4(t3) = varchar;
(s1, s4) ⇒ (t1, t3); f5((s1, s4)) = include ⇒ f5((t1, t3)) = include.

< s1, t1 >, for
f1(s1) = Product ⇒ f1(t1) = PRODUCTS;
f2(s1) = product ⇒ f2(t1) = product;
f3(s1) = complexType ⇒ f3(t1) = TABLE;
(s1, s2) ⇒ (t1, t2); f5((s1, s3)) = include ⇒ f5((t1, t3)) = include;
(s1, s3) ⇒ (t1, t3); f5((s1, s3)) = include ⇒ f5((t1, t3)) = include;
(s1, s4) ⇒ (t1, t3); f5((s1, s4)) = include ⇒ f5((t1, t3)) = include.
Hence, we have a matching result of S and T , which is a set of matching couples:

m = {< s1, t1 >, < s2, t2 >, < s3, t3 >, < s4, t3 >}, m ⊆ IS × IT .6

6 REMARK 4. Since the correspondences preserve all semantics of functions and relations, they belong to
the strongest matching.

REMARK 5. If we only use the name label to compare two schemas, i.e., we only consider the semantics
of function f1, and then the matching method is called name-based and individual matcher. If we use the name
and concept label together, then the matching method can be called combining matcher.

REMARK 6. In Example 2, functions are unary or binary function, and relations are binary relation.
The two schemas can be transformed into multi-labeled graph model (Remark 3). Fig. 2 shows the potential
correspondences between IS and IT . For brevity, the labels of individual are not marked completely.
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4. Schema Homomorphism

By the basic notion of homomorphism (HOM, Federa et al., 2004; Hell, 2003), Defini-
tion 1, and Definition 2, we introduce the definition of schema homomorphism, which
is an extension of homomorphism. By reason that schema homomorphism preserves the
semantics of two schemas, which is also called semantic homomorphism.

4.1. Schema Homomorphism (SHOM)

A schema homomorphism from S to T is made up of the multivalent correspondences,
which preserves the semantics between two schemas.

DEFINITION 5 (schema homomorphism). A schema homomorphism ϕ: S → T from
the source schema S to the target schema T is a mapping ϕ: IS → IT , which is a set of
multivalent correspondences such that:

Condition 1. There exists a labeling function symbol f of arity n

f S (s1, . . . , sn) = lS
n ⇒ f T (ϕ(s1), . . . , ϕ(sn)) = ϕ(lT

n )

for s1, . . . , sn ∈ IS , lS
n ∈ LabS .

Condition 2. There exists a semantic relation symbol R of arity m

RS (s1, . . . , sm) holds ⇒ RT (ϕ(s1), . . . , ϕ(sm)) holds

for s1, . . . , sm ∈ IS .
If there exists a semantic homomorphism from S to T , then we write S → T . 7

4.2. Schema Matching in Homomorphism

In this section, we demonstrate that SMP is equivalent to finding a semantic homomor-
phism from S to T , which preserves the semantics between two schemas. We first show
two lemmas.

7 REMARK 7. Schema homomorphism is different from the common homomorphism. First, homomor-
phism is a map (function/morphism) between two structures. As a rule, term map or mapping is often a syn-
onym for function, and HOM requires that one object of source structure is associated with at most one object
in target structure. However, the mapping ϕ: IS → IT of SHOM does not denote a function, because one indi-
vidual of schema S may be associated with a set of individuals of schema T . The reason for the discrepancy is
that schema matching allows many-to-many mapping between two schemas. Therefore, to formulize SMP, we
propose SHOM that allows many-to-many mapping and does not limit to one-to-one and many-to-one mapping.
In addition, to restrict the matching cardinality within one-to-one or many-to-one, the mapping ϕ: IS → IT

is a function as usual.
REMARK 8. Second, a homomorphism is a map that preserves all the relevant structure of two algebraic

structures (Federa et al., 2004; Hell, 2003). For formulizing SMP, SHOM not merely preservers the structure,
but also preserves the semantics of two schemas. In addition, schema homomorphism does not need to preserve
all the semantic structure, and only requires that partial labeling functions and relations satisfy the two condi-
tions in Definition 5. For instance, schema homomorphism is based on name and concept labels, provided that
the name and concept labeling function satisfies the condition of Definition 5.
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Lemma 1. If S and T are matched, then there exists a semantic homomorphism from S
to T .

Proof. By Definition 3, the result of schema matching consists of all the individual cor-
respondences. Without loss of generality, suppose that s is matched to t, s ∈ IS , t ∈ IT :

i) ∃f ∈ σ, f S (s, s1, . . . , sa−1) = lS
i ⇒ f T (t, t1, . . . , ta−1) = lT

j , f is a semantic
function symbol of arity a;

ii) ∃R ∈ σ, RS (s, s1, . . . , sb−1) holds ⇒ RT (t, t1, . . . , tb−1) holds, R is a semantic
relation symbol of arity b. For every correspondence, let ϕ(s) = t, ϕ(lS

i ) = lT
j , by

Definition 5, Lemma 1 is completed.

To be more specific, we show an example to explain Lemma 1.

EXAMPLE 3. The individual correspondences in Fig. 2, i.e., < s1, t1 >, < s2, t2 >,
< s3, t3 >, and < s4, t3 >, constitute matching result of two schemas, which is a se-
mantic homomorphism from S to T .

For < s2, t2 >, s2 and t2 are matched (Example 2): suppose we define ϕ(s2) =
t2, ϕ(ID) = ID, ϕ(ProductID) = PID, ϕ(element) = field, ϕ(xs : int) = int, and
ϕ(include) = include, we get:

f1(s2) = ProductID ⇒ f1(ϕ(s2)) = ϕ(ProductID), name preserving;
f2(s2) = ID ⇒ f2(ϕ(s2)) = ϕ(ID), concept preserving;
f3(s2) = element ⇒ f3(ϕ(s2)) = ϕ(element), type preserving;
f4(s2) = xs : int ⇒ f4(ϕ(s2)) = ϕ(xs : int), data type preserving;
f5((s1, s2)) = include ⇒ f5((ϕ(s1), ϕ(s2))) = ϕ(include), relation label preser-

ving.
(s1, s2) ⇒ (ϕ(s1), ϕ(s2)), relation (structure) preserving.

We can see that the mapping s2 → t2 satisfies two conditions of Definition 5. In
much the same way that, let ϕ(s3) = t3, ϕ(s4) = t3, ϕ(s1) = t1, and so on, we can
obtain a semantic homomorphism ϕ: IS → IT . All the mappings satisfy two conditions
in Definition 5.

Lemma 2. If there exists a semantic homomorphism from S to T , then S and T are
matched.

EXAMPLE 4. With reference to Example 1 and Fig. 2, there exists a semantic homo-
morphism from S to T . The individual correspondences include: ϕ(s1) = t1, ϕ(s2) =
t2, ϕ(s3) = t3, ϕ(s4) = t4. Without loss of generality, we explain the reason of matched
couple < s2, t2 >.

For f1(s2) = ProductID ⇒ f1(ϕ(s2)) = ϕ(ProductID), let ϕ(ProductID) =
PID, we can obtain the correspondence based on the name label of s2 and t2;

for f2(s2) = ID ⇒ f2(ϕ(s2)) = ϕ(ID), let ϕ(ID) = ID, we see that the mapping
preserve the conceptual semantics between s2, and t2, and we have the correspondence
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based on the concept label;

(s1, s2) ⇒ (ϕ(s1), ϕ(s2)), f5((s1, s2)) = include

⇒ f5((ϕ(s1), ϕ(s2))) = ϕ(include),

let ϕ(include) = include, then we can obtain the mapping by relation and relation label.

From Lemma 1 and 2, we have the theorem of SMP in homomorphism.

Theorem 1. Two schemas S and T are matched iff there exists a semantic homomor-
phism from S to T , S → T .

Proof. ⇐ Lemma 2, if S → T , then S and T are matched.
⇒ Lemma 1, if S and T are matched, then S → T .

COROLLARY 1. S is a source schema, T is a target schema, Ssub is a subset of S , IS
sub

denotes the individual set of Ssub, and IT denotes the individual set of T . Ssub and T
are matched iff there exists a semantic homomorphism from Ssub to T , Ssub → T , also
written S →P T .

4.3. Algorithmic Model for SMP

Now, we formulize SMP as the SHOM problem, and build the formal framework for
schema matching.

We discuss the concept of strong matching in Section 3. For a schema homomorphism,
if all the functions and relations satisfy two conditions of Definition 5, then this homo-
morphism is the strongest schema homomorphism that represents two schemas are close
associated. Based on Theorem 1, we have developed the algorithm model for schema
matching.

Algorithm model of SMP. Given two schemas S and T , the goal of matching algo-
rithms is to find the strongest semantic homomorphism between S and T .

Because homomorphism is a useful model for a wide variety of combinatorial prob-
lems dealing with mappings and assignments (Hell, 2003), SMP is formulized as a combi-
natorial problem by SHOM framework. In virtue of the concept of strong SHOM, we can
design the optimization algorithms to solve the schema matching: the goal of matching
algorithms is to find the strongest schema homomorphism that preserves the semantics
between two schemas. Therefore, under SHOM, the algorithm model for SMP is develo-
ped.

Algorithm 1. Algorithm for SMP
Input: Schemas S and T
Output: The semantic correspondences between S and T
Optimization Object: Obtain the strongest semantic homomorphism between S and T

Using the labeled graph as the internal schema model, SMP can be transformed into a
labeled graph matching problem. Based on graph homomorphism model, there are many
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methods to solve this classic combinational problem (Bunke, 2000; Champin and Solnon,
2003; Hell, 2003; Melnik, 2004; Mugnier, 2000; Sorlin and Solnon, 2005; Zhang, et al.,
2005). In particular, by using the multi-labeled graph as the meta-model, Zhang et al.
(2005, 2006) developed an objective function and proposed the hybrid search algorithms
to achieve schema matching based on the multi-labeled graph matching. Algorithm 2
shows the basic idea of multi-labeled graph matching (Zhang et al., 2005, 2006).

Algorithm 2. A search algorithm of SMP based on labeled graph matching
Input: Schemas S and T
Object: Find a matching state that maximize the similarity of graph G1 and G2

Output: The semantic correspondences between S and T
1. G1 = Graph(S ); G2 = Graph (T );
2. Iteratively search the matching space to find a matching state m, such that similarity (G1, G2)m is the

maximum one among the matching states;
3. m is the matching result of G1 and G2.

The optimization object of SMP is to find one matching state that is the strongest
semantic homomorphism between S and T , in Algorithm 2, i.e., the matching state is
the one such that the similarity of two graphs is the maximum one in all of the matching
states.

5. Taxonomy of Schema Matching

5.1. Hierarchy of SHOM and SMP

In Subsection 3.2, we discuss the types of individual matching. Individual matching is
divided into label matching, relation matching, and structure matching. By Definition 5,
we study the classification of SHOM. SHOM requires that correspondences satisfy two
conditions, i.e., Condition 1 and Condition 2. Condition 1 means that the labels of two
matched individuals are semantically equivalent; Condition 2 represents that the relations
of two mapped individuals are equivalent.

To be more specific, for example, suppose there is a schema homomorphism between
two schemas, and suppose that the syntactic or semantic labeling function satisfies Con-
dition 1, then we define that this schema homomorphism is a syntactic or semantic match-
ing. If the relations of two schemas satisfies Condition 2, then the homomorphism is a
relation-based matching. Furthermore, suppose that the homomorphic mapping simulta-
neously satisfies Condition 1 and Condition 2, then the mapping is a structural matching.
Hence, based on two conditions of Definition 5, the matching methods can be divided

Fig. 3. Hierarchy of schema homomorphism based on two conditions.
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Fig. 4. Hierarchy of schema matching method.

into three methods: label-based, relation-based and structural-based method. We show
the classification of schema matching in Fig. 4.

5.2. Label-based Matching Methods

Now, we discuss the classes of schema matching based on Condition 1 in detail, i.e.,
label-based matching in Fig. 4.

In Definition 1, the label collection includes all kinds of labels of individuals, such as
name labels, concept labels, attribute labels, and type labels, etc. The label classification
is convenient for practitioner to design and analyze the different matching approaches of
SMP (Rahm and Bernstein, 2001). For different kinds of labels, the labeling functions are
different accordingly, and the matching methods are different too.

For instance, if the matching approach is based on one kind of symbol, such as the
name symbol or the attribute symbol, then the approach is an individual matcher that is
name-based or attribute-based, and if the matching algorithm uses more than one kind of
symbols, then the approach is a combining matcher. In Fig. 5, we present the matching
methods based on the types of label symbols.

5.3. Homomorphic Matching

In Section 4, we prove that SMP is equivalent to finding the semantic homomorphism
from the source schema to the target schema, therefore, we can call schema matching as
schema homomorphism, also as homomorphic matching.

In the previous sections, we classify the matching methods by Definition 5 and the
types of label. Here, we show the overall classification of SMP by SHOM framework. In
particular, the matching method is called the labeled graph matching, provided that we
use labeled graph model as internal schema model and consider two conditions together.
We reclassify the schema matching approaches based on the classification in (Rahm and
Bernstein, 2001). The classification of homomorphic matching is shown in Fig. 6.

Fig. 5. Matching methods based on the different types of labels.
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Fig. 6. Classification of schema matching approaches.

We illustrate the classification of SMP by means of the framework of schema homo-
morphism. The algebraic framework can characterize SMP elaborately.

6. Match Cardinality and Variants of Homomorphism

6.1. Match Cardinality

Rahm and Bernstein (2001) illustrated match cardinality by examples. Each element of
the resulting mapping may match one or more elements of one schema to one or more
elements of the other, yielding four cases: 1 : 1, 1 : n, n : 1, n : m.

In Example 2, we obtain an n : 1 matching. If we restrict the match cardinality is 1 : 1,
we get the matching result in Fig. 7, where, S and T are partial matched (Definition 4).

6.2. Variants of Homomorphism

There are various subclasses of homomorphism, such as isomorphism, epimorphism, and
monomorphism. For SMP, we discuss some variants of SHOM, such as schema isomor-
phism, schema epimorphism, and schema monomorphism.

Schema epimorphism. A schema epimorphism from S to T is a surjective map-
ping ϕ: IS → IT , which satisfies two conditions of Definition 5. For epimorphism,
|IS | > |IT |.

Fig. 7. The possible mappings (n : 1) between S and T .
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Schema epimorphism is a many-to-one (n : 1) semantic mapping from S to T . With
reference to Fig. 2, we can see an example for schema epimorphism. Some schema match-
ing approaches have n : 1 matching cardinality (Rahm and Bernstein, 2001), such as
SKAT (Mitra et al., 1999) and CUPID (2004).

Schema monomorphism. A schema monomorphism from S to T is an injective map-
ping ϕ: IS → IT , which satisfies two conditions of Definition 5. For monomorphism,
|IS | � |IT |.

Schema monomorphism denotes a one-to-one and not onto semantic mapping from
IS to IT .

For schema transformation, Miller et al. (1994) used information capacity to compare
two schemas. By using SIG, they proposed that an information preserving mapping be-
tween two schemas is a total, injective function ϕ: S → T . Analogously, if there exists
a semantic injection from IS to IT , then S is subsumed by T . we present the definition
of schema subsumption, which denotes the semantic subsumption relation between two
schemas.

DEFINITION 6 (schema subsumption). If there exist a schema monomorphism from S
to T , then S is semantically subsumed by T , written S ≺ T .

As shown in Fig. 5, there is an injective semantic mapping φ: IT → IS . To be
specific, the semantic correspondences include: φ(t1) = s1, φ(t2) = s2, and φ(t3) = s3.
Every individual of T has a semantically corresponding individual in S . Thus, we have
T ≺ S .

Schema isomorphism. A schema isomorphism from S to T is a bijective mapping ϕ:
IS → IT , such that:

1. There exists a labeling function symbol f of arity n

f S (s1, . . . , sn) = lS
n ⇒ f T (ϕ(s1), . . . , ϕ(sn)) = ϕ(lT

n ),

f T (t1, . . . , tn) = lT
n ⇒ f S (ϕ−1(t1), . . . , ϕ−1(tn)) = ϕ−1(lS

n ).

2. There exists a semantic relation symbol R of arity m

RS (s1, . . . , sm)holds ⇒ RT (ϕ(s1), . . . , ϕ(sm))holds

RT (t1, . . . , tm)holds ⇒ RS (ϕ−1(t1), . . . , ϕ−1(tm))holds

for s1, . . . , sm ∈ IS , t1, . . . , tm ∈ IT , lS
n ∈ LabS , lT

n ∈ LabT .
In isomorphism, |IS | = |IT |.
Fig. 7 shows a bijective mapping, which denotes a one-to-one and onto correspon-

dence from IS to IT .
Miller et al. (1994) proposed the isomorphic schemas are equivalent. In schema ho-

momorphism framework, we introduce the concept of schema isomorphism that denotes
S and T are equivalent.
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Fig. 8. Hierarchy of schema equivalence.

DEFINITION 7 (schema equivalence). Two schemas S and T are equivalent iff there ex-
ists a schema isomorphism from S to T , i.e., S � T and S ≺ T , written S ∼= T .

Similarly, suppose a mapping of two schemas is a schema monomorphism/isomor-
phism, and suppose that the syntactic or semantic labeling function satisfies Condition 1,
then we define that two schemas are syntactic or semantic subsumption/equivalence. If
the relations of two schemas satisfies Condition 2, then two schemas are relational sub-
sumption/equivalence. Furthermore, suppose that the monomorphic/isomorphic mapping
simultaneously satisfies Condition 1 and Condition 2, then two schemas are structural
subsumption/equivalence.

In Example 5, we use an XML schema and a relational schema to illustrate the defi-
nition of schema equivalence.

EXAMPLE 5. In Fig. 9, there are two schemas. Fig. 9(a) shows an XML schema S that
is similar to the XML schema in Fig. 1(a) and only delete individual s4. Fig. 9(b) shows
a relational schema T that is identical to the relational schema in Fig. 1(b). In Exam-
ple 1, we show two schemas S = (IS , LabS , F S , RS ) and T = (IT , LabT , F T , RT ).
Now, suppose that two schemas S 1 and T1 are over the same signature, we present an
isomorphic mapping between S 1 and T1.

For f1(s2) = ProductID ⇔ f1(t2) = PID: name matching,
f2(s2) = ID ⇔ f2(t2) = ID: concept matching,
f3(s2) = element ⇔ f3(t2) = field: type matching,
f4(s2) = xs : int ⇔ f4(t2) = int: data type matching,
(s1, s2) ⇔ (t1, t2): relation matching, and
f5((s1, s2)) = include ⇔ f5((t1, t2)) = include: relation label matching,

we say s2 and t2 are structural matching, s2 � t2.

Fig. 9. An XML Schema S1 and a relational schema T1.
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Fig. 10. An isomorphic mapping between S1 and T1.

s3 � t3, for
f1(s4) = ProductType ⇔ f1(t3) = PName; f2(s3) = name ⇔ f2(t3) = name
f3(s3) = element ⇔ f3(t3) = field; f4(s3) = xs : string ⇒ f4(t3) = varchar;
(s1, s3) ⇔ (t1, t3); f5((s1, s3)) = include ⇔ f5((t1, t3)) = include.

s1 � t1, for
f1(s1) = Product ⇔ f1(t1) = PRODUCTS; f2(s1) = product ⇔ f2(t1) =

product;
f3(s1) = complexType ⇔ f3(t1) = TABLE;
(s1, s2) ⇔ (t1, t2); f5((s1, s3)) = include ⇔ f5((t1, t3)) = include;
(s1, s3) ⇔ (t1, t3); f5((s1, s3)) = include ⇔ f5((t1, t3)) = include;
(s1, s4) ⇒ (t1, t3); f5((s1, s4)) = include ⇔ f5((t1, t3)) = include.
Then, we obtain an isomorphism from S 1 to T1, which is a structural matching. In

other words, S 1 and T1 are structural equivalence. Using labeled graph, Fig. 10 shows
an isomorphic mapping between S1 and T1. 8

DEFINITION 8 (subschema isomorphism). If S is the source schema, T is the target
schema, Ssub ⊆ S , Tsub ⊆ T , then Ssub and Tsub are equivalent iff there exists a schema
isomorphism from Ssub to Tsub, written Ssub

∼= Tsub, called subschema isomorphism.

Subschema isomorphism is a natural generalization of the concept of isomorphism.
Since most schema matching tools are based on 1 : 1 matching (Rahm and Bernstein,
2001), these matching methods fall into subschema isomorphism. If we restrict matching
cardinality is 1 : 1, then maximum common subschema between S and T is called the
best matching result. It is means that the more individuals of two schemas are matched,
the more accurate schema matching is.

Maximum common subschema. A common subschema of two schemas S and T
consists of a subschema Ssub of S , and a subschema Tsub of T such that Ssub and Tsub are
isomorphic. The maximum common subschema of two schemas is a common subschema
that is not a proper subschema of another common subschema.

In Table 2, we summarize the relations between matching cardinality and homomor-
phisms.

8 REMARK 9. For schema homomorphism, if the mapping of two individuals preserves partial semantics,
we can define two individuals are matched. However, for schema equivalence, we define that two individuals are
semantically equivalent provided that the mapping preserves all the semantics between them. In other words, if
the mapping between two schemas is the strongest isomorphism, then they are equivalent.
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Table 2

Matching cardinality and homomorphisms

Matching cardinality Homomorphisms

one-to-one(equivalent matched) 1 : 1 schema isomorphism

one-to-one(partially matched) 1 : 1 subschema isomorphism

one-to-one(best matched) 1 : 1 maximum common subschema

many-to-one n : 1 schema epimorphism

many-to-many n : m schema homomorphism

7. Computational Complexity of SMP

In this section, we address the algorithmic complexity of SMP. All SMPs studied here are
clearly in NP.

For practical matching algorithm, we need an internal schema model, which is an
instance of the meta-meta model. For the most part the labeling functions of schemas are
either unary or binary, from Remark 3, the schema can be transformed into labeled graph
(attribute graph) model. In practice, there are various labeled graph models, such as OIM,
OEM, and DOM, etc. For later reference, suppose that two schemas are represented by
labeled graphs.

For using labeled graph as internal schema model, SMP reduces to labeled graph
matching, which are the classic combinational problem (Hell, 2003), and have been re-
searched deeply in various areas, such as pattern recognition, image processing (Bunke,
2000; Champin and Solnon, 2003), and knowledge reasoning (Mugnier, 2000; Chein and
Mugnier, 1992). By label graph model, we investigate the algorithmic complexity of SMP.

Theorem 2. The schema matching problem is NP-complete.

Proof. Two schemas are represented by labeled graphs. Suppose that we restrict the
matching cardinality is 1 : 1 or n : 1. If the labels are all semantic-related, all the
vertices are labeled the same notation, so do the edges, then SMP reduces to the di-
graph matching/homomorphism, given two digraphs G = (V, E) and G′ = (V ′, E′), is
there a mapping from V to V’ that satisfies: for all u, v of V , if (u, v) belongs to E then
(ϕ(u), ϕ(v)) belongs to E’? This problem is NP-complete since it contains as a particular
case of the NP-complete problem “clique” (Garey and Johnson, 1979, GT19; Chein and
Mugnier, 1992).

From Theorem 2, we have the following corollary.

COROLLARY 2. The subschema matching problem is NP-complete.

Proof. By Definition 4, if we restrict the subschema is S , the schema matching problem
is a particular case of subschema matching. From Theorem 2, the subschema matching is
NP-complete.
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PROBLEM 1: Schema monomorphism (injective schema matching)
INSTANCE: Given two schemas S and T in labeled graph model.
QUESTION: Is there a semantic monomorphism from IS to IT ?

Theorem 3. The schema monomorphism problem is NP-complete.

Proof. It admits as a particular case of the classic NP-complete problem “isomorphic
subgraph” (Garey and Johnson, 1979, GT48). The schema monomorphism problem asks
for whether there exists a subschema Tsub, S and Tsub is isomorphic.

PROBLEM 2: Subschema isomorphism
INSTANCE: Given two schemas S and T in labeled graph model.
QUESTION: Is there a semantic isomorphism from Ssub to Tsub?

Theorem 4. The subschema matching problem is NP-complete.

Proof. Two schemas are represented by labeled graphs. If we add the constraint that the
vertices have the same label, and edges have not labels, then the problem becomes equiv-
alent to the normal directed subgraph isomorphism, which is a NP-complete problem.
Just it is a particular case of “isomorphic subgraph” (Garey and Johnson, 1979, GT48).

If S and T are two labeled trees, then subschema isomorphism can be solved in poly-
nomial time (Chein and Mugnier, 1992; Garey and Johnson, 1979). If |IS | = |IT |, then
the problem transforms into graph isomorphism, which is still an open problem.

PROBLEM 3: Schema isomorphism
INSTANCE: Given two schemas S and T in labeled graph model.
QUESTION: Is there a semantic isomorphism from S to T ?

If we add the constraint that the vertices have the same label, and the edges are un-
labeled, then the problem becomes equivalent to the one of the existence of an isomor-
phism between any two digraphs. The graph isomorphism is NPI problem, if P �= NP
(Garey and Johnson, 1979). One approach is to define it as being its own complexity
class, isomorphism-complete. On the other hand, if a partial order on labels is defined, in
(Chein and Mugnier, 1992), they prove the labeled graphs isomorphism is NP-complete.
The particular case of LGI is polynomial equivalent to the NP-complete problem “iso-
morphic partial graph”. Then, we obtain the following property.

Property. If a partial order on labels is defined and the isomorphism has to be com-
patible with this order, then SISO becomes NP-complete. Otherwise, SISO problem is
isomorphism-complete.

Theorem 5. Maximum common subschema problem is NP-complete.

Proof. As in the proof of Theorem 2 and 4, two schemas are represented by labeled
graphs, we add the constraint that the vertices have the same label, and edges have not
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Table 3

Computational complexity of SMP and its subclasses

SHOMs / SMPs Complexity Class

Homomorphic SMP NP-complete

Isomorphic SMP Isomorphism-complete/NP-complete (Chein and Mugnier, 1992)

Subschema isomorphism NP-complete (Garey and Johnson, 1979)

Maximum common subschema NP-complete (Garey and Johnson, 1979)

Monomorphic SMP NP-complete (Garey and Johnson, 1979)

Epimorphic SMP NP-complete

Stable marriage matching P (Garey and Johnson, 1979)

labels, then the problem becomes equivalent to the normal maximum common subgraph,
which is a NP-complete problem (Garey and Johnson, 1979, GT49).

If the underlying labeled graphs of two schemas are trees, the maximum common
subschema problem can be solved in polynomial time. In addition, if we do not concern
the relations of schemas, i.e., we define that two individuals are matched only need satisfy
Condition 1 in Definition 2 and Definition 5, and do not concern Condition 2, then SMP
is reduced to a famous problem – stable marriage problem, also called stable marriage
matching, which can be solved in polynomial time (Garey and Johnson, 1979). The stable
marriage matching between two schemas can obtain 1 : 1 matching result.

Table 3 shows the basic conclusions of computational complexity of SMPs.

8. Conclusions and Future Work

A formal framework for SMP is very important because it facilitates the building of al-
gorithm model and the evaluation of algorithms. Therefore, the main point of this paper
is to develop an algebraic framework for generic schema matching.

In this paper, we have five contributions: First, since the schemas are the finite struc-
tures over the specific signatures, we propose the meta-meta model of schema, which
called generic matching-oriented model. This definition has a distinctive feature – it
is able to describe any particular style of schemas, and transforms a schema and other
matching information into a finite structure over specific signature. The signature is a col-
lection of individual, label, relation and function symbols. Second, we demonstrate that
SMP is equivalent to finding the schema homomorphism between two schemas. Then, the
algebraic framework for generic schema matching is developed, which is the main con-
tribution of this paper. Thirdly, we show a new classification of schema matching in the
context of SHOM (Definition 5) and individual matching (Definition 2). This algebraic
framework is able to characterize SMP elegantly. Later, we discuss matching cardinality
and some subclasses of homomorphism. We present the close relations between SMP
and homomorphisms, and also present the important concept – schema equivalence in
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algebraic framework: two isomorphic schemas are equivalent. Finally, using the labeled
graph as internal schema model, we investigate the algorithmic complexity of SMP.

It is well known that homomorphism is a useful model for a wide variety of combina-
torial problems dealing with mappings and assignments (Hell, 2003). In this framework,
SMP is transformed into a semantic homomorphism problem, which can guide practi-
tioner to design the effective algorithms for SMP and evaluate the algorithms. This is the
main reason why we develop this formal framework. Because SMPs are NP-hard prob-
lem, we can use the approaches of combinatorial optimization, such as neural network,
machine learning, local search, and other advanced optimization techniques to solve SMP.
These optimization approaches are widely used to solve graph homomorphisms or graph
matching problems (Bunke, 2000). For example, Champin and Solnon (2003) and Sorlin
and Solnon (2005) designed a greedy and a tuba search algorithm to solve n : m multi-
labeled graph matching. Zhang et al. (2005, 2006) proposed a hybrid search method to
implement schema matching based on the similarity of multi-labeled graph. In particular,
for achieving large-scale schema matching, we have to design fast and effective algo-
rithm. We can use local search, and tabu search, etc., meta-heuristic algorithms to find
the more accurate matching result.

For SMP, most approaches are restricted in 1 : 1 and n : 1 matching (Rahm and
Bernstein, 2001). Few methods can obtain n : m mappings, so that we will investigate
the n : m matching algorithms in the near future. The proposed algebraic framework is
available for characterizing the many-to-many mappings. On the basis of this framework,
for realizing the n : m matching, we are going to use approximate matching techniques.
For instance, if the matching algorithm uses the labeled graph as internal schema model,
we can design the approximate matching algorithms that based on the basic graph homo-
morphism or isomorphism approaches (Champin and Solnon, 2003; Hell, 2003; Melnik,
2004; Mugnier, 2000; Sorlin and Solnon, 2005), to achieve n : m matching. In particular,
by use of the approximate matching algorithms, we may obtain the matching result more
accurate and fast.

In addition, a homomorphism problem can be polynomially transformed into a con-
straint satisfaction problem (CSP) and H−coloring problem (Gottlob et al., 2001; Hell,
2003; Mugnier, 2000). We can research SMP in CSP framework. Moreover, Frigioni et
al. (2001) considered the dynamic version of some polynomially solvable CSPs, and
presented solutions that are better than recomputing everything from scratch after each
update. The dynamic or incremental algorithms of SMP will be investigated shortly.
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Algebrinė ontologijos atitikimo schema

Zhi ZHANG, Pengfei SHI, Haoyang CHE, Jun GU

Formali ontologijos atitikimo uždavinio schema yra svarbi, nes palengvina algoritminio mo-
delio kūrim ↪a ir algoritm ↪u ↪ivertinim ↪a. Šiame straipsnyje išvystyta algebrinė ontologijos atitikimo
schema. Pirmiausia, remiantis universalia algebra pasiūloma ontologijos meta-meta struktūra,
kuri vadinama daugelio žymi ↪u ontologija. Vėliau pristatomas formalus ontologijos atitikimo
apibrėžimas, vadinamas daugiareikšmiu atitikimu. Tada ontologijos atitikimo uždavinys formali-
zuojamas homomorfizmo uždaviniu ir ↪irodoma, kad nagrinėjamas uždavinys yra ekvivalentus se-
mantinio homomorfizmo nustatymui. Tai leidžia sukurti algebrin ↪e uždavinio schem ↪a ir algoritmin↪i
model↪i. Dar vėliau parodomas ontologijos atitikimo klasifikavimas, pagr↪istas algebrine schema.
Galiausia, aptariamas atitikimo matmen ↪u ir homomorfizmo poklasi ↪u ryšys.


