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Abstract. Classification and regression tree approach was used in this research to model phone
duration of Lithuanian. 300 thousand samples of vowels and 400 thousand samples of consonants
extracted from VDU-AB20 corpus were used in experimental part of research. Set of 15 parameters
characterizing phone and its context were selected for duration prediction. The most significant of
them were: identifier (ID) of phone being predicted, adjacent phones IDs and number of phones in
syllable. Models were built using two different data sets: one speaker and 20 speakers. The influence
of cost complexity pruning and different values of pre pruning were investigated. Prediction by
average leaf duration vs. prediction by median leaf duration was also compared. Investigation of
most vivid errors was performed, speech rate normalization and trivial noise reduction were applied
and influence on models evaluation parameters discussed. The achieved results, correlation 0.8 and
0.75 respectively for vowels and consonants, and RMSE of ∼ 18 ms are comparable with those
reported for Check, Hindi and Telugu, Korean.

Keywords: duration model, phone duration, classification and regression trees, CART, speech rate
variability.

1. Introduction

Phone duration model and knowledge about how factors and factor interactions influ-
ence phone duration is very important for Language Technology applications like text-
to-speech synthesis, automatic speech recognition, and automatic speech signal segmen-
tation. Phone durations are highly context dependent in natural speech. For instance, du-
ration of the phone /a“/ (used SAMPA notation (Raškinis et al., 2003)) is as short as
30 ms in a word „ savo“ (“my”) and as long as 115 ms in a word „ atvertė“ (“opened”).
Therefore, the goal of this research is to create a model capable to predict phone durations
of Lithuanian on the basis of the context information.

Many types of methods have been recently used to model phone duration, the most
common of them are: rule-based (Klatt, 1979), sum-of-products (Santen, 1993; Santen,
1997) or decision tree-based methods (Batušek, 2002; Krishna and Murthy, 2004).
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The dominant aproach of ruled based duration modeling method is proposed by
D. Klatt. It states that:

1) each phone or group of phones has inherent (INHDUR) duration,
2) each of defined rule (value of context dependent parameter PRCNT ) tries to

describe a relative increase or decrease in the duration of a phone,
3) phones cannot be shorter than a certain minimum duration MINDUR.

The model is summarized by the formula:

DUR =
(
(INHDUR − MINDUR) ∗ PRCNT

)
/100 + MINDUR. (1)

Thus starting from some intrinsic value, the duration of a phone is modified by suc-
cessively applying a number of rules. This type of duration model was quite successfully
applied to Swedish, English and French languages, however rule-based models often tend
to over generalize and cannot handle exceptions well without getting exceedingly com-
plicated (Krishna and Murthy, 2004).

Another popular duration modeling technique is the sums-of-products model, devel-
oped by Van Santen (1993, 1997). According to this model the phone described by feature
vector d has the duration DUR(d):

DUR(d) =
∑
i∈K

∏
j∈Ii

Si,j(dj). (2)

Here, K is a set of indices, each corresponding to a product term. Ii is the set of indices
of factors occurring in the ith product term. The parameters Si,j are called factor scales.
Construction of the sums-of-products model consists of those three steps:

• Build a category tree – Usually category tree is built by linguists from known du-
ration ratios. One leaf covers phones that are under the similar influence of some
factors/parameters.

• Construction of the sums-of-products model for each category tree leaf.
• Model parameter estimation.

It is generally accepted that this method is one of the most accurate and is character-
ized as the method giving the best prediction and the largest correlation between predicted
and actual duration. However, building category tree and attaching models to categories
need an exhaustive knowledge about factors and how factor interactions influence phone
duration. Though there are some phone duration modeling experiments made by Kaunas
University of Technology, there are no published corpora-based investigations on Lithua-
nian phone durations. Thus, this method is not usable yet.

Therefore one of the machine learning methods – classification and regression tree
(CART) modeling (Breiman et al., 1984) can be used for Lithuanian by now. CART is
a statistical modeling technique used to predict a dependent variable y corresponding
to feature vector X . In many researches of phone durations (Santen, 1993; Santen, 1997;
Goubanova, 2003) and in general in the literature (Breiman et al., 1984), it is often stated,
that using this method does not provide the most accurate results. Nevertheless, because
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of its ability to discover structural relationships between the predicted and the measured
variables, this method is often used in initial research stages.

2. Modeling by Classification and Regression Trees

As most of machine learning approaches, CART also requires training set L in the form
< Xn, yn >, were yn is training instance dependent value corresponding to feature vector
Xn, n = 1, 2, . . . , N , where N is the number of instances in data set. The tree construc-
tion consists of three steps:

1) building a tree,
2) pruning a tree,
3) selecting an optimal subtree.

These three steps are discussed in Sections 3 and 4.

3. Building a Tree

We start with the tree consisting only of a root node t1, containing all of the cases in
training set L. The task is to find the optimal binary split of t1 into tL, tR. For real valued
feature i all splits of the form xi < τ are tested. Here τ stands for any real number. For
categorical feature i splits have the form xi ∈ Θ, where Θ is the set of all possible subsets
on values of xi. Once an optimum split of t1 is found, optimal splits of each of the two
descendant nodes tL, tR are recursively sought. This procedure is applied iteratively to
all descendants until some stopping condition is fulfilled (usually splitting is performed
until the size of node is no less than some specified minimal threshold or the decrease
of prediction error is observed). Let R(T ) denote error estimate of tree T and R(t) –
error estimate of node t. Thus, the choice of the optimal/ best split and prognosis inside
terminal node depends on R(T ). Two estimates were compared in this research.

1. Root mean square error (RMSE):

RRMSE(T ) =

√√√√ 1
N

M∑
i=1

RRSE(ti), (3)

where

RRSE(t) =
∑

Xn∈t

(
yn − y(t)

)2
. (4)

2. Mean relative error (MRE):

RMRE(T ) =
1
N

M∑
i=1

RRE(ti), (5)
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where

RRE(t) =
∑

Xn∈t

|yn − y(t)|
yn

. (6)

Let S be the set of all possible splits of a node t. More precisely, for any split s of t

into tL, tR, let

ΔR(s, t) = R(t) − R(tL) − R(tR). (7)

Then the best split s∗ ∈ S would be

s∗ = arg max
s∈S

ΔR(s, t). (8)

Thus, a regression tree is formed by iteratively splitting nodes so as to maximize the
decrease in R(T ). Notice that in the first (RMSE) case value of y(t) which minimizes
RRSE(t) is the mean of values yn falling into node t:

y(t) = ȳ(t) =
1

N(t)

∑
Xn∈t

yn, (9)

here the sum is over all ynsatisfying condition Xn ∈ t, N(t) is the number of objects
falling into node t.

In the second (MRE) case value of y(t) which minimizes RRE(T ) is the median of
all values ynfalling into node t, ν(t) will denote median value.

4. Pruning

The tree obtained using procedure described in Subsection 2.1 (denote Tmax) is usually
too big and the error estimates are overly optimistic. In other words, tree overfits the data.
Minimal error-complexity pruning (Breiman et al., 1984) was used in this research to
deal with overfitting. The essence of minimal error-complexity pruning lies in iterative
procedure cutting the “weakest” subtrees. The weakest subtree is defined as having the
least ratio:

R(t) − R(Tt)

|T̃t| − 1
, (10)

here, R(Tt) is the error estimate of subtree starting from node t, |T̃t| is the number of
terminal nodes of a subtree Tt. The outcome of this iterative procedure is an ordered
sequence of trees Tmax ⊇ . . . ⊇ Tk ⊇ . . . ⊇ TK = t1 of decreasing size. Training data
set was used to construct initial trees. Validation set was used to select tree from such
sequence having the least error estimate.
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Also we used pre-pruning in this research. Pre-pruning is applied in tree construc-
tion phase. It does not allow creating nodes that have less samples than some predefined
number.

5. Modeling Phone Durations of Lithuanian

5.1. The Data

Our analysis of phone durations is based on the VDU-AB20 continuous read speech
corpus. The corpus has been compiled and annotated by the Center of Computational
Linguistics at Vytautas Magnus University. The VDU speech corpus contains recordings
of 20 speakers. Each speaker represents about 1 hour of speech. Thus the corpus contains
20 hours of speech in total. The VDU-AB20 corpus is automatically annotated at 6 levels
including phone-level, syllable-level, word-level. In the context of this research, the most
important of them is phone-level. The database yielded a total of 300000 vowels and
400000 consonants. About 200 different SAMPA-encoded allophonic symbols (Raškinis
et al., 2003) were used in this research. SAMPA codes include information about phone
stress, palatalization, being a part of diphone and other features. The procedure of text-to-
phone transcription is elaborated in (Norkevičius et al., 2005). Speech signal annotation
is based on Hidden Markov model (HMM) methodology and has been achieved using
HTK toolkit (Young et al., 2000). A discrete grid/grating with time step of 10 ms was
used to automatically determine phone boundaries.

5.2. Features Used to Predict Phones Duration

The features that are used to predict duration can be grouped to such levels according to
the scope of the context:

Phone level. All features on this level are categorical. Possible values are codes of
SAMPA notation (Raškinis et al., 2003):

• target phone identity,
• identities of two preceding and two following phones.

Syllable level. All features on this level are numeral. Measurements are given in a
number of phones:

• syllable length,
• distance of the target phone from syllable start,
• distance of the target phone to syllable end.

Word level. All features on this level are numeral. Measurements are given in a number
of syllables:

• word length,
• distance of the target syllable from word start,
• distance of the target syllable to word end.
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Phrase level. All features on this level are numeral. Measurements are given in a
number of words:

• phrase length,
• distance of the target word from phrase start,
• distance of the target word from phrase end.

Extra features. All features on this level are boolean:

• target phone is initial phone of the word,
• target phone is final phone of the word.

5.3. Criteria for Model Evaluation

Evaluation of the duration models is usually expressed in terms of:

• Model’s error estimate. As mentioned in Subsection 2.1, tree construction and
choice of the predicted value for a terminal node directly depends on the criteria
used to estimate tree error. Usually a root mean squared error (RMSE) is used as
tree error estimate and mean as the predicted value for a terminal node. Due to the
fact that there was no reasonable explanation found of using this criterion, we addi-
tionally used the mean relative error as tree error estimate and median as predicted
value for a terminal node. Only one of mentioned criteria (henceforth referred to
as mean-based and median-based prediction) is selected at tree construction phase
at a time. Nevertheless both error criteria were estimated for a constructed tree.

• Correlation between the actual and the predicted durations.

5.4. Experimental Setup

10-fold cross-validation procedure has been applied for all experiments. The database
was partitioned into a training set 90%, a validation set 5% and a test set 5%. It must
be noticed that the data set used in this research was not validated by experts in general.
However, word accentuation was validated for all speakers, text-to-phone conversion was
not validated and phone-level annotations were partly validated (only the most prominent
errors were corrected) for one speaker. On that score 2 different data sets were sepa-
rated: data set containing validated data of a single speaker – henceforth referred to as
experiment “SS” and data set with a validated accentuation of 20 speakers – henceforth
referred to as experiment “MS”. There were 26940 vowels and 34281consonants in “SS”
and 314114 and 409927 vowel and consonant samples in “MS” accordingly. Considering
articulation and acoustics, vowels and consonants are two different phone classes, thus
separate models (CARTs) for vowels and for consonants were built in all experiments.
Two groups of experiments were performed in this research.

1. Baseline experiments. Separate models were built for SS and MS data sets, all 15
features were used to predict phone duration.
The following model building options were investigated:

• pre-pruning parameter: 1 (no pre-pruning), 10, 20, and 30 samples in a leaf;
• prediction value for a terminal node: mean-based and median-based.
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32 baseline experiments were run based on different model building options.
2. Supplementary experiments. Analysis of the largest errors in baseline experiments

showed that mainly these were caused by:

• inter-speaker speech rate variability;
• intra-speaker speech rate variability;
• noisy data, i.e., inaccurate phone-level annotations.

All additional experiments were performed on the „SS“ data set. These parameters
were investigated:

• intra-speaker speech rate variability normalization (henceforth referred to as
SR norm.);

• noise reduction (henceforth referred to as NR);
• prediction value for a terminal node: mean-based and median-based.

5.5. Experimental Results

The investigation of influence of the pre-pruning showed that the best results were
achieved when it was not allowed to create nodes covering less than 10 samples. Post-
pruning of trees (Fig. 1) constructed with pre-pruning parameter equal to 10 did not show
any significant changes of models error estimates, however it did decrease the amount of
nodes about 12 times (Table 4).

Thus, all results are given for trees constructed with the pre-pruning parameter equal
to 10 and after post-pruning was applied. As it was expected least RMSEs were achieved
when mean prediction (Table 1) was used and least MREs were achieved using median
prediction (Table 2). Largest correlation (Table 3) between actual and predicted duration
was achieved using mean prediction.

Reducing intra-speaker speech rate variability is highly dependent on how speech
rate is defined. We defined speech rate as a relative deviation of the average duration of
vowel/consonant inside a time frame from the average global vowel/consonant duration
for one speaker. Time frame was defined so it contained no less than 10 sec of speech
(unless it was the last frame of the record) and was not allowed to split words. Frames
were overlapping with time step of 5 sec. Thus, for vowels speech rate would be

SRVi =
EVi

EV
, (11)

Table 1

Averages of RMSE estimates after post-pruning, using mean and median prediction. Pre-pruning parameter –
10 samples. Confidence interval was calculated for 0.95 confidence level

Average RMSE

SS, Vowel SS, Consonant MS, Vowel MS, Consonant

Mean-based 0.0314 ± 0.001 0.0257 ± 0.0005 0.0367 ± 0.0004 0.0315 ± 0.001

Median-based 0.0326 ± 0.001 0.027 ± 0.0011 0.038 ± 0.0007 0.0333 ± 0.0007
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Fig. 1. Sample of one branch of constructed tree for vowels. Phone duration averages are given for data samples
falling in particular node.

Table 2

Averages of MRE estimates after post-pruning, using mean and median prediction. Pre-pruning parameter –
10 samples. Confidence interval was calculated for 0.95 confidence level

Average MRE

SS, Vowel SS, Consonant MS, Vowel MS, Consonant

Mean-based 0.3441 ± 0.014 0.3243 ± 0.0098 0.3131 ± 0.003 0.2772 ± 0.0026

Median-based 0.2904 ± 0.0066 0.2957 ± 0.0099 0.2587 ± 0.0027 0.2478 ± 0.0018
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Table 3

Average values of correlation between actual and predicted duration, using mean and median prediction. Pre-
pruning parameter – 10 samples. Confidence interval was calculated for 0.95 confidence level

Average Correlation

SS, Vowel SS, Consonant MS, Vowel MS, Consonant

Mean-based 0.7298 ± 0.0162 0.7087 ± 0.0212 0.6508 ± 0.0065 0.5968 ± 0.013

Median-based 0.7171 ± 0.0136 0.6938 ± 0.0270 0.6471 ± 0.0085 0.5698 ± 0.0095

Table 4

Number of terminal nodes after post-pruning, using mean and median prediction.
Pre-pruning parameter – 10 samples

Average number of terminal nodes

SS, Vowel SS, Consonant MS, Vowel MS, Consonant

Mean-based 322 573 1253 1647

Median-based 445 249 579 707

here EVi stands for average vowel duration within a frame i, EV – average vowel dura-
tion of the speaker in question. Respectively for consonants speech rate would be

SRCi =
ECi

EC
. (12)

Normalization of initial data was performed to reduce influence of speech rate (speech
rate normalization – SR norm.) in the following way (for vowels):

Di =
(
SRV

(
FR(i)left

)
×

(
FC

(
FR(i)right

)
− t(i)

)
+ SRV

(
FR(i)left

)
×

(
t(i) − FC

(
FR(i)left

)))
/(

FC
(
FR(i)right

)
− FC

(
FR(i)left

))
, (13)

here, FR(i) is a number of frame holding phone i. Indexes left and right are caused
by the fact that speech rate frames are overlapping and target phone is influenced by two
frames at the same time. FC is a function that gives time value of the frame center, t(i)
is the time value of the start of phone i. Similar SR normalization was performed for
consonants.

Some experiments were performed with different feature set. It appeared that tree
based on the features such as:

• target phone identity,
• identities of preceding and following phones,
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• word length in syllables,
• target phone is initial phone of the word,
• target phone is final phone of the word,

lead to best performance. Therefore all successive results are given using the abovemen-
tioned feature set and as in previous results trees were constructed with the pre-pruning
parameter equal to 10 and after post-pruning was applied. All experiments were run using
cross validation procedure described in Subsection 5.4.

For noise reduction (NR) we excluded 10 percent shortest and 10 percent longest
samples from the whole data set (SS+MS) each phone type/identification taken sepa-
rately. SS data set was used for further experimentation. Thus SS data set contained 21212
vowel samples and 25594 consonant samples after applying noise reduction.

As it can be seen, in general both SR normalization and NR gave model improve-
ments, i.e., reduction of error estimates (Table 5, Table 6) and increase in correlation
(Table 7). However it has to be noticed that SR normalization was less effective and

Table 5

Averages of RMSE estimates after post-pruning, using mean and median prediction. Pre-pruning parameter –
10 samples. Confidence interval was calculated for 0.95 confidence level

Average RMSE

Prediction using median Prediction using mean

OS Vowels OS Consonants OS Vowels OS Consonants

Without SR norm. 0.0317 ± 0.0008 0.0266 ± 0.0006 0.0315 ± 0.0008 0.0257 ± 0.0007

SR norm. Applied 0.0311 ± 0.0007 0.025 ± 0.0005 0.0301 ± 0.0007 0.0249 ± 0.0007

NR applied without SR norm. 0.0193 ± 0.0003 0.0173 ± 0.0004 0.0187 ± 0.0004 0.017 ± 0.0003

NR applied SR norm. applied 0.0189 ± 0.0005 0.0172 ± 0.0005 0.0183 ± 0.0003 0.0167 ± 0.0003

Table 6

Averages of MRE estimates after post-pruning, using mean and median prediction. Pre-pruning parameter –
10 samples. Confidence interval was calculated for 0.95 confidence level

Average MRE

Prediction using median Prediction using mean

OS Vowels OS Consonants OS Vowels OS Consonants

Without SR norm. 0.2788 ± 0.0051 0.2873 ± 0.0062 0.3326 ± 0.0072 0.3127 ± 0.0095

SR norm. applied 0.2833 ± 0.0104 0.2811 ± 0.0046 0.3219 ± 0.01 0.3111 ± 0.0072

NR applied without SR norm. 0.1869 ± 0.004 0.1738 ± 0.0024 0.1978 ± 0.0046 0.1851 ± 0.0031

NR applied SR norm. applied 0.1885 ± 0.0032 0.1776 ± 0.0046 0.196 ± 0.0029 0.1841 ± 0.004
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Table 7

Average values of correlation between actual and predicted duration, using mean and median prediction. Pre-
pruning parameter – 10 samples. Confidence interval was calculated for 0.95 confidence level

Average correlation

Prediction using median Prediction using mean

OS Vowels OS Consonants OS Vowels OS Consonants

Without SR norm. 0.734 ± 0.0167 0.7033 ± 0.0143 0.726 ± 0.0064 0.7145 ± 0.0142

SR norm. Applied 0.7356 ± 0.0121 0.7121 ± 0.0143 0.7299 ± 0.0122 0.7202 ± 0.0151

NR applied without SR norm. 0.8053 ± 0.0062 0.7547 ± 0.0103 0.8085 ± 0.008 0.7559 ± 0.013

NR applied SR norm. applied 0.8043 ± 0.0083 0.7514 ± 0.0154 0.8051 ± 0.0089 0.7562 ± 0.006

Table 8

Number of terminal nodes after post-pruning, using mean and median prediction. Pre-pruning
parameter – 10 samples

Average number of terminal nodes

Prediction using median Prediction using mean

OS Vowels OS Consonants OS Vowels OS Consonants

Without SR norm. 376 516 805 1261

SR norm. Applied 593 649 749 1232

NR applied without SR norm. 293 296 606 643

NR applied SR norm. applied 386 233 458 610

hardly observable, but it did reduce the number of terminal nodes (except when NR was
not applied and median prediction was used) (Table 8). NR did also reduce the number
of terminal nodes, but ir is hard to decide whether it was caused by building a tree on less
data samples or because of less noise in the data.

The best achieved results were: Correlations: 0.8 and 0.75 respectively for vowels and
consonants; RMSE: 0.18 and 0.17 respectively for vowels and consonants; RME: 0.19
and 0.17 respectively for vowels and consonants. Prediction error and correlation coeffi-
cients are comparable with those reported for Check (correlation 0.79 , RMSE 20.3 ms)
(Batušek, 2002), Hindi (correlation 0.75, RMSE 27.14) and Telugu (correlation 0.8 and
RMSE 22.86) (Krishna and Murthy, 2004), Korean (correlation 0.77, RMSE 25.11)
(Chung, 2002).
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6. Conclusions

A phone duration model of Lithuanian based on the CART technique and built on the
VDU-AB20 speech corpus was presented in this paper. Several versions based on dif-
ferent models parameters were presented. Investigation of most noticeable errors was
performed, speech rate normalization and trivial noise reduction were applied.

Results of the application of noise reduction points out that the data needs thorough
validation. It has to be noted that it is unclear which prediction method - using mean or
using median is more advantageous. Taking the abovementioned into account and that it is
not always the case that improved statistical model leads to improved speech quality. Also
future experiments include inter-speaker normalization and applying different techniques
(sum-of-products) to model phone duration.
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Lietuvi ↪u kalbos gars ↪u trukmės modeliavimas klasifikavimo ir
regresijos medžiais, naudojant didelės apimties garsyn ↪a

Giedrius NORKEVIČIUS, Gailius RAŠKINIS

Darbe aprašomas eksperimentas, kurio metu lietuvi ↪u kalbos gars ↪u trukmės buvo prognozuo-
jamos naudojant klasifikavimo ir regresijos medžius. Tyrimo duomen ↪u baz ↪e sudarė 300 tūkts.
balsi ↪u ir 400 tūkst. priebalsi ↪u pavyzdži ↪u, paimt ↪u iš VDU–AB20 garsyno. Tyrimui naudotas, gars ↪a
bei jo kontekst ↪a aprašantis, 15-os požymi ↪u rinkinys, svarbiausi j ↪u: prognozuojamo garso iden-
tifikatorius, gretim ↪u gars ↪u identifikatoriai, gars ↪u skaičius skiemenyje. Pateikiami eksperiment ↪u
rezultatai taikant kvadratinės bei santykinės klaidos medžio mazg ↪u dalinimo kriterijus. Taip pat
pateikiami medžio genėjimo minimalios klaidos – sudėtingumo algoritmo pagalba gauti rezul-
tatai bei rezultatai, gauti taikant skirtingus išankstinio genėjimo parametrus. Straipsnyje analizuo-
jamos stambiausios prognozavimo klaidos, aptariami sudaryt ↪u kalbėjimo tempo normalizavimo bei
duomen ↪u trukšmo mažininimo rezultatai. Sudarytasis modelis leidžia prognozuoti lietuvi ↪u kalbos
gars ↪u trukmes su ≈18 milisekundži ↪u RMSE ↪iverčiu bei 0.8 ir 0.7 koreliacija tarp prognozuotos ir
tikrosios reikšmi ↪u atitinkamai balsiams ir priebalsiams. Rezultatai palyginami su kit ↪u tyrėj ↪u atlik-
tais (ček ↪u, hindi ir telug ↪u, korėjieči ↪u kalboms) eksperimentais.


