
INFORMATICA, 2008, Vol. 19, No. 2, 255–270 255
© 2008 Institute of Mathematics and Informatics, Vilnius

Lloyd–Max’s Algorithm Implementation in Speech
Coding Algorithm Based on Forward Adaptive
Technique

Jelena NIKOLIC, Zoran PERIC
Faculty of Electronic Engineering
Aleksandra Medvedeva 14, 18000 Nis, Serbia
e-mail: njelena@elfak.ni.ac.yu, peric@elfak.ni.ac.yu

Received: July 2007

Abstract. In this paper a detail analysis of speech coding algorithm based on forward adaptive
technique is carried out. We consider an algorithm that works on frame-by-frame basis, where a
frame consists of a certain number of speech samples. Buffering frame-by-frame an estimation of
the gain defined as squared root of the frame variance is enabled. The information about the gain
(side information) and the code book of a nonadaptive quantizer, which is designed for the unit
variance case of the input signal, are further used when designing an adaptive quantizer. In such
a way better quantizer adaptation to the varying input statistics is provided. Observe that the goal
of this paper is to investigate the preference that for the wide range of variance change could be
achieved when implementing in the forward adaptive speech coding algorithm, the recently de-
veloped effective method for the Lloyd–Max’s algorithm initialization, which provides optimal
Lloyd–Max’s quantizer performances for the unit variance case of the input signal. We destine
to consider the speech coding algorithm based on forward adaptive technique since the backward
adaptation provides SQNR (signal to quantization noise ratio) within 1 dB of the forward adapta-
tion. We provide theoretical and experimental results (performances of our algorithm) which are
compared with the optimal results. Additionally, we discuss the performances of speech coding
schemes designed according to G. 711 standard and we point out the benefits that can be achieved
by using our algorithm. Finally, in order to find better solution for implementation of the proposed
algorithm in practice we consider the performances of our algorithm when log-uniform as well as
uniform scalar quantizer are used for gain quantizing.
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1. Introduction

Speech coding is a procedure to represent a digitized speech signal using as few bits
as possible, maintaining at the same time a reasonable level of speech quality (usually
measured by SQNR) (Chu, 2003; Kondoz, 2004; Gersho, 1994; Rabiner and Schafer,
1978; Pan, 1993; Pohlman, 1989; Jayant and Noll, 1984; Gersho and Gray, 1992; Mi-
noli, 2002; Hersent et al., 2005). A not so popular name having the same meaning is
speech compression. Speech coding has matured to the point where it now constitutes
an important application area of signal processing. Due to the increasing demand for
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speech communication, speech coding technology has received augmenting levels of in-
terest from the research, standardization, and business communities (Chu, 2003; Kondoz,
2004; Gersho, 1994; Rabiner and Schafer, 1978; Pan, 1993; Pohlman, 1989; Jayant and
Noll, 1984; Gersho and Gray, 1992; Minoli, 2002; Hersent et al., 2005; Hiwasaki et al.,
2006; Khasnabish, 2003). With the widespread availability of low-cost high performance
digital signal processors many signal processing task done in the old days using analog
circuitry are predominantly executed in the digital domain. Advantages of going digital
are many: programmability, reliability, and the ability to handle very complex proce-
dures, such as the operations involved in speech coders. Regarding to these advances and
the vast availability of low-cost programmable processors and dedicated chips, the rapid
transfer from research to the product development is enabled. This encourages the re-
searchers to investigate the alternative schemes for speech coding with the objectives of
overcoming deficiencies and limitations of the existing speech coding schemes. The re-
sults of such investigations are usually development of novel speech coding standards or
improvement of existing standards. Until now, so much work has been done to reduce the
bit rate while preserving the original quality of the digitized signal. For instance widely
used G. 711 standard (Chu, 2003; Gersho and Gray, 1992; Minoli, 2002; Hersent et al.,
2005; Khasnabish, 2003; ITU-T, Recommendation G. 711, 1972) has been developed in
order to processes a digital, linear, quantized signal on 12 bits. With this standard each
12 bits sample are converted to 8-bit code. The gain of using G. 711 is not in quality but
in the resulting bit rate.

The importance and reality of the alternative speech coding scheme investigation,
which satisfy G. 712 standard (ITU-T, Recommendation G. 712, 1992), i.e., which pro-
vides better quality of the speech signal when compared to the quality achieved by the
G. 711 standard while attaining as higher as possible compression, occupied us and in-
duce to think about possible solutions. Observe that selection of the particular speech
coding scheme or development of novel scheme that fits in the available bandwidth and
provides desired level of service (defined by G. 712 standard (ITU-T, Recommendation
G. 712, 1992)) is not an obvious task. Namely, in order to make right choice it is necessary
to have a deeper understanding on the internals of each candidate speech coders.

Let us define that a stationary process is a stochastic process whose probability dis-
tribution at a fixed time or position is the same for all times or positions. As a result,
parameters such as the mean and variance also do not change over time or position. As an
example, white noise is stationary. However, speech signals are not stationary because the
statistic of speech signals constantly change with time (Chu, 2003; Kondoz, 2004; Jayant
and Noll, 1984; Gersho and Gray, 1992; Minoli, 2002; Hersent et al., 2005). By statistics,
we mean the statistic mean, variance (or the dynamic range), and type of input pdf (prob-
ability density function). It is already shown that in order to process speech effectively
it is necessary to use some kind of adaptation or system that work on frame-by-frame
basis (Chu, 2003; Jayant and Noll, 1984; Gersho and Gray, 1992; Minoli, 2002; Hersent
et al., 2005), where a frame consists of a certain number of samples. The actual duration
of the frame is known as length. Typically, length is selected between 10 and 30 ms or
80 and 240 samples (Chu, 2003; Jayant and Noll, 1984; Gersho and Gray, 1992; Minoli,



Lloyd–Max’s Algorithm Implementation in Speech Coding Algorithm 257

2002; Hersent et al., 2005). Since in this short interval, properties of the speech signal
remain roughly constant, it can be viewed as a local stationary signal.

The aforementioned adaptivity of speech coding system can be achieved by using
an adaptive coder that attempts to make the encoder-decoder (quantizer) design adapt
to the varying input statistics. Namely, there are two different types of adaptive coders:
forward adaptive and backward adaptive coders (Chu, 2003; Kondoz, 2004; Jayant and
Noll, 1984; Gersho and Gray, 1992; Hersent et al., 2005; Ortega and Vetterli, 1997). They
conceptually differ regarding the features whether the adaptation is performed forward,
i.e., from the input sequence or backward, i.e., from the coded output signal. Also, for-
ward adaptive technique requires transmission of side information while it is not required
by the backward adaptive technique since the adaptation performs according to what was
transmitted the previous. It is obvious that the forward adaptation is less sensitive to trans-
mission errors when compared to backward adaptation. Moreover, it is demonstrated that
the backward adaptation provides SQNR within 1 dB of the forward adaptation (Jayant
and Noll, 1984). Hence, in this paper we focus our analysis on speech coding scheme
based on forward adaptive technique. Such a coding scheme can be defined as an algo-
rithm since speech coding is performed using numerous steps or operations. Furthermore,
it is well known that the adaptivity of such a coding scheme can be achieved by adapting
the input of the fixed or nonadaptive quantizer (encoder-decoder) according to the esti-
mated and quantized gain of the frame. The same effect can be achieved by an adaptive
quantizer with the code book obtained by multiplying with the estimated and quantized
gain the code book of the aforementioned nonadaptive quantizer. Observe that nonadap-
tive quantizer is usually designed for the unit variance case of the input signal. Recall
that the input speech signal can be modeled by the Laplacian distribution (Jayant and
Noll, 1984; Gersho and Gray, 1992). Again recall that we already developed an effec-
tive method for initialization of Lloyd–Max’s algorithm of optimal scalar quantization
for Laplacian source and unit variance case of the input signal (Peric and Nikolic, 2007).
Regarding to the previous results (Peric and Nikolic, 2007), we wonder here what speech
coding performance would be achieved by implementing the Lloyd–Max’s quantizer, de-
signed according to the method proposed in (Peric and Nikolic, 2007), in forward adap-
tive speech coding scheme. We destined to consider the Lloyd–Max’s model of quantizer
since we already demonstrated in (Peric and Nikolic, 2007) that by using the proposed
method for Lloyd–Max’s algorithm initialization the algorithm converges after only one
iteration when the bit rates are 7 or greater and after two iterations when the bit rates are
4, 5, 6 while providing near optimal performances (measured by SQNR). Therefore, we
hope that by implementing Lloyd–Max’s algorithm in forward adaptive speech coding
algorithm near optimal performance would be achieved for the wide dynamic range of
the input signal. The analysis that follows provides the answer on such a speculation.

Lloyd–Max’s Algorithm Implementation in Forward Adaptive Speech Coding
Algorithm

As we already mentioned the procedure of adaptation can be performed by normalizing
the input sequence, further coding with nonadaptive quantizer (encoder – decoder) and
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Fig. 1. General speech coding scheme based on forward adaptive technique.

finally denormalizing by the same quantized value of the calculated gain that is used
for normalizing. Also, we point out that the same effect can be achieved by an adaptive
quantizer (see Fig. 1) which code book is obtained by multiplying with the estimated and
quantized gain the code book of the aforementioned nonadaptive quantizer (Gersho and
Gray, 1992).

Since we already provide an effective method for optimal design of fixed Lloyd–
Max’s quantizers (Peric and Nikolic, 2007), here we destined to implement such a de-
signed quantizer in the general speech coding scheme that is depicted in Fig. 1. Namely,
we appropriate to consider speech coding scheme consisting of a buffer, an adaptive N -
level Lloyd–Max’s scalar quantizer, the gain estimator and the Ng-level scalar quantizer
(for gain quantizing). Observe that every speech coding scheme can be defined as an al-
gorithm since speech coding is performed using numerous steps or operations. Therefore,
we provide here in detail a novel speech coding algorithm based on forward adaptive tech-
nique in which adaptive Lloyd–Max’s quantizer is implemented and designed according
to the method proposed in (Peric and Nikolic, 2007).

The novel algorithm consists of following steps:
Step 1. Design of nonadaptive (fixed) Lloyd–Max’s scalar quantizer, by using initial-

ization method that was proposed in (Peric and Nikolic, 2007), for the unit variance case
(σ2

ref = 1) of the input signal x which is model by the Laplacian distribution (Gersho
and Gray, 1992):

p(x, σ) =
√

2
2σ

e−
|x|

√
2

σ . (1)

Design of Lloyd–Max’s scalar quantizer is equal to finding its decision thresholds and the
representation levels. The initial values for the decision thresholds {t(0)1 , t

(0)
2 , . . . , t

(0)
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and the representation levels {y(0)
1 , y

(0)
2 , . . . , y

(0)
N } of the Lloyd–Max’s quantizer are de-

fined by the compandor model which in the first quadrant (the symmetry of decision
thresholds and the representation levels are assumed) can be given by (Peric and Nikolic,
2007):
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where xmax is maximum input signal amplitude. Dependence of maximum input signal
amplitude on the number of Lloyd–Max’s quantizer levels N is determined in (Peric and
Nikolic, 2007) in the following form:

xmax =
3√
2

ln
(N

2

)
+
√

2. (4)

Using the proposed initialization, the new values for the decision thresholds and the rep-
resentation levels of Lloyd–Max’s quantizer can be determined from the following rela-
tions (Lloyd–Max’s algorithm) (Jayant and Noll, 1984; Gersho and Gray, 1992; Peric and
Nikolic, 2007):

t
(i+1)
j =

(y(i)
j + y

(i)
j+1)

2
, 1 � j < N, (5)

y
(i+1)
j =

∫ t
(i+1)
j

t
(i+1)
j−1

xp(x) dx

∫ t
(i+1)
j

t
(i+1)
j−1

p(x) dx

, 1 � j � N. (6)

Let us reword that stopping criteria that interrupts Lloyd–Max’s algorithm, which was
settled in (Peric and Nikolic, 2007), can be satisfied after one iteration when the bit rates
are 7 or greater and after two iterations when the bit rates are 4, 5, 6. Here we adopt
such a criteria and perform design of nonadaptive Lloyd–Max’s scalar quantizers when
the number of quantization levels N varies (rate = log2N).

Step 2. Buffering of the input speech signal and gain estimation. A finite number M

of input samples (frame) are buffered and used for gain estimation (squared root of the
frame variance):

g =

√√√√ 1
M

M∑
i=1

x2
j+i, (7)

where M � 1 is a finite number, known as a frame length (Chu, 2003; Jayant and Noll,
1984; Gersho and Gray, 1992; Minoli, 2002; Hersent et al., 2005).

Step 3. Quantization of the estimated gain. The estimated gain g is quantized by the
scalar quantizer ĝ:

a) uniformly

ĝi = σmin + (2i − 1)
Δ
2

, i = 1, . . . , Ng; Δ =
σmax − σmin

Ng
, (8)
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where interval (σmin, σmax) defines dynamic range of the input signal;
b) log-uniformly

20 log(ĝlu
i ) = 20 log(σmin) + (2i − 1)

Δlu

2
, i = 1, . . . , Ng;

Δlu =
20 log

(
σmax
σmin

)
Ng

, (9)

where interval (20logσmin, 20logσmax) defines dynamic range of the input signal in deci-
bels.

Step 4. Design of adaptive Lloyd–Max’s scalar quantizer. The quantized gain ĝ is
used for multiplying the code book of nonadaptive Lloyd–Max’s scalar quantizer that is
designed in Step 1. The decision thresholds and the representation levels of the adaptive
Lloyd–Max’s quantizer denoted with taj and ya

j respectively can be found from:

taj = taj (ĝ, σref ) = ĝtj(σref ), j = 0, 1, . . . , N, (10)

ya
j = ya

j (ĝ, σref ) = ĝyj(σref ), j = 1, 2, . . . , N, (11)

where tj = tj(σref ) and yj = yj(σref ) denote the decision thresholds and the represen-
tation levels of the nonadaptive Lloyd–Max’s quantizer.

Speech Coding Performance

The quality of a quantizer can be measured by the distortion of the resulting reproduction
in comparison to the original. The most convenient and widely used measure of distortion
between the input signal x and the quantized signal ya

j is the average mean-squared error,
i.e., quantization noise. Observe that time averaged distortion Dt

a, given by (Gersho and
Gray, 1992):

Dt
a = lim

L→∞

1
L

L∑
j=1

(xj − ya
j )2 (12)

corresponds to the statistically averaged distortion Ds
a (Gersho and Gray, 1992) at one

time instant:

Ds
a(σ) =

N∑
j=1

∫ ta
j

ta
j−1

(x − ya
j )2p(x) dx, (13)

if the input signal is stacionary ergodic process, where L denotes the number of consid-
ered samples xj . In this paper we assume such equality Da = Dt

a = Ds
a despite the fact

that we consider the local-stationary speech signal.
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Observe now that similar to Eq. 13, distortion denoted with D(σi), for the particular
variance of the speech signal σi, can be defined with (Gersho and Gray, 1992):

D(σi) =
N∑

j=1

∫ ta
j

ta
j−1

(x − ya
j )2p(x, σi) dx. (14)

Such a defined distortion determines the appropriate signal to quantization noise ratio
SQNR(σi) (Gersho and Gray, 1992):

SQNR(σi) = 10 log
( σ2

i

D(σi)

)
. (15)

Defining the average signal to quantization noise ratio SQNRa as follows:

SQNRa =
1
k

k∑
i=1

10 log
( σ2

i

D(σi)

)
, (16)

where k defines the number of the particular variances that are considered, theoretical
results can be obtained and hence numerical comparision with the theoreticaly optimal
values of signal to quantization noise ratio SQNRopt (Jayant and Noll, 1984) is enabled.

Since in this paper we perform both theoretical and experimental analsis we provide
here the expressions for average signal to quantization noise ratio for both cases. In order
to provide the experimental values of the average signal to quantization noise ratio within
the each of F frames we define the following relation:

SQNRex
p = 10 log

(σex
p )2

Dex
p

, p = 1, . . . , F, (17)

where (σex
p )2denotes the variance of the input speech samples within the pth frame, p =

1, . . . , F :

(σex
p )2 =

1
M

M∑
q=1

x2
pq, p = 1, . . . , F, (18)

and Dex
p denotes the average distortion for the pth frame, p = 1, . . . , F ,

Dex
p =

1
M

M∑
q=1

(xpq − ya
pq)

2, p = 1, . . . , F. (19)

Finally, xpq and ya
pq denote the input speech samples and the outputs of the adaptive

Lloyd–Max’s quantizer respectively. Recall that M is the number of speech samples
within the frame (frame length) and F is the number of frames that are considered in
experiment. By averaging the signal to quantization noise ratios within the each of F



262 J. Nikolic, Z. Peric

frames (Eq. 17), we can obtain experimental results (average values of SQNR, denoted
with SQNRex

a ):

SQNRex
a =

1
F

F∑
p=1

SQNRex
p . (20)

Relying on the proposed speech coding algorithm and using the afore defined ex-
pressions for the signal to quatization noise ratio determining we provide theoretical and
experimental results. Such a results are further compared with theoreticaly optimal re-
sults (Jayant and Noll, 1984) in order to find the particular speech coding scheme that
for a fixed number of quantization levels N provides as high as possible average SQNR
(SQNRa or SQNRex

a ) while satisfing the criteria:

ΔSQNRa � 0.03 dB, (21)

The introduced criteria states that there is no point to further increase the number of bits
for side information if the difference ΔSQNRa:

ΔSQNRa = SQNRa(N = 2qN , Ng = 2qNg )

− SQNRa(N = 2qN , Ng/2 = 2qNg−1), (22)

considered for qN = 5, 6, 7, qNg = 1, 2, 3, 4, 5, 6 is less than 0.03. Finaly, observe that
we obtain the value of 0.03 considering the well known fact that the increase of one bit
per frame consiting of M = 200 samples couses expected increase of SQNR of about
6 dB/200 = 0.03 dB (Jayant and Noll, 1984; Gersho and Gray, 1992).

Results

Dynamic range is a term used frequently in numerous fields to describe the ratio between
the smallest and largest possible values of a changeable quantity. Changeable quantity
that we consider is the signal variance. It is well known that the speech signal modeled by
the Laplacian distribution have the wide dynamic range (Jayant and Noll, 1984). Since,
for the wide dynamic range it is usually assumed range of 40 dB, in order to obtain
numerical results we assume such a dynamic range (Jayant and Noll, 1984). We dispose
of 10200 speech samples (8 kHz speech) and perform the buffering with the frame length
M = 200. It is important to point out that the selection of frame length or the learning
period M (Jayant and Noll, 1984) can be one of critical issues. If the learning period
is short, the adaptation to the local statistics will be effective, but the side information
needs to be sent frequently (more bits needs to be used for sending the side information).
If the learning period is long, the number of bits used for side information decrease,
the adaptation becomes less sensitive to changing statistics and both processing delay
and storage required increase. In practice, a proper compromise between quantity of side
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Fig. 2. Theoretical results: SQNR dependence on the signal variance for N = 128 levels when Ng = 1 and
Ng = 8 levels uniform scalar quantizer is used.

Fig. 3. Theoretical results: SQNR dependence on the signal variance for N = 128 levels when Ng = 32 and
Ng = 64 levels uniform scalar quantizer is used.

information and effectiveness of adaptation produces a good selection of the learning
period.

As we already mentioned we perform our analysis when the frame length is M = 200
and dynamic range of the speech signal is 40 dB. For such a case using Eq. 15 we provide
the SQNR dependence on signal variance when N = 128 levels Lloyd–Max’s quantizer
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Fig. 4. Theoretical results: SQNR dependence on the signal variance for N = 128 levels when Ng = 1 and
Ng = 8 levels log-uniform scalar quantizer is used.

Fig. 5. Theoretical results: SQNR dependence on the signal variance for N = 128 levels when Ng = 32 and
Ng = 64 levels log-uniform scalar quantizer is used.

is considered and Ng = 1 and Ng = 8 levels uniform scalar quantizer are used (see
Fig. 2). Using the same equation we provide the SQNR dependence on signal variance
when again N = 128 levels Lloyd–Max’s quantizer is considered and Ng = 1 and
Ng = 8 levels log-uniform scalar quantizer are used (see Fig. 4). Moreover, we provide
the SQNR dependence on signal variance for the same N = 128 levels Lloyd–Max’s
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Fig. 6. Experimental results: SQNR dependence on the frames for N = 128 levels when:
a) Ng = 32 levels log-uniform scalar quantizer is used for gain quantizing and
b) Ng = 64 levels log-uniform scalar quantizer is used for gain quantizing.

quantizer when the uniform scalar quantizer as well as log-uniform scalar quantizer have
Ng = 32 and Ng = 64 levels (see Fig. 3 and Fig. 5). Since the more constantly SQNR
in a wide dynamic range of the input signal is achieved by using log-uniform quantizer
we destine to consider such a quantizer. Therefore, using Eqs. 16 and 20 we provide the-
oretical and experimental values of average signal to quantization noise ratios when the
log-uniform scalar quantizer, used for gain quantizing, have different number of quanti-
zation levels Ng = 1, Ng = 2, Ng = 4, Ng = 8, Ng = 16, Ng = 32, Ng = 64 (see
Tables 1–3). Additionally, we tabulate the number of bit/sample that corresponds to the
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Fig. 7. SQNR dependence on the signal variance defined by ITU-T G. 712 standard.

particular speech coding scheme. Finally, in order to have better insight in the perfor-
mances of the considered speech coding scheme we provide (using Eq. 17) the values of
the signal to quantization noise ratio within the each of F frames (see Fig. 6).

It is important to point out that experimental results overreach the optimal SQNR value
that corresponds to optimal Lloyd–Max quantizer (Jayant and Noll, 1984). Observe that
the reason of such overreaching for Ng = 32 and Ng = 64 when log-uniform scalar
quantizer is used for gain quantizing is already explained in (Jayant and Noll, 1984) for
the case of uniform adaptive coders. Recall that the main reason of such overreaching fol-
lows from the fact that optimal results are obtained in case of stationary input signal while
we perform our experiment assuming the local-stationary input signal. Observe that the-

Table 1

Experimental and theoretical results for N = 128 levels when Ng-level log-uniform scalar quantizer is used
for gain quantizing

N = 128 Average SQNR
(optimal value SQNRopt = 35.69)

Number of
bits/sampleNg-level log-uniform

quantizer
Experimental

results
Theoretical

results

1 (0bit/frame) 14.25 23.75 7 + 0/200 = 7

2 (1bits/frame) 19.76 30.39 7 + 1/200 = 7.005

4 (2bits/frame) 25.55 33.99 7 + 2/200 = 7.010

8 (3 bits/frame) 30.84 35.17 7 + 3/200 = 7.015

16 (4 bits/frame) 35.00 35.58 7 + 4/200 = 7.020

32 (5 bits/frame) 35.78 35.65 7 + 5/200 = 7.025

64 (6 bits/frame) 36.17 35.67 7 + 6/200 = 7.030
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Table 2

Experimental and theoretical results for N = 64 levels when Ng-level log-uniform scalar quantizer is used for
gain quantizing

N = 64 Average SQNR
(optimal value SQNRopt = 29.74)

Number of
bits/sampleNg-level log-uniform

quantizer
Experimental

results
Theoretical

results

1 (0bit/frame) 12.10 19.31 6 + 0/200 = 6

2 (1bits/frame) 13.72 25.07 6 + 1/200 = 6.005

4 (2bits/frame) 19.52 28.21 6 + 2/200 = 6.010

8 (3 bits/frame) 24.92 29.32 6 + 3/200 = 6.015

16 (4 bits/frame) 28.82 29.62 6 + 4/200 = 6.020

32 (5 bits/frame) 29.94 29.71 6 + 5/200 = 6.025

64 (6 bits/frame) 30.31 29.73 6 + 6/200 = 6.030

Table 3

Experimental and theoretical results for N = 32 levels when Ng-level log-uniform scalar quantizer is used for
gain quantizing

N = 32 Average SQNR
(optimal value SQNRopt = 23.87)

Number of
bits/sampleNg-level log-uniform

quantizer
Experimental

results
Theoretical

results

1 (0bit/frame) 6.55 14.77 5 + 0/200 = 5

2 (1bits/frame) 7.20 19.82 5 + 1/200 = 5.005

4 (2bits/frame) 13.59 22.50 5 + 2/200 = 5.010

8 (3 bits/frame) 19.03 23.48 5 + 3/200 = 5.015

16 (4 bits/frame) 23.05 23.75 5 + 4/200 = 5.020

32 (5 bits/frame) 24.00 23.84 5 + 5/200 = 5.025

64 (6 bits/frame) 24.15 23.86 5 + 6/200 = 5.030

oretical results do not overreach the appropriate optimal SQNR value since the theoretical
results are carried out assuming equality of Eqs. 12 and 13. Moreover, by increasing the
number of bits required for sending the side information (information about the gain) the
performances of the considered speech coding scheme approaches to optimal. It is very
important to notice that the performances (SQNR) obtained by using the proposed speech
coding algorithm are closer to the optimal and the less bits/sample are required (approx-
imately about 1 bits/sample compression) when compared to adaptive coders designed
according to G. 711 standard (ITU-T, Recommendation G. 711, 1972).

Finally, the selection of the particular speech coding scheme can be performed ac-
cording to the introduced criteria Eq. 21. Observe that when Ng = 64 level log-uniform
scalar quantizer is used for gain quantizing experimental results demonstrate that the in-
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troduced criteria is satisfied, while theoretical results satisfied criteria when Ng = 32
level log-uniform scalar quantizer is used. Since the theoretical results for Ng = 64 are
closer to optimal we destine to adopt as better solution the speech coding algorithm con-
sisting of Ng = 64 level scalar quantizer. Finally, considering the Figs. 2, 3, 4 and 5
it is obvious that the best performances of the considered speech coding schemes can
be achieved by using Ng = 64 level log-uniform scalar quantizer (SQNR constant in a
wide dynamic range of input signal). Therefore we propose implementation in practice
of the speech coding scheme consisting of Ng = 64 level log-uniform scalar quantizer.
Finally, it is important to point out that the proposed speech coding scheme consisting of
Ng = 64 level log-uniform scalar quantizer satisfies G. 712 standard (see Fig. 7) for a
wide dynamic range of the input signal.

Conclusion

In this paper we proposed a novel speech coding algorithm based on forward adaptive
technique in which adaptive Lloyd–Max’s quantizer is implemented and designed ac-
cording to the method proposed in (Peric and Nikolic, 2007). In order to have accurate
insight in the performances of the adaptive coders designed according to the proposed
algorithm we have performed the comparison of such performances with the theoreticaly
optimal performances (Jayant and Noll, 1984). Moreover, we discussed the performances
of speech coding schemes designed according to G. 711 standard and argue that with the
proposed algorithm the nearest to the optimal performances can be achieved while obtain-
ing approximately about 1bits/sample compression. We provided theoretical and exper-
imental results (performances of our algorithm). We demonstrated that experimental re-
sults (SQNRex

a ) overreach the optimal results (SQNRopt) and explained that the reason
of such overreaching follows from the fact that we performed our experiment assuming
the local-stationary input signal while optimal results are obtained in case of stationary
input signal. Further, we demonstrated that theoretical results approach to optimal results
by increasing the side information. In order to limit the increase of side information as
well as to find the particular speech coding scheme that for a fixed number of quanti-
zation levels N provides as high as possible average SQNR (SQNRa or SQNRex

a ) we
introduced the criteria which do not allow further increase of the number of bits for side
information if the difference ΔSQNRa is less than 0.03. Finally, in order to find bet-
ter solution for implementation of the proposed algorithm in practice we considered the
performances of our algorithm when log-uniform as well as uniform scalar quantizer are
used for gain quantizing. We demonstrated that in a wide dynamic range of input signal
constant SQNR can be achieved when Ng = 64 level log-uniform scalar quantizer is used
for gain quantizing. Additionally, we demonstrated that afore considered speech coding
scheme satisfies G. 712 standard for a wide dynamic range of the input signal. There-
fore we hope that our algorithm provides a good solution for the practical realization of
adaptive speech coders. Particularly, we believe that adaptive speech coders designed ac-
cording to our algorithm can be widely used for voice transmission over internet (Minoli,
2002; Hersent et al., 2005), as well as in public switched telephone networks (PSTN)
where the high quality voice signal represented with less than 8 bits/sample are required.
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Lloyd–Max’s algoritmo ↪igyvendinimas šnekos kodavimo algoritme,
grindžiamame ėjimo ↪i priek ↪i adaptyviu metodu

Jelena NIKOLIC, Zoran PERIC

Straipsnyje detaliai analizuojamas šnekos kodavimo algoritmas, grindžiamas ėjimo ↪i priek↪i
adaptyvaus metodo panaudojimu. Nagrinėjamas algoritmas, operuojantis kadrais, kuriuose pateikia-
mas tam tikras šnekos pavyzdži ↪u imči ↪u skaičius. Kaupiant kadrus stiprinimo ↪ivertis apibrėžiamas
kaip kvadratinė šaknis iš kadr ↪u imči ↪u dispersijos. Informacija apie stiprinim ↪a ir neadaptyvaus kvan-
tuoklio kodin ↪e knyg ↪a, kuri sukurta vienetinės ↪iėjimo signalo dispersijos atveju, yra toliau nau-
dojama kuriant adaptyv ↪u kvantuokl↪i. Tokiu būdu atliekama geresnė kvantuoklio adaptacija be-
sikeičiančiai ↪iėjimo statistikai. Pastebėsime, kad šio straipsnio tikslas yra tirti, kad plačiame disper-
sijos kitimo intervale pirmenybė galėt ↪u būti pasiekta panaudojant ėjimo ↪i priek↪i adaptyv ↪u kalbos
kodavimo algoritm ↪a, neseniai sukurt ↪a efektyv ↪u metod ↪a Lloyd–Max’s algoritmo inicializacijai, kuri
duoda optimal ↪u Lloyd–Max’s kvantuoklio veikim ↪a ↪iėjimo signalo vienetinės dispersijos atveju.
Mes numatome nagrinėti kalbos kodavimo algoitm ↪a, paremt ↪a ėjimo ↪i priek↪i adaptyviu metodu,
kadangi gr↪ižimo atgal adaptacija duoda SQNR (signalo ir kvantavimo triukšmo santyk↪i) tiesio-
ginės adaptacijos 1 dB ribose. Mes pateikiame teorinius ir eksperimentinius rezultatus (mūs ↪u al-
goritmo darbingum ↪a), kuris yra palyginamas su optimaliais rezultatais. Priedo, mes nagrinėjame
kalbos kodavimo schemos, sukurtos pagal G 711 standart ↪a, darbingum ↪a ir pabrėžiame naud ↪a, kuri
gali būti gauta naudojant mūs ↪u algoritm ↪a. Galiausiai, kad rasti geresnius sprendimus pasiūlyto al-
goritmo ↪igyvendinimui praktikoje, mes nagrinėjame mūs ↪u algoritmo darbingum ↪a, kai logaritmiškai
tolygus, o taip pat tolygus skaliarinis kvantuoklis yra naudojami stiprinimo kvantavimui.


