
INFORMATICA, 2008, Vol. 19, No. 3, 345–362 345
© 2008 Institute of Mathematics and Informatics, Vilnius

Viewcharts: Syntax and Semantics

Ayaz ISAZADEH, Jaber KARIMPOUR
Department of Computer Science, University of Tabriz
29 Bahman Blvd., 5166616471 Tabriz, Iran
e-mail: karimpour@tabrizu.ac.ir

Received: 3 September 2006; accepted: 3 July 2007

Abstract. In this paper, we present a method for describing the syntax and semantics of viewcharts.
Viewcharts is a visual formalism for describing the dynamic behavior of system components. We
define the syntax of viewcharts as attributed graphs and, based on this graph, describe dynamic
semantics of viewcharts by object mapping automata. This approach covers many important con-
structs of viewcharts, including hierarchy of views, ownership of elements, scope, and composition
of views in SEPARATE, OR and AND ways. It also covers completion and interlevel transitions as
well as history transitions without violating the independence of views. Viewcharts was originally
based on statecharts; in this paper we also change the basis of viewcharts to an extended version of
Finite State Machine (EFSM).

Keywords: visual languages, viewcharts, syntax definition, formal operational semantics, object
mapping automata.

1. Introduction

The most costly errors, as Parnas states (Parnas, 2000), are those made early in the pro-
cess. Requirements specification is an early phase in the software engineering process.
Statistically speaking, studies in Bell Labs and IBM have shown that 80% of all de-
fects in software systems are inserted in the requirements phase. A complete and precise
requirements specification, therefore, is an important part of the software engineering
process. The Precise specification of the requirements, in turn, requires a formal method.
For large-scale software systems, however, using current formal methods can be com-
plex and difficult. The difficulties of managing a large volume of formal specifications
have made formal methods impractical for large-scale systems, Partly due to the way
in which formal specifications are presented. Large volumes of specifications presented
textually, many pages of mathematical and/or logical statements, are indeed difficult to
produce, read, understand, and verify, specially for the user side. We may accept that the
specifiers are requirements engineers, who are technical people and are supposed to be
experts in producing formal specifications. However, the users who are supposed to at
least read, understand, and verify the specifications are not normally too enthusiastic to
get involved with such formal texts. The presentation of formal specifications, therefore,
is an important factor for practicality of formal methods. This is one factor that the soft-
ware industry has been resisting against using formal approaches in software engineering

346 A. Isazadeh, J. Karimpour

practices. Visual formalisms are introduced as an attempt to simplify the presentations
of formal specification. Visual formalisms are generally FSM-based techniques, the most
popular of which is statecharts.

1.1. Complexity of Scale

In conventional finite state machines, the number of states grows exponentially as the
scale of the system grows linearly. This growth leads to a blow-up in the number states
for large-scale systems. Drusinsky and Harel (Drusinsky and Harel, 1988; Drusinsky and
Harel, 1994) prove that statecharts is exponentially more succinct than finite state ma-
chines. The proof is based on the cooperative concurrency mechanism (i.e., orthogonal-
ity) of statecharts and can be applied to other models that use this mechanism such as
Petri Nets (Peterson, 1977) or CSP (Davies, 1993; Hoare, 1978). If we assume that an
increase in the scale of a system results in additional orthogonal components in the cor-
responding statechart, then the number of states in the statechart has a linear relationship
with the scale of the system. Orthogonality is, infact, a powerful feature in statecharts.
However, it is not clear that any increase in the scale of a system does result in additional
orthogonal components. For example, if an increase in the scale of a system, corresponds
to additional complexities in the existing orthogonal components, then the increase in the
number of states would still be exponential.

Another problem with statecharts is the global name space. There is no “visibility”
control mechanism in statecharts. (The term visibility is defined in terms of declaration,
scope, and binding; a visibility control mechanism, essentially, refers to a mechanism
that controls scope (Wolf et al., 1988).) When an event occurs, it is sensed throughout the
system, so it must have a unique name. Managing the name space in the global environ-
ment of statecharts, for large scale software systems, can be difficult. Name management,
in general, is one of the fundamental issues in software engineering (Kaplan and Wile-
den, 1995).

These problems, specially the complexity of scale, are inevitable problems as log as
we try to specify the system as a whole. How practical is it to accurately and fully de-
scribe a system while we can only work with our limited “views” of the system? One can
only describe one’s “view” of the world. A user’s attempt to specify a system, at best,
can only result in the specification of his or her “view” of the system. The viewcharts for-
malism (Isazadeh et al., 1999) accepts this reality and specifies the behavior of a system,
formally and visually, as a composition of “views”. And, that is the formalism which we
will work with.

1.2. Problem

The overall and general problem is to discover whether there can be a practical and useful
formal method for behavioral requirements specification of large and complex systems.

A solution to this problem is to pick (and if necessary modify) an existing formalism,
or introduce a new one, with the following desirable characteristics:

Viewcharts: Syntax and Semantics 347

1. Must be visual and thereby simple to use.
2. Must solve the problem of complexity of scale in the best possible way.
3. Must solve the problem of global name space in the best possible way.
4. Must have precise and sound syntax and semantics.
5. Must allow the possibility of system modeling, simulation and verification.
6. Must allow the possibility of formally reasoning about the system behavior.

The problem addressed by this paper is to present the solution, satisfying the items
1–4 above, and setting the stage ready for a future work on the next two items.

1.3. Paper Outline

The paper is organized in four sections. In this section, we have stated the problem and
have provided the desirable characteristics of the proposed solution. The list characterizes
a good solution, basically, as a formal method based on a sound syntactic and semantic
foundation. Section 2 provides a brief overview of viewcharts, which is the notation of
our choice, and the related work on this notation. Section 3 describes our solution by
presenting the sound syntactic and semantic foundation for viewcharts. Finally, Section 4
returns to the list of desirable characteristics of our solution, presents a discussion of the
viewcharts’ syntax and semantics with respect to the list, and concludes the paper with a
summary of the results and future directions.

2. Previous Work

In this section, we provide a brief overview of the viewcharts formalism (a separate pa-
per (Isazadeh et al., 1999) describes it in more detail) and discuss the related work on the
syntax and semantics of this formalism.

2.1. Overview of Viewcharts

As mentioned above, the viewcharts formalism (Isazadeh et al., 1999) attempts to specify
the behavior of a system as a composition of “views”. Intuitively, a view (or behavioral
view) is a complete description of the behavior of a system observable from a specific
point of view. A client’s view of a server, for example, is the behavior that the client
expects from the server. The caller view of a telephone set and the telephone set’s view
of a switching system are also examples of behavioral views.

Using this notion of view, viewcharts is designed to specify the behavioral require-
ments of large-scale complex systems on a need-to-specify basis. In viewcharts, one does
not have to specify the full behavior of a system and, therefore, is not concerned with
the complexity or scale of the system. A complex system may consist of many different
sub-systems and components, distributed worldwide, and it may exhibit a combination of
many different and identical behavioral views. Current research and industrial advances
in networking and distributed systems indicate that software systems will continue to
get larger and more complex. One cannot envision producing an integrated behavioral

348 A. Isazadeh, J. Karimpour

requirements specification for an arbitrarily large and complex system. However, if we
define the behavior of a system in terms of behavioral views, then all we need to do is
to specify the views of our interest. The viewcharts formalism allows these views to be
specified independent of each other. Furthermore, views in viewcharts limit the scope of
broadcast communication, solving the problem of global name space.

2.1.1. The Origin of Viewcharts
Introduced by Ayaz Isazadeh in his Ph.D. thesis (Isazadeh, 1996), the viewcharts no-
tation was defined based on statecharts (Harel, 1987; Harel and Naamad, 1995). State-
charts, however, has no concept of behavioral views. Viewcharts extends statecharts to
include views and their hierarchical compositions. The leaves of the hierarchy, described
originally by independent statecharts, represent the behavioral views of the system or its
components. The higher levels of the hierarchy are composed of the lower level views.

The first thing we do in this paper is to use classic finite state machines, with some ex-
tensions (EFSM), to represent the leaves of the viewcharts hierarchy. This would provide
us with a firm foundation for our syntax and semantics.

2.1.2. Ownership of Elements
Viewcharts normally limits the scope of an element (event, action, or variable) to a given
view. However, composition of views may require communication between the com-
posed views; the scope of an event in one view, for example, may be extended to cover
other views. In a given view, therefore, viewcharts must distinguish two different types
of events:

• Events that belong to (or are owned by) the view: These are the events that the view
can trigger. They must be declared by the view.

• Events that do not belong to the view: The view cannot trigger these events. An
event of this type can occur only if it is triggered elsewhere and if the view is
covered by the scope of the event.

An action belongs to the view (or views) that generates (or generate) the action. Sim-
ilarly, a variable belongs to the view that declares it. The scope of a variable declared by
a view is the view and all its subviews. An event or action may have multiple owners.

Syntactically, elements owned by a view can be declared by listing them following the
name of the view either in the viewchart, as in Fig. 1, or out of it as a separate text. It may
be necessary to identify a view by its fully or partially qualified name, which consists of
the base name prefixed by the names of its ancestors in the hierarchy separated by dots.

2.1.3. Composing Behavioral Views
Views can be composed in three ways: ş, o̧r, and ¸and compositions. Except for the effect
of ownership and scoping restrictions, the o̧r and ¸and compositions of views, in view-
charts, are similar to the o̧r and ¸and compositions of states, in statecharts. The ş com-
position of views, however, is specific to viewcharts. In a composition of views, similar
to the notion of depth in statecharts, the composed views form a superview which is an
encapsulation mechanism, inherent to the composition.

Viewcharts: Syntax and Semantics 349

Fig. 1. Composition of views in a viewchart (from (Isazadeh, 1996)).

In a ş composition of views, all the views are active if any one of them is active;1 no
transition between the views is allowed; the scopes of all the elements are unaffected; and
any subview or state in one view is hidden from (i.e., cannot be referenced by) the other
views. Visually, the şed views are drawn on the top of each other, giving the impression
that they are located on different planes and, consequently, are hidden from each other.
As shown in Fig. 1, these views are either identical, like V3 and V4, or different, like V5
and V6.

The o̧r and ş compositions are similar, except that in an o̧r composition, only one view
can be active and there can be transitions between the views. Like the ş composition, any
subview or state in one view is hidden from (i.e., cannot be referenced by) the other views.
In Fig. 1, for example, the view V consists of an o̧r composition of V1 and V2.

In an ¸and composition of views, all the views are active; the scopes of all the elements
owned by each view are extended to the other views. All the subviews and states in one
view are visible to (i.e., can be referenced by) the other views. The viewchart of Fig. 1,
for example, is composed of a ş composition of V5 and V6, which in turn is ¸anded with
V7 forming V3. A ş composition of two identical views V3 and V4 forms V2. The full
view V is an o̧r composition of V1 and V2.

2.2. Related Work

There is a body of work on statecharts semantics in the literature; e.g., (Jin et al., 2004;
Beeck, 2002; Borger et al., 2000). In (Michelle et al., 2005), there is the result of a
comparative literature survey on approaches to formally capturing the semantics of UML
state machines; it categorizes and compares 26 different approaches.

Work on the formal syntax and semantics of viewcharts, however, is limited to the
following two major cases:

1A view is active whenever the system is in a state of the view.

350 A. Isazadeh, J. Karimpour

1) a set theoretic-based semantics of Viewecharts (Isazadeh, 1996) and,
2) an algorithmic semantics of viewcharts via translattion to statecharts (Isazadeh

and Lamb, 1996).

In the first case, Isazadeh establishes a sound foundation for the formalism by provid-
ing a set theoretic-based semantics. The resulting semantics, however, does not have any
tool support and is not suitable to interface with modeling tools, violating the character-
istics 5 and 6 of our solution. The second case is an attempt to establish the semantics of
viewcharts via translating it to statecharts. This attempt, at its best, would loose any ad-
vantages that viewcharts has compared to statecharts, violating the characteristics 2 and
3 of our solution. Consequently, a formal semantics, providing an unambiguous interpre-
tation of viewcharts diagrams, independent of statecharts is needed.

3. Syntax and Semantics of Viewcharts

We use a predicate-based approach, the Graph Type Definition Language (GTDL) (Jan-
neck, 2000; Janneck, 1998a), for defining the syntax and static semantics of viewcharts.
The reason for choosing this approach is mainly due to the strong tool support from the
Moses tool suite (Janneck, 1997).

For the dynamic semantics viewcharts, we present an operational approach using Ob-
ject Mapping Automata (OMA) (Janneck, 2000; Janneck, 1998b). In this approach, the
attributed graph of a well-formed viewcharts diagram is compiled into OMA algebraic
structures. Based on these structures, the diagram is interpreted as an OMA composed of
two rules: an initialization rule and a run-to-completion rule. The first rule includes the
tasks for setting the initial system states (system configuration), when the viewcharts is
instantiated. After the initialization, the OMA iteratively executes the second rule, allow-
ing the viewcharts instance to dispatch and process events in its event queue.

Our method for describing the syntax and semantics of viewcharts is inspired by Jin
Yan and others (Jin et al., 2004), where the syntax of UML statechart represented by the
Graph Type Definition Language (GTDL), which is a small domain-specific language
and part of the Moses tool suite (Janneck, 1997). Well-formedness rules are represented
as predicates over the abstract syntax of these graphs. The semantics of UML statechart is
then represented as Object Mapping Automata (OMA) (Janneck, 2000; Janneck, 1998b).
The Moses tools suite allows users to edit, simulate and automatically analyze such a
system (Jin et al., 2004; Janneck, 1997). In this section we expand Jin Yan and others
method (Jin et al., 2004) to present an approach for describing the syntax and semantics
of viewcharts.

3.1. Syntax Definition

This section briefly outlines the description of the syntax of viewcharts in the Graph Type
Definition Language (GTDL). GTDL is used in the Moses project to define new graph
types (Janneck, 2000; Janneck, 1998b). The definition of a graph type basically consists
of two parts:

Viewcharts: Syntax and Semantics 351

• A list of the kinds of vertices and edges in graphs of this type, together with defi-
nitions of their attributes and information about their graphical appearance.

• A list of constraints (predicates) on an attributed graph structure which must be
fulfilled for the graph to be well-formed.

Attributes are simply name-value pairs, where technically the name is a Java String Ob-
ject, while the values may be any objects suitable as an assignment for the attribute.

Given viewcharts, its abstract syntax (kinds of elements and their connectedness), is
defined as an attributed graph. Formally, an attributed graph is a tuple:

(V er, Edg, src, dst, cntr, α),

where

• V er and Edg are disjoint sets of vertices and edges,
• src, dst: Edg → V er are total functions, mapping each edge to its source and

target vertices.
• cntr: V er → V er is a partial container function mapping a vertex v ∈ V er to its

container.
• α: (V er ∪ Edg) × A → U is a partial attribute function mapping a graph object

o ∈ V er ∪ Edg and an attribute name in A to an attribute value in U . Here, we
assume A and U are universal sets of attribute names and values respectively.

The attribution function α contains all information except for the connection structure
of the graph. It is important to choose U to contain a relevant set of different kinds of
attribute values, e.g., attributes may contain subgraphs.

The syntax of viewcharts is defined in two parts: (1) a definition of language-specific
semantic attributes and appearance of graph objects (such as states and transitions) and
(2) a specification of the well-formedness rules of viewcharts.

Fig. 2 illustrates a part of the GTDL syntax specification for viewcharts. After attribute
definition, types of graph objects are defined in specification. These include three kinds of
vertices (composite view, basic view and history pseudostates) and one kind of edge (tran-
sations). In defining each vertex or edge, the semantic attributes of this type are listed.
For example, in Compositeview vertex, an attribute hold the graph type of that graph for
describing hierarchy of views. In addition to semantic attributes, each type of graph ob-
ject also can have attributes representing their graphical appearance (e.g., shape, color
and default size). Apart from these, a composite view have additional boolean attributes
(attribute is ş, if it is a ş composition and is Cuncurrent, if it is an ¸and composition).

Predicates describe the well-formedness rules of viewcharts (Number 6–9). Each
predicate defines a boolean formula which must be true for every well-formed viewcharts
diagram. A predicate my be declared to declare attributes of a vertex. For instance, pred-
icate P2 declares local elements (events, actions and variables) of a vertex and predicate
P3 shows that the visible elements of a given view are elements either declared by it or
declared by its superview. Predicate P4 shows that each view can only trigger its visible
events.

352 A. Isazadeh, J. Karimpour

graph type Viewcharts{
1. attribute set Events, Actions, Variables.
2. vertex type Compositeview(String Name,

graph(Viewcharts, Subview, Basic View),
bool isş, bool isConcurrent)
graphics(string shape= “RoundRect", ...)

3. vertex type Basicview(String Name, graph(EFSM))
graphics(string shape= “RoundRect", ...)

4. vertex type History(bool isDeep)
graphics(string shape=“Ellipse", Lable= if Deep then “H*" else “H”, ...)

5. edge type Transition (expr trigger, expr guard, expr action)
graphics(...).

6. predicate P1 : ∀t ∈ Transition:
src(t) and dst(t) ∈ Basicview+History+Compositeview

7. predicate P2 : ∀v ∈ Vertex:
α(v, LocallyElements) = Events + Actions + Variables

8. predicate P3 : ∀v ∈ Vertex:
α(v, V isibleElements) = LocallyElements+
α(cntr(v), V isibleElements)

9. predicate P4 : ∀t ∈ Transition:
t(trigger) ∈ α(v, V isibleElements)

... }

Fig. 2. Syntax definition of viewcharts(abridged).

As mentioned in Section 2, in viewcharts a basic view is defined as an statechart. In
our definition viewcharts, however, we use an Extended version of Finite State Machine
(EFSM) to represent a basic view. Fig. 3 describes the syntax specification of the EFSM.

3.2. Semantics Definition

In this section, we use Object Mapping Automata (OMA) as a formal language to define
the semantics of viewcharts. We specify the semantics in two steps: structure formal-
ization and operational semantics definition. At the first step we compile the attributed
graph representing viewcharts diagram into OMA algebraic structures. then, we specify
the operational semantics of the diagram by two rules: (1) an initialization rule is executed
when an instance of the viewcharts diagram is created and initializes the state configura-
tion of the instance; (2) a run-to-completion rule starts to run after the initialization and
iteratively processes events one at a time.

Viewcharts: Syntax and Semantics 353

graph type EFSM{

1. vertex type Initial()
graphics(string shape=“BlackDot",int width=8,int width=8).

2. vertex type State(string Name)
graphics(string shape= “RoundRect", color Fillcolor=“white",...)

3. vertex type History(bool isDeep)
graphics(string shape=“Ellipse", Lable= “H”, ...)

4. vertex type Final(...)
graphics(string shape= “CircledDot", ...).

5. edge type Transition (expr trigger,expr guard,expr action)
graphics(...).

6. predicate p1 : ∀e ∈ Transition:
src(e) ∈ Initial + History+ State
dst(e) ∈ History+ State + Final

... }

Fig. 3. Syntax definition of EFSM(abridged).

3.2.1. OMA Algebraic Structure Formalization
Given the attributed graph of a viewcharts diagram (V er, Edg, src, dst, cntr, α), we first
compile it into OMA algebraic structures.

At first, we classify the view and state vertices in Fig. 4. views and states are iden-
tified according to attribute “type” of the vertices including composite views Vc, basic
views Vb, simple states Ss, final states Sf and initial states Si. According on attribute
“isConcurrent” and “isş”, Vc is further divided into three disjoint views: ¸and views Vcc,
ş views Vse and o̧r views Vsc. As mentioned in 2.1.3, in ş and o̧r composition of views,
the scopes of all the elements are unaffected, but in ¸and composition of views, the scopes
of all elements owned by each view are extended to other views, we have shown this fact
in number 3 of Fig. 4. Finally, Ss, Sf and Si constitute the set of states S. We define
three kinds of pseudostates: initial Pi, shallow history Psh and deep history Pdh. Each
pseudostate include set of views and states. We let Ph = Psh ∪ Pdh and P = Pi ∪ Ph.
Also on the basis of the edges Edg, we let T := Edg for set of transitions in viewcharts.

Then, we model the view hierarchy in the diagram, using the OMA. Fig. 5 includes
the definitions of five relations over vertices. Function cntr is a containment function
mapping a vertex into the composite vertices directly enclosing it. For a vertex v at the top
level we will have cntr(v) = ⊥. Function subs(v) refers to the set of (direct) subviews
of a given composite view v ∈ Vc. We let subs(v) return an empty set for a simple states
in Basic view. For example we have subs(V) = {V1, V2}, subs(V3) = {V5, V6, V7},
subs(V7) = {A, B, C} and subs(A) = ∅ in Fig. 1. Function default returns the initial
view or state of a given view. For instance, we have default(V) = V1 in Fig. 1. The
boolean function “cover” determines whether views v transitively contains view u, in

354 A. Isazadeh, J. Karimpour

1. Vc ≡ {v ∈ V er|α(v, “type”) = “Compositeview”}
2. Vb ≡ {v ∈ V er|α(v, “type”) = “Basicview”}
3. Vcc ≡ {v ∈ Vc|α(v, “isConcurrent”), α(v, “V isibleElement”) :=

⋃
∀v∈Vcc)

α(v, “V isibleElement”)}
4. Vse ≡ {v ∈ Vc|α(v, “is”}
5. Vsc ≡ Vc\(Vcc ∪ Vse)
6. V ≡ Vb ∪ Vc

7. Ss ≡ {v ∈ Vb|α(v, , “type”) = “Simple”}
8. Sf ≡ {v ∈ Vb|α(v, “type”) = “Finale”}
9. Si ≡ ∪ {v ∈ Vb|α(v, “type”) = “Initial”}

10. S ≡ Ss ∪ Sf ∪ Si

Fig. 4. Views and states classification.

1. cntr ≡ {v → t|v ∈ V ∪ S ∪ P, t ∈ Vc, cntr(v) = t}
∪ {v → TOP|v ∈ V, cntr(v) = ⊥},

2. subs ≡ {(cntr(v), v)|v ∈ V, v 	= TOP} ∪ {∅|cntr(v) ∈ Vb},
3. default ≡ {cntr(src(e)) → dst(e)|e ∈ T, src(e) ∈ Pi},
4. cover ≡ {(v, u)|v ∈ V, u ∈ V ∪ S, v ∈ cntr+(u)},
5. ´cover ≡ cover ∪ {(v, v)|v ∈ V}.

Fig. 5. View hierarchy decoding.

other words, whether there exists a sequence of composite views v1, ..., vk ∈ Vc for
k < |Vc| such that cntr(u) = v1, ..., cntr(vk) = v. The function cntr+ denotes the
transitive closure of cntr. For instance in Fig. 1, (V, V2), (V, V5), (V7, A) ∈ cover and
(V1, V2) /∈ cover.

3.2.2. Initialization
If we represent a system by a single Finite State Machine (FSM) (where the system can
only be in one state of the FSM at any instant in time), then each state of the system
corresponds to a set of the FSM. However, if we represent the system by an extended
FSM such as viewcharts (where the system can be in many states of these machines at any
instance in time), we will refer to the state of a system as the configuration of the system; a
system configuration can be represented by a set of active views and states in viewcharts.
To decode the behavior of a view, it is important to understand its configuration. We let

 denote the current configuration of viewcharts in Fig. 6.

The initialization rule, shown in Fig. 6, initializes configuration of viewcharts. It first
shows an auxiliary set ϕ of pending views and states to be entered. Initially ti contains
the top view, and then running in a loop. The loop continues while ϕ is not empty. In each
run of the loop, all views or states currently in ϕ are handled in parallel. For a O̧R view,

Viewcharts: Syntax and Semantics 355

1. Set
 = ∅;
2. TOP:=Full VIEW
3. Initialize;
4. Set ϕ := {TOP}.
5. ∀v ∈ ϕ :
6.
 :=
 + {v}, ϕ := ϕ − {v},
7. if v ∈ Vcc then ϕ := ϕ + subs(v);
8. if v ∈ Vsc then ϕ := ϕ + {default(v)};
9. if v ∈ Vse then ϕ := ϕ + subs(v)};

10. if v ∈ Vb then ϕ := ϕ + {default(v)};
11. genCmplevt

Fig. 6. Initialization rules of viewcharts.

only its unique default subview is added, for an ¸AND view, all its direct subviews are
added, for a Ş composition of views all its subviews are added, while, for a Basic view,
its initial state is added.

After the loop, the rule attempts to generate a completion event using a macro
genCmplevt.

3.2.3. Preliminary Definitions
A viewcharts instance is ready to execute after the initialization. Before execute the ex-
ecution rule, we introduce a few more macro definitions shown in Fig. 7. Firstly, given
a transition t ∈ T , lcp(t) maps it to the Last Common Progenitor (LCP) view of t , the
lowest composite view that contains all the source and target of t . In other word lcp(t)
is the view covered by any other view in the chain of views hierarchy. Auxiliary macro
cp determines the set of common progenitor for a given set of views or states. The lcp(t)
is decoded by considering composition of views and a consequently extended scope. The
main sources ms(t) of a transition t are either src(t) if lcp(t) is sequential or sepa-
rate view, or union of src(t) for all subviews in lcp(t) if lcp(t) is concurrent view. The
main target mt(t) of t has the same definition except that it ought to cover all the target
views of t in the last case. In addition, the states or views that, if active, must be exited
when t is executed are defined by exited(t). This set includes the main source of t and
all the views and states covered by it. For example in Fig. 1, we have lcp(a) = V4,
ms(a) = {V5.A, V6.A, V7.A} and mt(a) = {V5.B, V6.B, V7.B}.

Recall that the scope of an element owned by a superview covers all its subviews.
Therefore, different subviews can use an element owned by their superview in different
values; doing so can result in conflicting views. Mean while in an A̧ND composition,
the scope of element covers all the composed views, so ¸anding views can result in con-
flict (Isazadeh, 1996; Isazadeh et al., 1999). The function conflict−views decode this
condition. Also two transitions t and t

′
are in conflict if they can be enabled by the same

event and also if firing them results in a common non-empty set of views or states to be

356 A. Isazadeh, J. Karimpour

1. cp ≡ {X �→
⋂

q∈X cntr+(q)|X ⊆ V ∪ S ∪ Ph};
2. lcp ≡ {t �→ l|t ∈ T, cntr(l) ∈ Vce ∪ Vsc, l ∈ cp(src(t) ∪ dst(t)),

∀́l ∈ cp(src(t) ∪ dst(t)), cover
′
(́l, l), t ∈ α(v, V isibleElements)}

∪ {t �→ cntr(l)|t ∈ T, cntr(l) ∈ Vcc, l ∈ cp(src(t) ∪ dst(t)),
∀́l ∈ cp(src(t) ∪ dst(t)), cover

′
(́l, l)}

3. ms ≡ {t �→ m|t ∈ T, m ∈ src(t), cntr(m) = lcp(t) ∧ lcp(t) ∈ Vse ∪ Vsc},
∪ {t �→

⋃
v∈lcp(t) v.m|t ∈ T, m ∈ src(t), lcp(t) ∈ Vcc}

4. ms ≡ {t �→ m|t ∈ T, m ∈ dst(t), cntr(m) = lcp(t) ∧ lcp(t) ∈ Vse ∪ Vsc},
∪ {t �→

⋃
v∈lcp(t) v.m|t ∈ T, m ∈ dst(t), lcp(t) ∈ Vcc}

5. exited ≡ {(t , v)|t ∈ T, v ∈ V, cover
′
(ms(t), v)} ∪ {(t , s)|t ∈ T, s ∈ S,

cover
′
(ms(t), s)},

6. conflict−views ≡ {(v, v
′
)|v, v′ ∈ V, v 	= v

′
, x ∈ α(v, V isibleElement)

∩α(v
′
, V isibleElement), value(x , v) 	= value(x , v

′
),

7. conflict−transitions ≡ {(t , t
′
)|t , t ′ ∈ T, t 	= t

′ ∧ trg(t) = trg(t
′
)

src(t) ∩ exited(t
′
) 	= ∅},

8. priority ≡ {(t , t
′
) ∈ conflict|t , t ′ ∈ T, ∃v ∈ src(t), u ∈ src(t

′
),

cover(v, u) ∧ ∀v ∈ src(t), u ∈ src(t
′
), ¬cover(u, v)}

Fig. 7. Introductory definitions.

exited. Otherwise, they are called consistent. Relation conflict−transitions consists of
pairs of transitions that are in conflict with each other. Clearly, conflict is irreflexive and
symmetric.

Relation priority specifies the firing priority between two conflicting transitions.
More specifically, a transition originating from a vertex v ∈ V has a higher priority
than another transition originating from a vertex v

′ ∈ V such that cover(v, v
′
). Given

two transitions t , t
′
, (t , t

′
) ∈ prior indicates that, if both enabled, t

′
has a higher pri-

ority to be executed than t . In the following, we shall use conflict−transitions(t) and
priority(t) for a given transition t to denote the set of transitions in conflict with t and
the set of transitions with priority over t , respectively.

3.2.4. Specifying Executable Steps
We are now able to specify the event processing of an active view by Fig, 8. First of
all, three global variables Qevt, cmplevt and hc are declared. Qevt represents the event
queue of a view. cmplevt is a boolean variable indicating the existence of a pending
completion event. Completion events are a special kind of event generated when some
view is completed. They have priority over normal events in Qevt to be processed. hc

is a map associating a history pseudostate with a set of the last active views contained
(or covered) by the composite view directly containing the pseudostate. Note that
 is
considered as a map from each view to a boolean denoting whether the view is active.

The exeute rule firstly set events e triggered by active views in Qevt, then this rule
checks for a pending completion event and, if it succeeds, handles it using a macro

Viewcharts: Syntax and Semantics 357

1. set Qevt = ∅; bool cmplevt = false; function hc arity 1;
2. rule exequte:
3. Qevt = {e ∈ α(v, V isibleElements)|v ∈
 }
4. if cmplevt then handleCmplevt

5. elseif Qevt 	= 0 then
6. choose ce ∈ Qevt:
7. Qevt := Qevt − {ce},
8. enabled = {t ∈ T |trg(t) = ce ∧ src(t) ⊆
 ∧ eval(grd(t),
)}
9. firing(enabled)

Fig. 8. Execute rule.

handleCmplevt (described later). If no such an event exists, it randomly dequeues an
event ce in the event queue (if any) of an active view. This event is called the current
event. Next, a set of transitions enabled by ce is computed. This set consists of transitions
whose source views or states are all currently active, whose triggers match the current
event, and whose guards are evaluated to TRUE. The guards are evaluated by eval(),
which we have assumed is an external function provided by the runtime environment.
When enabled transitions are present, a macro firing(enabled) (illustrate in Fig, 9.) is
used.

The main job of firing is to compute and fire a maximal subset of the enabled transi-
tions which are not in conflict with each other. This subset is called a maximal consistent
set denoted by firable. In Fig. 9, initially, the set is empty. At each pass of the loop, a
new transition is added that is enabled and consistent with all the existing transitions and
over which no enabled transition has priority. The loop finishes when no transition can
be added. Note that in computing firable, we accommodate a nondeterministic choice
between conflicting transitions when the conflicts cannot be resolved by priority. This
allows viewcharts to be used for capturing requirements at early stages of system design
where many design decisions have not yet been made. With the maximal consistent set
computed, we can execute the transitions in the set in parallel due to their mutual consis-
tency. The execution of a single transition consists of a sequence of steps (Lines 7..10):
exiting the main source, executing the transition effect, and entering the main target.

Exit(ms) macro in Fig. 10 involves exiting all views or states in given main
source(ms). At first, a local set variable ϕ records views and states to be exited. It in-
cludes the active states covered by the main source. Then, at each step of the loop, all
states or views in ϕ are exited independently. Also, at each pass ϕ is refreshed with the
containers of the exited states. Special attention is paid to a view that can be exited only
if none of its substates or subviews are active (Line 5). For handle history transitions,
Fig. 11, update history pseudostates for a given ms. In this figure H includes all the his-
tory pseudostates contained by active views and covered by ms. The contents of this set
refreshed for shallow and deep history.

358 A. Isazadeh, J. Karimpour

1. firing(enabled) ≡ begin
2. set firable = ∅;
3. loop
4. choose t ∈ enable − firing

5. with (conflict−transitions(t) ∩ firable = ∅ ∧ priority(t)
∩enabled = ∅ ∧ conflictviews = ∅)

6. firable := firable + t
7. endloop
8.
9. do forall t ∈ firable:

10. exit(ms(t))
11. exec(eff(t))
12. enter(mt(t), dst(t)):
13. genCmplevt()

Fig. 9. Firing enabled transitions.

1. exit(ms) ≡ begin
2. set ϕ =
 ∩ cover

′
(ms) :

3. setHistory(ms)
4. loop
5. do forall s ∈ ϕ with subs(s) ∩
 = ∅ :
6.
 :=
 − {s}, ϕ = ϕ − {s}
7. if s 	= ms then ϕ = ϕ + {cntr(s)}

Fig. 10. Exiting the main source.

Entering the main target results in views and states including the main target and some
views or states covered by it to be entered in an outside-in order. The entering procedure
is similar to the entering of the top state in the initialization rule. The main difference is
that if the main source or some target state is a history pseudostate s, the states recorded
by hc(s) needs to be entered rather than s. Details are given in Fig. 12. Given a main target
mt and a set TS of target states, the entering procedure starts with mt, which is initially
a pending view or state in ϕ For every v, s ∈ ϕ, If v or s is a history, it is removed from
ϕ, a specific state q is added to ϕ, and all states in hc(s) are added to AT , an auxiliary set
initially consisting of all views or states in TS. If v or s is a shallow history, then q is the
unique view or state recorded in hc(s). Or if s is a deep history, then q is the view in hc(s)
at the highest level of view hierarchy. Furthermore, if s is a view or state, it is entered.
Selecting the subviews or substates to enter is similar to the initialization rule shown in
Fig. 6.

Viewcharts: Syntax and Semantics 359

1. setHistory(ms) ≡
2. let H = {h ∈ Ph|cntr(h) ∈
 ∩ cover

′
(ms)} :

3. do forall h ∈ Psh ∩ H :
4. hc(h) := subs(cntr(h)) ∩

5. do forall h ∈ Pdh ∩ H :
6. hc(h) := cover(cntr(h)) ∩

Fig. 11. History update.

1. enter(mt, TS) ≡ begin
2. set ϕ := {mt}, AT := TS :
3. loop
4. do forall v ∈ ϕ

5. ϕ = ϕ − {v}
6. if v ∈ Psh then ϕ = ϕ + hc(v), AT := AT + hc(v)}
7. elseif v ∈ Pdh then
8. ϕ := {q ∈ hc(v)| ∀q

′ ∈ (v), cover
′
(q, q

′
)}, AT := AT + hc(v)

9. else
10.
 :=
 + {v},
11. if v ∈ Vcc then ϕ = ϕ + subs(v)
12. if v ∈ Vsc then ϕ := ϕ + {default(v)},.
13. if v ∈ Vse then ϕ := ϕ + subs(v)};.
14. if v ∈ Vb then ϕ := ϕ + {default(v)};.

Fig. 12. Entering the main target.

3.2.5. Completion Events
In viewcharts a completed event is generated when sum view is completed. A completed
view v must satisfy one of the following conditions:

• v is a sequential composite view but it is not a region of a concurrent view and
some final substate in basic view of v is active.

• v is a concurrent composite view and all its regions have active final substates in
their basic view.

• v is a SEPARATE composite view and all its subview have been completed.

Fig. 13 defines the set of completed Views by a macro completed. In addition to
completed, two macros for generating and processing completion events are also defined.
Firstly, genCmplevt generates a completion event by setting cmplevt to true. The
second macro handleCmplevt processes a pending completion event. It terminates
the running viewcharts instance using stop (this) if the top view is completed, where this

360 A. Isazadeh, J. Karimpour

1. Completed ≡
{v ∈ Vsc|cntr(v) /∈ Vcc ∪ Vse ∧ s ∈ Vb, subs(s) ∩
 ∩ Sf 	= ∅}
{v ∈ Vcc| ∀r ∈ subs(v), subs(r) ∩
 ∩ Sf 	= ∅}
{v ∈ Vse| ∀r ∈ subs(v), r /∈ Completed

2. genCmplevt ≡ cmplevt{:= TRUE if Completed 	= ∅}
3. handleCmplevt ≡
4. if top ∈ completed then stop(this)
5. else enabled = {t ∈ T |trg(t) = ⊥

∧src(t) ⊆ Completed ∧ eval(grd(t),
)}
6. if enabled = ∅ then cmplevt := FALSE
7. else firing(enabled)

Fig. 13. Completion events.

refers to the instance itself. If the top view is not completed, it first computes the enabled
completion transitions with completed sources and then fires them using firing. If no
such transition exists, handleCmplevt resets cmplevt.

4. Conclusion

We have presented a method for describing the syntax and semantics of viewcharts. We
have picked viewcharts, changed its basis from statecharts to an Extended Finite State
Machine (EFSM), and presented as our solution to the overall and general problem dis-
cussed in Section 1.2. As described in Section 2.1, the viewcharts formalism fulfils the
first, second, and third desirable characteristics of the solution. The precise and sound
syntax and semantics of viewcharts presented in Section 3 satisfies the forth characteris-
tic.

Using an independent graph definition language GTDL, not only we have defined the
syntax of viewcharts, but also we have described its static semantics. Furthermore, our
choice of the formal object mapping automata language has enabled us to describe the
operational semantics of viewcharts, covering many important constructs of viewcharts,
including hierarchy of views, ownership of elements, scope, and composition of Views.

4.1. Future Work

The work presented in this paper has presented a method for describing the syntax and
semantics of viewcharts. Along this, a number of directions can be explored to extend and
improve this work. Firstly, this method for describing the syntax and semantics of view-
charts makes it suitable for a variety of tool support and, thereby, setting the stage ready
for our future work on the last two characteristics of the solution in Section 1.2. Secondly,
it my be possible synthesizing viewchart models from scenario-based requirements like

Viewcharts: Syntax and Semantics 361

UML 2.0 Sequence Diagram (UML, 2006). The synthesis problem is an interesting and
crucial problem in the development of complex object oriented and component based
systems. Since sequence diagrams serve to instantiate use cases. If we can synthesize
viewcharts from them, we will generate running code directly from UML 2.0 use cases.

References

Beeck, V. (2002). A structured operational semantics for uml-statecharts. Software and System Modeling, 1(2),
130–141.

Borger, E., A. Cavarra and E. Riccobene (2000). Modeling the dynamics of uml state machines. International
Workshop on Abstract State Machines – Theory and Applications, vol. 1912 of Lecture Notes in Computer
Science. Springer-Verlag, Monte Verità, Switzerland. pp. 223–241.

Davies, J. (1993). Specification and Proof in Real-Time CSP. Distinguished Dissertations in Computer Science.
University of Cambridge Press, Cambridge.

Drusinsky, D., and D. Harel (1988). On the power of cooperative concurrency. In Proceedings of Interna-
tional Conference on Concurrency (CONCURRENCY’88), vol. 335 of Lecture Notes in Computer Science.
Springer-Verlag, New York. pp. 74–103.

Drusinsky, D., and D. Harel (1994). On the power of bounded concurrency I: Finite automata. Journal of the
Association for Computing Machine (ACM), 41(3), 517–539.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming, 8,
231–274.

Harel, D., and A. Naamad (1995). The STATEMATE Semantics of Statecharts (Technical report). 22 Third
Avenue, Burlington, Mass.: i-Logix, Inc.

Hoare, C. (1978). Communicating sequential processes. Communications of ACM, 8(21), 666–677.
Isazadeh, A. (1996). Behavioral Views for Software Requirements Engineering. PhD thesis, Department of

Computing and Information Science, Queen’s University, Kingston, Canada.
Isazadeh, A., and D.A. Lamb (1996). An algorithmic semantics for viewcharts. In Proceedings of IEEE

International Conference on Engineering of Complex Computer Systems (ICECCS’96). IEEE Computer
Society Press, Montreal, Canada. pp. 293–296.

Isazadeh, A., D.A. Lamb and T. Shepard (1999). Behavioural views for software requirements engineering.
Requirements Engineering Journal, 4(1), 19–37.

Janneck, J.W. (1997). Moses Project. Computer Engineering and Communications Laboratory, ETH Zurich.
http://www.tik.ee.ethz.ch/moses

Janneck, J.W. (1998a). Graph Type Definition Language (Technical report). Computer Engineering and Com-
munications Laboratory, Swiss Federal Institue of Technology, ETH Zurich.

Janneck, J.W. (1998b). Object-Based Mapping Automata, Refrence Manual, ver 0.3a (Technical report). Com-
puter Engineering and Networks Laboratory, Swiss Federal Institue of Technology, ETH Zurich.

Janneck, J.W. (2000). Syntax and Semantics of Graphs. PhD thesis. ETH Zurich, Switzerland.
Jin, Y., R. Esser and J.W. Janneck (2004). A method for describing the syntax and semantics of uml statecharts.

Software and Systems Modeling (SoSyM), 3(2), 150–163.
Kaplan, A., and J.C. Wileden (1995). Formalization and application of a unifying model for name management.

In Proceedings of ACM SIGSOFT’95. Washington, D.C. pp. 161–172.
Michelle, L., C. Dingel and C. Juergen (2005). On the Semantics of UML State Machines: Categorization and

Comparison (Technical report). School of Computing, Queen’s University, Kingston, Ontario, Canada.
Parnas, D.L. (2000). Requirements documentation: Why a formal basis is essential. In Fourth IEEE Interna-

tional Conference On Requirements Engineering (ICRE2000). Available online at:
http:web.cps.msu.edu/sens/temp/ICRE2000/parnas.pdf

Peterson, J.L. (1977). Petri Net. Computing Surveys, 9(3), 223–252.
UML (2006). Documentation of the Unofied Modeling Language (UML). Available online from the Object

Management Group (OMG), http://www.omg.org
Wolf, A.L., L.A. Clarke and J.C. Wileden (1988). A model of visibility control. IEEE Transactions on Software

Engineering, 14(4), 512–520.

362 A. Isazadeh, J. Karimpour

A. Isazadeh received the BSc degree in mathematics from Tabriz University (Iran) in
1971, the MSE degree in electrical engineering and computer science from Princeton
University (USA) in 1978, and the PhD degree in computing and information science
from Queen’s University (Canada) in 1996. Before returning to graduate studies in 1992,
he worked for several years, as a member of technical staff, at AT&T Bell Laborato-
ries (USA) on telecommunication and manufacturing software systems. Dr. Isazadeh is
currently an associate professor in the Department of Computer Science at Tabriz Univer-
sity. His current research interests include information technology, software engineering,
mathematical foundation of computer science, and formal methods. He is a member of
Mathematical Society of Iran, a member of Computer Society of Iran, and was a senior
member of IEEE until 2002.

J. Karimpour received the BSc degree in computer science and applied mathematics
from Tabriz University (Iran) in 1998, the MSc degree degree, specializing in the com-
puter systems area of applied mathematics, from Tabriz University in 2000. He is cur-
rently a PhD student in the Faculty of Mathematical Sciences at Tabriz University, Iran.
His research focusses primarily on the formal specification and compositional verifica-
tion of component-based systems. In addition, he is working on the formal semantics def-
inition of visual modeling languages such as UML 2 and viewcharts. Previously, Jaber
Karimpour has worked on mathematical logic, temporal logic, modal logic, neural net-
works and numerical methods.

Požiūri ↪u diagramos: sintaksė ir semantika

Ayaz ISAZADEH, Jaber KARIMPOUR

Straipsnyje pateiktas naujas požiūri ↪u diagram ↪u sintaksės ir semantikos aprašymo metodas.
Požiūri ↪u diagramos – tai vizualizavimo formalizmas, pritaikytas sistemos komponent ↪u dinaminei
elgsenai aprašyti. Požiūri ↪u diagram ↪u sintaks ↪e siūloma apibrėžti atributiniais grafais ir toliau, re-
miantis tais grafais, aprašyti požiūri ↪u diagram ↪u semantik ↪a. Semantik ↪a siūloma aprašyti objekt ↪u at-
vaizdži ↪u automatu. Šis metodas leidžia aprašyti daugum ↪a požiūri ↪u diagram ↪u konstrukcij ↪u, ↪iskaitant
požiūri ↪u hierarchijas, element ↪u nuosavyb ↪e, apibrėžties srit↪i bei SEPARATE, OR ir AND tipo
kompozicijas. Taip pat galima aprašyti užbaigtus perėjimus, perėjimus iš lygmens ↪i lygmen↪i bei
perėjim ↪u požiūri ↪u nepriklausomumo nepažeidžianči ↪u perėjim ↪u istorijas. Tradicinės požiūri ↪u dia-
gramos yra grindžiamos būsen ↪u diagramomis. Šiame straipsnyje bazinis formalizmas išplėstas iki
baigtini ↪u būsen ↪u mašin ↪u.

