
INFORMATICA, 2008, Vol. 19, No. 3, 321–344 321
© 2008 Institute of Mathematics and Informatics, Vilnius

A Framework and Tool-Support for Reengineering
Software Development Methods

Marko BAJEC, Damjan VAVPOTIČ
University of Ljubljana, Faculty of Computer and Information Science
Trzaska 25, 1000 Ljubljana, Slovenia
e-mail: marko.bajec@fri.uni-lj.si, damjan.vavpotic@fri.uni-lj.si

Received: 5 July 2007; accepted: 11 October 2007

Abstract. The purpose of the research described in this paper is to propose a framework and sup-
porting tools that will help software companies to establish formalised methods that will be tech-
nically and socially sound with their needs. Following the framework the companies can asses and
improve their existing ways of working, capture them into formalised methods and continuously
enrich them based on the past development experiences. Furthermore, the formalised methods that
are designed based on the suggested framework are flexible and can be automatically adjusted by
the supporting tools to suite circumstances of a particular project or team. This paper describes the
framework philosophy and its tool support.

Keywords: software process, software process improvement, software development method,
situational method engineering, situation factors and suitability, method adaptation and extension
techniques, computer aided method engineering (came) tools.

1. Introduction

In the software development arena both, practitioners and researchers known that soft-
ware development methods are not followed rigorously as one would expect according to
the literature and theory. It has been empirically shown that in practice methods are under-
used and that their use in not increasing (see, e.g., Hardy et al., 1995; Huisman and Iivari,
2002; Huisman and Iivari, 2003; Fitzgerald, 1998; Middleton, 1999). This causes several
problems related to software development process and its results. One of the problems
that we specifically focus on in this paper is inability to learn from past development
experiences. This happens if the development process is based on ad-hoc approaches
that tend to be applied on an individual or case-by-case basis and if the knowledge and
know-how gained through project performance is not captured and disseminated among
the developers. Furthermore, several commercial methods that are still in use today are
found to be inflexible (i.e., they do not permit virtually any adjustment to be made to suite
specific circumstances) and are consequently found useless and are thus refused by the
development teams (see, e.g., Fitzgerald, 1998; Middleton, 1999).

In this paper we present a framework and tool support for reengineering software
development methods which we have developed to address the aforementioned problems.



322 M. Bajec, D. Vavpotič

The framework turns to be very useful for companies that wish to improve their software
processes by establishing formalised methods that are sound with their real needs and
allow for adjustments to suite specific circumstances. The contribution of our work should
be recognised in the robustness and applicability of the framework1.

The paper is organised as follows. In Section 2 we describe the research approach that
we adopted for the needs of our work. Next is the related works section that briefly de-
scribes related research areas and explains how our work fits into this research. The core
of the paper is then presented in Section 4, where the philosophy and main components
of the suggested framework are described, and in Section 5 that presents the toolset that
was developed in support of the framework. The paper ends with concluding remarks and
ideas for further work on the subject.

2. Research Method

The MasterProc project was organized as a collaborative practice research (Mathiassen,
2002) using a combination of action research, experiments and study practices. Inter-
views and surveys were used to carry out the assessment of the existing state of the art of
software development methods in each of the participating software companies. The main
focus of the assessment was to determine how socio-technically suitable are the methods
for typical projects carried out by each of the software companies. Furthermore, the goal
was to identify the level of flexibility of the existing processes. The information that we
received from the interviews and surveys was complemented by action research. For each
of the participating software companies a working team was set up comprising two re-
searchers and two practitioners. The main responsibility of the team was to take part in
real projects to get firsthand information. The practitioners acted as project managers and
methodologists, while the researchers were more or less observers.

In the organization of the MasterProc project the principles of a general learning
cycle have been adopted, i.e., interpret current situation, find ways to improve practice,
plan and implement improvements, and learn from the actions taken. The CPR supports
such learning cycle by the three goals it identifies: to understand the current state of
software development, to build new knowledge that can support practice, and finally to
plan changes and implement them as necessary. After implementing the improvements,
the interpretation of the lessons learned have to take place, hopefully leading into the next
learning cycle.

3. Related Works

The main principles on which we build our research can be found in two autonomous
but related research areas: Software process improvement (SPI) and Situational method

1The framework has been developed under the MasterProc project. The project was co-founded by the
Slovenian Ministry of Higher Education, Science and Technology, European Commission and the participating
Software Companies.)



A Framework and Tool-Support for Reengineering Software Development Methods 323

engineering (SME). While the main purpose of the SPI is to facilitate the identification
and application of changes to the software development process in order to improve the
product, the SME primarily deals with developing or tailoring software methods in order
to facilitate specific projects and circumstances. The introduction of a specific SME ap-
proach into a software company to improve the flexibility of its existing methods can be
thus seen as a specific step towards SPI. In this section we shortly describe both research
fields and their relation to our work.

3.1. Software Process Improvement

Today, many organisations are trying to adopt models of total quality management (TQM)
principles. In the software development arena these efforts typically manifest through
software process improvement (SPI) initiatives of software companies that strive to im-
prove the quality, safety, and reliability of the software they develop and in this way try
to increase productivity and customer satisfaction with their products.

One of the commonly known models in the SPI is the capability maturity model
(CMM) or more recent capability maturity model integration (CMMI), which represents
a central framework for software quality and process improvement (see, e.g., Paulk et
al., 1993; Pressman, 2004). The CMM introduces five levels of maturity into which an
organisation can fall according to the quality of their software processes. The five levels
are: initial, repeatable, defined, managed and optimised. While in the initial level (level
1) the process is typically ad-hoc and chaotic, the repeatable level (level 2) introduces
basic project management processes to track cost, schedule and functionality. The nec-
essary process discipline is in place to repeat earlier successes on projects with similar
applications. In level 3 (defined), the software process for both management and engi-
neering activities is documented, standardized and integrated into a standard software
process for the organization. All projects use an approved, tailored version of the orga-
nization’s standard software process for developing and maintaining software. In level 4
(managed), detailed measures of the software process and product quality are collected.
Both the software process and products are quantitatively understood and controlled. Fi-
nally, in level 5 (optimized), continuous process improvement is enabled by quantitative
feedback from the process and from piloting innovative ideas and technologies2.

In our framework we use CMM as a model against which we evaluate how mature are
specific software processes and identify desired maturity levels, i.e., the maturity levels
the evaluated organisations want to achieve. Building on the empirical studies that have
shown there is a correlation between CMM levels and software quality (Harter et al.,
2000; Parzinger and Nath, 2000), we assume the increased maturity will lead also to the
improved software quality. The use of the framework for method reengineering inherently
leads to at least level 3 (defined) while it includes also activities, such as constant mea-
surement of success and continuous evaluation and feedback from the process that can
lead to higher levels of CMM maturity, i.e., level 4 (managed) and level 5 (optimised).

2The description of CMM maturity levels is based on Paulk et al. (1993).



324 M. Bajec, D. Vavpotič

Another part of our framework in which SPI plays an important role is method im-
provement. Different studies argue (Niazi et al., 2006; Herbsleb and Goldenson, 1996)
that managers require more information on how to implement an innovation in order for
the implementation to be successful. An interesting model has been proposed by Niazi et
al. (2006) that measures the maturity of an organisation for the implementation of SPI. It
defines different success factors and barriers that are critical for implementation of SPI.
In our framework we use these factors to create most efficient scenarios for improvement
of method.

3.2. Situational Method Engineering

As described above, if we want to achieve the maturity level 3 or more, all projects must
be performed according to an approved, tailored version of the organization’s standard
software process for developing and maintaining software. This is where SME fits in.
In the SME literature, a number of approaches can be found that propose how to create
project-specific methods. One that is probably the most popular is based on the so-called
reuse strategy. In this approach a new method is constructed from the fragments of ex-
isting methods. The notion of method fragment was introduced by Harmsen et al. (1994)
who defined it as a reusable part of a method. Fragments can be further categorized into
product and process fragments depending on the perspective they cover. Much effort has
been put into decomposing existing methods into fragments (Brinkkemper et al., 1996).
Also, different repositories have been proposed for their storage (e.g., Harmsen et al.,
1994; Brinkkemper et al., 1996; Ralyté et al., 2003). The method construction using the
reuse strategy is, however, far from easy, as the fragments have to be first retrieved from
the repository, changed if necessary and than assembled together into one consistent and
congruent method.

Another approach to SME, known from the literature as the extension-based ap-
proach, uses the extension strategy. In this approach, method engineers are provided
with extension patterns that help them to identify typical extension situations and provide
guidance to perform extensions. In their work, Ralyté et al. (2003) describe two possible
ways to perform extensions: (a) directly through matching extension patterns stored in a
library to satisfy the extension requirements, and (b) indirectly through first selecting a
meta-pattern corresponding to the extension domain and then guiding the extension ap-
plying the patterns suggested by the meta-pattern. Karlsson and Ågerfalk (2004) have,
however, criticized this approach for not considering situations that are actually very fre-
quent in practice, i.e., when a method is both extended in some fragments and reduced
in others. As a solution they proposed a new method for SME that uses a combination of
the cancellation and extension operators. They named it method for method configuration
(MMC). The MMC differs from the aforementioned approaches also in the fact that it
does not deal with modular construction of a method but rather with method tailoring
taking a particular method as the starting point. From the literature, it is clear that this
approach has been somewhat overlooked by the method engineering research in the past.

Finally, the approach to SME that seems to be a result of the most recent efforts in the
method engineering research is the paradigm-based approach (Ralyté et al., 2003) a.k.a.



A Framework and Tool-Support for Reengineering Software Development Methods 325

evolution-based approach (Ayed, 2004). This approach is founded on the idea that the
new method can be obtained either by abstracting from an existing model or by instanti-
ating a metamodel. A new method is then created by first constructing a product model
and then process model while for the construction of both product and process model
different strategies are available.

For the purpose of our framework we created our own approach to SME which uses
a combination of the meta-modelling and extension/reduction based approaches. The ap-
proach shares several commonalities with other approach to SME, but most notably with
MMC. Both, our approach and MMC suggest configuring an existing method rather then
assembling fragments from different methods to construct a new one. Detailed descrip-
tion as well as comparison between our approach and other SME approaches can be found
in Bajec et al. (2007).

4. A Framework for Method Reengineering

The idea that lies behind the framework for reengineering software development methods
is relatively simple. It is based on the assumption that in each software development com-
pany, patterns of work could be found that tell how the company is developing software.
While a large percentage of software companies own some kind of formalized methods
(typically commercial methods), empirical investigations show that what they really do
on IT projects differs a lot from what is written in the methods they own (e.g., Fitzgerald,
1998; Bajec et al., 2004). Our assumption in the suggested framework is that in a typical
software company the ways of working are sufficiently repeatable to be captured into a
formalized method (base method) reflecting how the company actually performs its IT
projects. If base methods are captured and represented in the way we suggest in this pa-
per then project-specific methods can be created on-the-fly almost without any need for
method engineers to intervene. This is done by processing the rules that define, for each
method component, in what circumstances its use is compulsory, advisable or discour-
aged. The configuration process is however interactive. The questions that are subjective
in their nature and influenced by particular developers involved in the project can be
addressed when they arise and users may intervene as they wish.

The framework consists of four distinct but related phases: (I) Method Construction,
(II) Method Configuration, (III) Method Use and (IV) Method Evaluation and Improve-
ment. In the remaining part of this section each of the phases will be described in more
detail.

4.1. Method Construction

Method construction is probably the most important phase of the method reengineering
framework and a prerequisite for the other phases. Its aim is to construct a base method
that will provide formal description of how the organization that is being analyzed is
performing its project. Furthermore, the construction of a base method is crucial as it
presents a foundation for creating project-specific methods on-the-fly. Due to the limits



326 M. Bajec, D. Vavpotič

of space we will provide here only a brief description of the main activities of the method
construction process. For details please refer to Bajec et al. (2004) and Bajec et al. (2007).

The construction of a base method is a process that has to be done for each orga-
nization individually. It starts with the analysis of existing practice in the company and
leads into identification of the parts that are technically and socially sound and those that
are in these respects problematical. For the analysis of the socio-technical suitability of
the existing practice an evaluation model has been designed that facilitates the evaluation
(Vavpotič et al., 2004). Possible improvements to the existing practice are then suggested
and discussed with the company’s development team. Once the vision for the new method
is developed and accepted, a metamodel is designed that helps to formalize the method.
The metamodel can be developed either from scratch or from existing metamodels that
have been recently constructed to both underpin and to help formalize methods. Those
represent a good source for selecting generic concepts for method formalization. Finally,
the metamodel is instantiated and fragments of the base method are captured. Besides
the fragments of the existing practice that have been previously approved as technically
and social appropriate, many new fragments may emerge. These are based on the sug-
gestions for improvements that have been identified within the analysis of the existing
practice. The fragments are first classified according to the underlying metamodel and
then described using templates. The templates, which belong to the metamodel, outline
how elements of a certain metamodel type should be described.

For the purpose of representing a base method we designed a generic data structure
that can be used to underpin any metamodel. The idea of a generic data structure is to
allow method engineers to design metamodels according to their perception of how their
methods should be formally represented.

Fig. 1 illustrates the main components of the aforementioned generic data structure,
base method and project-specific method. The classes representing metamodel are: a

Fig. 1. A generic data structure.



A Framework and Tool-Support for Reengineering Software Development Methods 327

metaelement (it can be of two types: content element, such as activity, tool, discipline,
role, etc. or process flow element, such as decision node, join and synchronization) and
metalink (links between metaelements). By using such a generic data structure, a base
method is represented as a structure of instances of the metaelements and metalinks, and
a project-specific method is represented as a selection of the elements and links of the
base method.

As mentioned before, a base method encompasses various situations that may occur
when projects are performed. In other words, it comprises a number of elements and their
alternatives which describe several possible ways to perform a particular project (similar
to project paths as defined by Hares (Brinkkemper et al., 1996). The paths and method
structure, however, are not static. They are defined by the rules that tell which elements
to consider in specific circumstances and consequently which path to take. As depicted in
Fig. 1, rules apply directly to the links that bind elements of the method (see the element
Condition).

Besides the rules that put constraints on the links between elements of the method
there are also other types of rules that play important role in the suggested framework.
In general, they can be categorised into constraint rules and facts. Since in configuring
the base method for the needs of a particular project or situation these rules play essential
role we will explain their taxonomy in more detail.

4.1.1. Constraint Rules
Constraint rules can be seen as assertions that constrain some aspect of the procedure
for constructing project-specific methods. They can be decomposed into four subgroups:
process flow rules, structure rules, completeness rules, and consistency rules.

Process flow rules are rules that define conditional transitions among activities in the
process view of a method. They define the conditions that have to be met to perform a
particular transition. For example, in Fig. 2., the rule R1 defines a conditional transition to
the activity Analyse Logical Structure while the rule R2 determines in what circumstances
the activity Analyse Logical Structure can be omitted.

Similar to process flow rules are rules that belong to the structure rule category. Their
distinction is that they can constrain any link between method elements and not just links
between activities. In Fig. 2, the rule R4 represents an example of a structure rule. It
constrains the link between the activity Develop Prototype of the System and the tool MS
Visio.

Structure and process flow rules that belong to a base method of a particular organ-
isation actually define project characteristics that are important at a particular stage of
projects performed by the organisation. Examples of process flow rules (rules R1, R2 and
R3) and structure rules (rule R4 and R5) are provided below3.

• R1: If the process is in the decision node 1 and the scope of the system is large or
incremental SDLC is chosen then go to the activity Analyse logical structure of the
system.

3The rules are here written in natural language to ensure their understanding.



328 M. Bajec, D. Vavpotič

Fig. 2. Representation of a base method.

• R2: if the process is in the decision node 1 and the scope of the system is not large
and incremental SDLC is not chosen then go to the synchronisation point 2.;

• R3: if the process is in the decision node 2 and the problem domain is new or
customer requires the prototype of the system then go to the activity Develop
prototype of the system;

• R4: if the process is in the activity Develop prototype of the system and the time
frame for producing the prototype is more than 1 month then develop the
prototype of the system using Delphi tool;

• R5: if the process is in the activity Develop prototype of the system and important
reports are to be developed then create output artifact Reports as a part of the
prototype.

Project characteristics, such as project length, project risk, project complexity, the
scope of the system, the number of parties involved, etc. and their respective domains are



A Framework and Tool-Support for Reengineering Software Development Methods 329

defined within the organisation’s base method. However the values that these character-
istics receive are project-specific and are thus defined during the configuration process.

Besides process flow rules and structure rules that both put constraints on associations
between elements of a base method the constraint rule category comprises also complete-
ness and consistency rules. The purpose of these two subcategories is to assure that each
project-specific method, created from the elements of a base method, is complete and
consistent.

Completeness rules apply – in contrast to the process flow rules and structure rules –
to a metamodel and not to a base method (see Fig. 1). Their responsibility is to define the
conditions that must be met when creating a project-specific method. Completeness rules
actually help to check whether a project-specific method that has been created includes
all required components. For example, an organisation may decide the following rules
have to be followed when creating methods for projects:

• R6: each activity except the last one must have at least one successor activity;
• R7: each activity must be linked with exactly one role;
• R8: each technique must be linked with at least one tool, etc.

Consistency rules are the last category in the group of constraints. They are similar
to completeness rules. Their goal is to assure that the selection of fragments comprising
a project-specific method is consistent. While completeness rules only apply to elements
that are linked together, consistency rules deal with interdependency between any two
elements. In other words, for each element e they determine a set of other elements E

that need to be included into a project-specific method if e is included. In the example
below the rule R9 asserts that the deliverable Business model is dependent on the activity
Business modelling.

• R9: the deliverable Business Model depends on the activity Business modelling.

This means that if the deliverable Business model is selected for the inclusion into
a project-specific method, the activity Business modelling has to be selected too. While
such a dependency may seem trivial it is important as it helps to avoid conflicting situa-
tions.

4.1.2. Facts
Another important group of rules that are considered during the configuration process are
facts. Facts are assertions that define characteristics of the project for which we create a
project-specific method. Depending on how they define project characteristics they can
be classified into base facts or derived facts. Base facts define project variables directly
while derived facts are derived from base facts using inferences or calculations. In the
examples below, the rule R10 is a base fact while the rule R11 is a derived fact.

• R10: the project domain is well known;
• R11: if the project field is telecommunications or healthcare then the project

domain is well known.



330 M. Bajec, D. Vavpotič

In the method configuration process facts are very important as they are checked when
structure and process flow rules are processed. For example, a structure rule might state
that “when performing requirements validation there is no need to produce a prototype if
the problem domain is well known”. To be able to perform this rule we must first check
the facts about the project domain to find out whether the domain is well known or not.

As indicated in the examples of the constraint rule category (see, e.g., rules R3 or
R5) facts can describe virtually any condition that is important for the project. Further-
more, they are created dynamically during the method configuration process. For ex-
ample, when an element e is selected to be included into a project-specific method this
becomes a fact (e is selected) which could become important latter on in the method
configuration process. Some additional information on rule categiries, their storage and
application to IS development can be found, e.g., in Kapocius and Butleris (2005) or
Bajec and Krisper (2005).

4.2. Method Configuration and Use

Once a base method has been successfully established and discussed with its users it is
ready for use. However before it is actually applied to a specific project or situation it has
to be configured so that it includes only the components that are relevant to the situation
in question. At this point the representation of a base method that was described before
reveals its value. With an appropriate tool the adjustment can be done automatically. In
this section we describe the algorithms that facilitate the auto-adjustment process.

The algorithm that supports the method configuration process is relatively simple. It
starts with an element in the base method (typically this would be a starting activity) and
ends when there is no link that would connect the current element further with any other
element. If such links are found they are examined for constraints they might have. When
a particular link has no constraints or when constraints exist but are satisfied than the
element at the end of that link is processed in the same way using recursion.

PROCEDURE CreateProjectMethod(pm,e);
// pm - project method, e - starting element of the base method
BEGIN
Find links for the element e
For each Link l
IF conditions are satisfied for the Link l
THEN
Mark the output element of the Link l as selected for the pm

Mark the Link l as selected for the pm
CreateProjectMethod(output element of the Link l,pm)//recursion
END IF

NEXT

END;

When a project-specific method is created using the algorithm above, the elements that
have been selected has to be checked for consistency and completeness. The verification
algorithms below show how this can be done.



A Framework and Tool-Support for Reengineering Software Development Methods 331

PROCEDURE CheckCompletness (pm);
// pm - project method
BEGIN
//completeness verification
Select all links from the pm
For each Link l
//Check the completeness constraint for the Link l
Count the links that connect the input element of the Link l
with the output elements of the same type as is the output
element of the Link l
IF the number of links is outside the min, max limits
THEN mark the Link l as problematical.

NEXT;
END;

PROCEDURE CheckConsistency (pm, e);
// pm - project method, e - starting element or
// link of the project-specific method
BEGIN
//consistency verification
Select the set of elements and Links D that e is dependent on
For each element or Link d from D
IF d is not selected THEN Mark d as problematical
CheckConsistency(pm, d) //recursion

NEXT;

END;

For detailed description on the process configuration approach, its comparison with
other SME approaches, as well as on the experiences with its application in practice,
please see Bajec et al. (2007).

4.3. Method Evaluation and Improvement

In the suggested framework it is essential that the underlying base method and corre-
sponding rules continuously evolve as a reflection of knowledge and experiences acquired
through project performance. This means that when using the framework new fragments
may emerge as a result of situations that are specific and thus not yet supported by a
current base method. In such cases, additional fragments are captured and circumstances
for their use are determined. In practice, it actually takes some time for a base method
to become all-inclusive in terms of providing guidelines for all kinds of situations that
may happen in projects a particular company is performing. This phase, in which the
base method rapidly evolves, is called the learning phase. It takes place in the first few
projects after the framework has been introduced into a company. Eventually however,
the base method would become more stable and changes on a large scale less frequent.

For the aforementioned reasons the framework provides specific activities for the con-
tinuous method evaluation and improvement. To retain social and technical suitability
base methods are regularly evaluated and improved. The evaluation is performed on a



332 M. Bajec, D. Vavpotič

level of a single method element, which enables precise identification of less suitable
method elements, determination of reasons for their unsuitability and creation of im-
provements consequentially.

The evaluation activities are based on the method evaluation model. Although various
method evaluation models have been proposed in the past, they tend to consider either
only technical (CMU/SEI-2002-TR-029, 2002; ISO/IEC-15504, 1998; ISO/IEC-FCD-
9126-1, 1998) or only social (Rogers, 2003; Ayzen, 1991; Venkatesh and Davis, 2000)
dimension of a method. However, such partial evaluation does not provide a complete
understanding of method’s suitability. Therefore, an evaluation model was created that
facilitates simultaneous evaluation of method suitability on a social and technical dimen-
sion. The social dimension focuses on method’s suitability for social and cultural char-
acteristics of a development team and facilitates determination of the level of method’s
adoption. The technical dimension considers suitability of a method for technical char-
acteristics of a project and an organization, and helps to determine the level of method’s
efficiency.

Fig. 3 depicts application of the evaluation model in practice. After an evaluation is
completed, all method elements are positioned in a scatter plot diagram that is divided into
four quadrants distinguishing between four different types of method elements (regarding
their value):

• A useless method element is both technically and socially unsuitable. Different
reasons for such unsuitability can be identified. For instance, unsuitability can be
caused by constant technology change that eventually renders a method element

Fig. 3. Application of the evaluation model.



A Framework and Tool-Support for Reengineering Software Development Methods 333

technically unsuitable. Consequently, developers stop using the element, which
finally results in its complete unsuitability. Alternatively, an element might have
been technically unsuitable from the beginning and therefore never used. There
are various methods to measure quality of a specific element (see, e.g., Caplinskas
and Gasperovic (2005).

• An inefficient method element is socially suitable, but does not suit technical needs
of a project or an organisation. For instance, these can be method elements that
have been technically suitable in preceding projects and are well adopted among
users, but are technically inappropriate for the current project.

• In contrast to an inefficient element, an unadopted method element is technically
suitable, but its potential users do not use it because it is socially unsuitable. Many
reasons why potential users do not adopt a technically efficient method element
can be identified. The element might be overwhelmingly complex, it might be
difficult to present advantages of its use to the potential users, it might be
incompatible with existing user experience and knowledge, etc.

• A useful method element is socially and technically suitable. Such method element
is adopted among its users and suits technical needs of the project and the
organisation.

A method element that is perceived as unsuitable can be improved by using different
improvement scenarios. The general selection of an improvement scenario depends on
the quadrant where the element is positioned. In case of an inefficient method element
(see Fig. 3, arrow A.), its technical suitability should be improved and social suitability
retained. Since users already adopted the element, it should be modified only to the ex-
tent that it becomes technically efficient again. In case of an unadopted but technically
suitable method element (see Fig. 3, arrow B.), the causes for element’s rejection among
its potential users should be explored. For instance, potential users of the element might
lack knowledge and experience to use it. Consequentially the improvement should focus
on training of element’s potential users rather than on altering the element. In case of a
useless element (see Fig. 3, arrow C.) that is both socially and technically unsuitable the
most reasonable action would be to replace or discard it completely. Most likely a tech-
nically and/or socially more suitable element can be found or the element is not needed
at all.

Following the general selection of improvement scenarios, limitations of method el-
ements are explored and each improvement scenario is additionally tuned to conform to
these limitations (see Fig. 4). We differentiate between two basic types of limitations.
The first type is limitations imposed by characteristics of the element itself. A common
example of such limitation can be that a method element can only be changed to a lim-
ited extent or not at all, due to its interaction with other method elements. In such case,
the improvement scenario should focus on additional training of element’s users so that
they better understand the element and adopt it, but should not modify the element it-
self. The second type is limitations imposed by characteristics of the development team.
For instance, certain development teams are more innovative and therefore more eager
to adopt new or changed elements – SPI. Niazi et al. (2005) identified critical success



334 M. Bajec, D. Vavpotič

Fig. 4. Formation of an improvement scenario.

factors that influence the adoption of SPI and also consider different aspects of a devel-
opment team like: team awareness, team experience, management support, team members
involvement, time pressure, etc. Based on these critical success factors we additionally
adjust the improvement scenario.

After application of the improvement scenarios most method elements are expected
to move to the useful method elements quadrant, though some of the elements might still
need further improvements or even replacement.

An important aspect of the evaluation is that it is performed by the actual users of the
method elements. Each method user evaluates social suitability of the method elements he
uses to perform his development activities. For instance, an analyst evaluates all method
elements related to analysis, a programmer evaluates all method elements related to pro-
gramming, etc. In this manner we objectively assess users’ attitude towards the method,
i.e., social suitability of the method. Evaluation of technical suitability of the method,
however, is performed by so called technically advanced method users. They are not only
knowledgeable in the development activities they perform, but also understand a broader
perspective of the method, are familiar with trends in the field of their expertise and are
able to assess technical efficiency of the method objectively. In case, when technically
advanced method users cannot be identified for a certain development activities, external
experts are engaged to assure objective evaluation of the method’s technical efficiency.

Two distinctive qualities of the proposed model can be identified. Firstly, it simulta-
neously considers social and technical suitability of a method; and secondly, it facilitates
evaluation on a scale of a single method element. These allow a software development or-
ganization to observe value of its method in detail, to identify technically and/or socially
inappropriate parts, and to create customized improvement scenarios based on the eval-
uation of each method element. For the detailed information on the method evaluation
model please see Vavpotič et al. (2004, 2006).

5. Tool Support

Creating project-specific methods by tailoring an existing method, assembling parts of
different methods together, and evaluating method on a scale of a single method ele-
ment are all very complex tasks that can not be done without appropriate tool support.
Therefore a set of prototype tools, namely Agile Methodology Toolset (AMT), has been



A Framework and Tool-Support for Reengineering Software Development Methods 335

Fig. 5. High level architecture of the AMT toolset.

developed in support of different parts of the suggested framework for method reengi-
neering.

In respect to the classification provided by Kelly (1997), the AMT falls into the group
of CAME tools (Computer Aided Method Engineering). Its main purpose is to facilitate
the elicitation of the company’s base method; create project-specific method by select-
ing the fragments of the base method that correspond to the project characteristics; and
support the method evaluation and reengineering processes.

The toolset consists of six interconnected modules (see Fig. 5). Five of the mod-
ules focus on the method engineer-side of the method reengineering-related activities:
MethAdapt – a module for adapting base method to project characteristics; MethElicit
– a module for method elicitation; MethModel – a graphical tool for method modelling;
MetEval – a module for method evaluation; and MethGen – a module for generating
method reports. Additionally there is a module, which focuses on the use of the method
– MethUse, which is also connected to MethEval. The module guides the user through
the selected method, which can be the company’s base method or the project-specific
method. The main integration point for the six modules is the common database where
all data and metadata are stored.

In the following subsections the modules are shortly explained.

5.1. MethElicit and MethModel

Both MethElicit and MethModel modules are used in the process of method elicitation,
during which the company’s informal method is formalized (see also Subsection 4.1).
The use of MethElicit starts with definition of a metamodel. The method engineer defines
the elements of the metamodel and relations between them. The resulting metamodel
forms a framework that is filled in with instances of metamodel elements and instances
of relations.



336 M. Bajec, D. Vavpotič

Fig. 6 shows the main user interface of MethElicit module and demonstrates a typ-
ical sequence of actions during elicitation process. Starting point is the navigator panel
(1). The elicitation section of the panel comprises functions for a metamodel editing,
elements elicitation and procedure modelling. To define the metamodel, the method en-
gineer selects the first of the three functions. The metamodel editor is displayed (2). It
allows the user to add, delete and change metamodel elements, and to define relations
between them. The middle part of the upper screenshot shows all possible relations of an
element to other metamodel elements. For instance, the activity element is related to the
tool element via the uses relation, which means that during execution of a certain activity
a certain tool can be used. On the right side of the upper screenshot (3) there is a list
of instances of the selected element (in our case instances of the activity). Selecting an
element instance from the list displays its details in an edit panel (4). The edit panel also
displays a list of all instances of relations to other instances of elements (5). Using the

Fig. 6. Main user interface of MethElicit module.



A Framework and Tool-Support for Reengineering Software Development Methods 337

edit panel a method engineer can edit the description of the element instance and define
instances of relations. Only instances of those types of relations can be created that have
been defined in the metamodel (2). To define an instance of a relation between two ele-
ment instances, the user must select the appropriate element instance in the popup menu
(6). For example, during the execution of the activity A405 the STR Update and the HQ
remark tools are used.

Using MethElicit module a method engineer can gradually capture all static method
elements and their static relations. However, the elicitation of non static method pro-
cedure is done by MethModel module. The module not only provides a graphical user
interface that enables the method engineer to graphically design a method procedure, but
also enables the method engineer to formalize the conditions and rules that are used dur-
ing method tailoring. To ease the process of building the rules MethModel uses a rules
editor that helps the method engineer to enter the rules in a form of if-then clauses (see
Subsection 4.1). The technique that is used to graphically represent a method procedure
is somewhat simplified activity diagram. It comprises activities, relations, conditions and
synchronisations. All of the diagram data is stored in the database as it is also used by
MethAdapt module during method tailoring. To display the diagram MethModel creates a
bitmap representation of the diagram that can be used for quick previewing of the method
procedure (see Fig. 7).

Fig. 7. An activity diagram created using MethModel.



338 M. Bajec, D. Vavpotič

5.2. MethAdapt

MethAdapt facilitates method tailoring using the rules that were set during method proce-
dure elicitation. Based on these rules and project specifics MethAdapt creates an instance
of the method that is tailored to the project characteristics (see also Subsection 4.2).

Fig. 8 depicts MethAdapt user interface. At the start of a new project, a method engi-
neer sets the project characteristics (1), which are used by the rule processor to determine
the most suitable method configuration (2). Based on the results of the rule processor
MethAdapt creates the tailored instance of the method. The result of the tailoring is pre-
sented on the activity diagram on which the activities that should not be executed are
depicted in light colour (3).

5.3. MethEval

The main purpose of MethEval module is to facilitate continuous evaluation of the
method. The evaluation is carried out in a series of surveys that are conducted among all
users of the method. MethEval comprises two submodules. The first submodule allows
method engineer to configure survey questionnaires and analyse the survey results. The
second submodule generates survey questionnaires and distributes them among method

Fig. 8. MethAdapt and a part of a tailored method.



A Framework and Tool-Support for Reengineering Software Development Methods 339

users. Each method user is assigned only the questionnaires regarding those method ele-
ments that he uses in the context of his role. For instance, a programmer evaluates only
programming activities, tools, etc., an analyst evaluates only analytical activities, tools,
etc.

Left screenshot in Fig. 9 depicts a part of a generated survey questionnaire (1). After
a method user completes the questionaire the results are stored in the common database.
These results are later used in the analysis (right screenshot in Fig. 9). MethEval pro-
vides an interface for basic survey analysis. After a survey, a survey cycle and questions
that should be analysed are selected (2), a scatter plot diagram is created that shows all
evaluated element instances as dots (3). The diagram enables the method engineer to get
a general impression of elements evaluation and to pinpoint the elements that are less
suitable and require improvement. By clicking on an element dot the details of the ele-
ment are displayed (4). For an advanced analysis MethEval provides an export function
so that survey data can be exported in a format that is supported by well known statistical
packages like SPSS.

Fig. 9. MethEval module.



340 M. Bajec, D. Vavpotič

5.4. MethGen in MethUse

The purpose of MethGen and MethUse modules is to present the method to its end-users.
MethGen is a relatively simple module that uses the data stored in the common

database to generate a method reference book in PDF format suitable for printing. Such
reference book can either be used by the method users to learn the method or can be given
to other parties interested, e.g., a customer.

MethUse, however, is a more complex module that enables dynamic access to the
method content. Typically, MethUse is used by the method users who require access to
the electronic method reference guide. The main purpose of the module is to make access
to the method content as easy and quick as possible.

Fig. 10 shows the screenshot of MethUse module. The method content is accessed
through navigation panel (1). The content of the panel can be filtered to show only the
element instances that are in a relation to a certain role instance. After a user chooses a
certain element instance, its description (2) and relations to other element instances (3)
is displayed. The user can click on any of the relations (3) to see the description of the
related element instance. This way the user can quickly find all the information about an
element instance and its relations. Apart form using the navigation panel the user can also
search through the method content using the search panel (4) which lists all the elements
that match the search criteria.

Fig. 10. MethUse module.



A Framework and Tool-Support for Reengineering Software Development Methods 341

An important part of MethUse is also its link to MethEval module. In case, that the
role of the current MethUse user is related to the displayed element instance, the eval-
uation link is shown (5). This indicates that the user is entitled to evaluate the element
instance. By clicking the evaluation link the user can open the survey questionnaire where
he evaluates the element instance (see also Fig. 9).

6. Conclusions and Further Work

In this paper we presented a framework tool support for reengineering software devel-
opment methods. Using the framework organisations can reengineer their existing ways
of working and establish formalised methods that are organisation-specific and auto-
adjustable to specifics of their projects.

In respect to the method engineering field the contribution of the framework should
be seen in the integration of the method engineering principles within the software pro-
cess improvement scenario. This way we assure the improved methods are not rigid but
adjustable to specific circumstances. Furthermore, the framework encapsulates activities
for continuous method evaluation and improvement based on the organisation’s technical
and social characteristics. Specifically the latter have been very often neglected by the
traditional approaches to method engineering.

There are several directions in which we tend to continue the existing research work.
Firstly, we wish to extend the framework to cover not only the creation and configura-
tion of software development processes but rather arbitrary IT processes or even business
processes. The research on this subject has started and is reported in a separate paper
submitted to this conference. Next, we wish to improve the framework by incorporating
a repository of best practices in software development which will facilitate (following
assembly-based method engineering principles) semi-automatic creation of base meth-
ods. Finally, our goal is to employ the framework, specifically the method configuration
phase, in the research project aimed at software development in rapidly created virtual
teams.

References

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50,
179–211.

Ayed, M.B., J. Ralyte and C. Rolland (2004). Constructing the Lyee method with a method engineering ap-
proach. Knowledge-Based Systems, 17(7–8), 239–248.

Bajec, M., and M. Krisper (2005). A methodology and tool support for managing business rules in organisations,
Information Systems, 30(6), 423–443.

Bajec, M., D. Vavpotič and M. Krisper (2004). The scenario and tool-support for constructing flexible, people-
focused systems development methodologies. In Proc. ISD’04, Vilnius, Lituania.

Bajec, M., D. Vavpotič and M. Krisper (2007). Practice-driven approach for creating project-specific software
development methods. Information and Software Technology, 49(4), 345–365.

Brinkkemper, S., K. Lyytinen and R.J. Welke (1996). Method engineering: principles of method construction
and tool support. In S. Brinkkemper, K. Lyytinen and R.J. Welke (Eds.), Conf. on Principles of Method
Construction and Tool Support. Selected papers. Kluwer Academic Publishers, Boston, MA.



342 M. Bajec, D. Vavpotič

Caplinskas, A., and J. Gasperovic (2005). Techniques to Aggregate the Characteristics of Internal Quality of an
IS Specification Language, Informatica, 16(4), 519–540

CMU/SEI-2002-TR-029 (2002). Capability Maturity Model R©Integration (CMMISM), Version 1.1. SEI.
Fitzgerald, B. (1998). An empirical investigation into the adoption of systems development methods. Informa-

tion & Management, 34(6), 317–328.
Hardy, C.J., J.B. Thompson and H.M. Edwards (1995). The use, limitations and customization of structured

systems development methods in the UK. Information and Software Technology, 37(9), 467–477.
Harmsen, F., S. Brinkkemper and H. Oei (1994). Situational Method Engineering for IS project approaches. In

A. Verrijn–Stuart and T.W. Olle (Eds.), Methods and Associated Tools for the IS Life Cycle. Elsevier, pp.
169–194.

Harter, D.E., M.S. Krishnan and S.A. Slaughter (2000). Effects of process maturity on quality, cycle time, and
effort in software projects. Management Science, 46(4), 451.

Herbsleb J.D., D.R. Goldenson (1996). A systematic survey of CMM experience and results. In 18th Interna-
tional Conference on Software Engineering.

Huisman, M., and J. Iivari (2002). The individual deployment of systems development methods, Lecture Notes
in Computer Science, 2348, 134–150.

Huisman, M., J. and Iivari (2003). The organizational deployment of systems development methods. In Infor-
mation Systems Development: Advances in Methods, Components, and Management. Kluwer, pp. 87–99.

ISO/IEC-15504 (1998). Information Technology – Software Process Assessment.
ISO/IEC-FCD-9126-1 (1998). Software Product Quality, Part 1, Quality model.
Kapocius, K., and R. Butleris (2005). Repository for business rules based IS requirements. Informatica, 17(4),

503–518.
Karlsson, F., and P.J. Ågerfalk (2004). Method configuration: adapting to situational characteristics while cre-

ating reusable assets. Information and Software Technology, 46(9), 619–633.
Kelly, S. (1997). Towards a Comprehensive MetaCASE and CAME Environment – Conceptual, Architectural,

Functional and Usability Advances in MetaEdit+. University of Jyväskylä, Finland, Jyväskylä.
Mathiassen, L. (2002). Collaborative practice research. Information Technology and People, 15, 321–345.
Middleton, P. (1999). Managing information system development in bureaucracies. Information and Software

Technology, 41(8), 473–482.
Niazi, M., D. Wilson and D. Zowghi (2005). A maturity model for the implementation of software process

improvement: an empirical study. Journal of Systems and Software, 74(2), 155–172.
Parzinger, M.J., and R. Nath (2000). A study of the relationships between total quality management implemen-

tation factors and software quality. Total Quality Management, 11(3), 353–371.
Paulk, M.C., B. Curtis, M.B. Chrisis and C.V. Weber (1993). Capability Maturity Model for Software, version

1.1. CMU/SEI-93-TR-24, February, Software Engineering Institute.
Pressman, R.S. (2004). Software Engineering: A Practitioner’s Approach. McGraw-Hill, New York.
Ralyté, J., R. Deneckère and C. Rolland (2003). In J. Eder et al. (Eds.), Towards a Generic Model for Situational

Method Engineering (CAiSE 2003), Klagenfurt, Austria, Springer, Haidelberg, pp. 95–110.
Rogers, E.M. (2003). Diffusion of Innovations, Free Press, New York.
Vavpotič, D., M. Bajec and M. Krisper (2004). Measuring and improving software development method value

by considering technical and social suitability of its constituent elements. In O. Vasilecas and J. Zupančič
(Eds.), Advances in Theory, Practice and Education, Proc. of the 13th Inter. Conf. on IS Development,
Technika, Vilnius, pp. 228–238.

Vavpotič, D., M. Bajec and M. Krisper (2006). Scenarios for improvement of software development method-
ologies. In A.G. Nilsson, R. Gustas, W. Wojtkowski, W.G. Wojtkowski, S. Wrycza and J. Zupancic (Eds.),
Advances in Information Systems Development, Vol. 1, Bridging the gap between academia and industry,
Springer, New York, pp. 278–288.

Venkatesh, V., and F.D. Davis (2000). A theoretical extension of the Technology Acceptance Model: Four
longitudinal field studies. Management Science, 46(2), 186–204.



A Framework and Tool-Support for Reengineering Software Development Methods 343

M. Bajec is an assistant professor at the University of Ljubljana, Faculty of Computer
and Information Science. He received his MSc and PhD degrees from the Faculty of
Computer and Information Science in 1998 and 2001 respectively. He delivers courses
on information systems, information systems development, and databases. His main re-
search interests include software development methodologies, IT/IS strategy planning
and business process reengineering and renovation. His research work has been pub-
lished in local and international journals. Marko Bajec is president-elect of the Slovenian
Chapter of the Association for Information Systems, and vice-president of the Slovenian
Society Informatika.

D. Vavpotič is a senior-lecturer of information systems in the Faculty of Computer and
Information Science at the University of Ljubljana. He received his MSc and PhD degrees
from the Faculty of Computer and Information Science in 2003 and 2006 respectively.
He delivers courses on information systems and information systems development. His
primary research interests include software development methods, approaches to method
evaluation, and agile methods. His research has appeared in Information and Software
Technology, Applied Informatics, and Electro-Technical Review.



344 M. Bajec, D. Vavpotič

Karkasas ir j ↪i palaikantys instrumentai, skirti programinės ↪irangos
kūrimo metod ↪u reinžinerijai

Marko BAJEC, Damjan VAVPOTIČ

Šiame straipsnyje siūlomi karkasas ir j↪i palaikantys instrumentai, padedantys programin ↪e ↪irang ↪a
kuriančioms bendrovėms ↪idiegti pas save j ↪u poreikius tenkinančius techniškai ir socialiniu požiūriu
korektiškus formalizuotus darbo metodus. Pasinaudodamos tuo karkasu, bendrovės gali ↪ivertinti ir
patobulinti esamus j ↪u darbo metodus, formalizuoti tuos metodus ir, pasinaudodamos kaupiama savo
darbo patirtimi, nuolat juos praturtinti. Dar daugiau, šitaip sukonstruoti formalizuoti darbo metodai
yra lankstūs ir, pasinaudojant karkas ↪a palaikančiais instrumentais, gali būti automatiškai pritaikomi
specifiniams konkretaus projekto ar konkretaus kolektyvo poreikiams. Straipsnyje aprašyta siūlomo
karkaso idėja ir to karkaso instrumentinis palaikymas.


