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Abstract. In this paper the immune network system was presented by the sequence of species with
new immunological components allowing more plausible to reflect the immune response processes.
The mathematical model oriented to the describing of the more realistic immune processes in the
dynamics allowed to organize the computational experiment in the first to demonstrate a possible
very complex behavior including chaotic regimes. The results of modeling of dynamic immuno-
logical processes with chaotic behavior are represented and considered.
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1. Introduction

The immune system based on an immune response to different endogenic active self-
replicating antigens such as virus, bacteria or foreign cells represents an arch-complex
biological system, researching of which is denoted by numerical theoretical and exper-
imental works in the world. Note, that the immune system has much similarities to the
neural system. Both systems display dichotomies and dualism. The cells of two systems
may receive signals as well as transmit they. The signals can be either excitatory or in-
hibitory. In human body, there are about 1011 neurons and about 1012 of the immune
system cells – lymphocytes. Latter did not connect by strict fibres in order to form a net-
work though ( as we will show below) some prepositions to form a network take place.
The neural networks enable much more present by networking structure. Both systems
develop from experience and build up a memory and are deposited in persistent network,
which cannot be transmitted to the offsprings.

For immune system, the clonal theory proposed by Burnet (1959) plays an important
role in satisfactory explanation for the formation of antibody specific to antigen that is
infected into binds to the receptors of the lymphocytes and macrophages. Latter attracts
B lymphocytes which sensitize the proliferation of plasma-cells and produce antibodies.
This immunological postulate is confirmed by a very large amount of experimental works.

Today the experimental and theoretical immunology accumulate the crucial material
about fundamental results concern to mutual activities between antigens and antibodies
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on the different level of details from microscopical to intercellular genetic cases. These
results allow to come up a building of mathematical models of the immune processes.

One of the first direction to the construction of the immune mathematical model is
the work (Hege and Cole, 1966) in which it has built the equation, describing the change
of amount of circulating antibodies dependent on the number of the plasma-cells the
same specific. After that Jilek (1971a, 1971b) proposed the simple mathematical model
and the probability approach to the immunocompetant cells with antigen simulated by
Monte-Carlo process of clone forming from one B cell.

Bell (1970, 1971, 1973) has built a mathematical model of humoral immune reaction
based on hypothesis of the clonal selection theory Burnet (1959). Mohler et al. (1978)
suggested the model for presentation and analysis of the antibody production and coo-
peration between T and B systems of the immune response. The wide class of dynamic
nonlinear models with dilation have been analyzed by Marchuk (1978, 1980).

In 1975 Richter (1975) and Hoffmann (1975) have proposed original immune mo-
dels based on some grounds of the network theory of the immune system Jerne (1974).
Richter and Hoffmann have done a set of assumptions concerning to the interactions in
the network with low zone tolerance of immune response.

Apart dynamics of the immune response processes analyzed by Richter (1975), Hoff-
mann (1975), Marchuk (1980), Prikrilova et al. (1984) and others, Bell (1970) set the
limit circles with self-content states, attractive focal points or saddle points. But in these
all works no attempts to see to the immunological systems from position of a self-
organization in part or synergetics in common case. We try to represent the immune
system as a massive multicomponent nonlinear network with clonal structure and com-
plex interconnected subblocks both an humoral and cellular components of the general
immune system.

According to Stepney (2003) or Nicolis and Prigogin (1979) self-organizing systems
have bifurcation ( or control parameter) which can achieve the extremal value turned
to hold the system at critical point. Such systems have attractor in the critical point.
Some times the attractors can fluctuate creating the conditions of appearance of chaotic
situations.

The chaotic regime of the dynamic systems in general is characterized by Tsuda
(1992) with many factors. One of them is a strange attractor appearance. The strange
attractor can be appeared changing a bifurcation parameter. It has a non-uniform charac-
ter items from dynamic intermittent systems. The crucial property of the such behavior
is interchange between two frequency (or two time scales) mode. We try search such
properties in the immune systems like the neural systems by van der Mass et al. (1990),
Garliauskas (1998). If to present the immune system as an immune network for appear-
ance of the chaos, it is important to expose the conditions of the nonlinearities and an
asymmetry of the network.

A simple immune network model with complex dynamics is analyzed by De Boer et
al. (1990, 1993), the immune model with a Cayley tree by Anderson et al. (1993). The
existence of chaotic behavior in an antibody/B cell (AB) model observed in (Stewart and
Varela, 1990; Calenbuhr et al., 1995). Either cyclical or chaotic regimes were observed
in host immune responses by Gupta et al. (1998).
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2. Immune System

It is well known that in the living being the humoral and cell-mediated immunity system
are coexisted. The immunity response to the invaded antigen is the result of a complex
interplay and mutual relationship of these two kinds of immunity with many compo-
nents. The humoral immunity is based on B lymphocytes. The cell-mediated immunity
is based on T lymphocytes, the T procursors of which are produced in Thymus, includ-
ing a cooperation between T cells and macrophages. The antigen activated T cells also
produce clones of cells sensitive to the antigen through proliferation mechanism. One
part of T -clone cells join the B cells derived the memory other part join the activated
macrophages overcomes the invaded antigen. These latter cells in contact with the target
antigens synthesize and release substances called interleukins (IL-1, IL-2). Smith (1980)
have suggested a participation of IL-1 and IL-2 in T and B of lymphocyte proliferation.
Another function of interleukins is is the mobilization of the resting macrophages and
their attraction to the invasion of the antigen and able to kill infected cells at a distance
without intervention of macrophages. In addition, T cells can attach to target cells (anti-
gens) and kill them directly.

Main hard work on overcoming of an invaded virus B lymphocytes carry out after
antigen sensibility under T -helpers control on producing of the antibody clones. This is
so called an humoral immune response (the left-site of Fig. 1).

Neutralization of antigens realizes under taking part of the plasma-cells, macrophages,
cooperation with mature T lymphocytes and lymphokines.

Fig. 1. The immune response simplified structure: B+, B− denote positive and idio-typical B lymphocytes,
T+, T− the same T ones, M is the macropfage, Ag denotes antigen.
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3. Immune Network

The model supposed by Bell (1970), describing the antibody production, explains high
dose tolerance however this variant of model insufficient to describe a response to the
high dose antigens, because no specific control mechanism. For the removing of this con-
tradiction, Jerne (1974), Richter (1975), Hoffmann (1975) have introduced a limitation
which is that the number of proliferation cells cannot be higher than some maximum
level. Just mentioned authors with a help of the immune network network models with
limitations overcome these lacks.

3.1. Immune Network Prepositions

According to the Jerne (1974) immune network theory is based on the following prepo-
sitions: (i) antibody and receptors of the lymphocytes can recognize and be recognized;
(ii) lymphocytes (T and B) are able to the mutual action (synergism) and contraction
(antagonism); (iii) antibodies of sensitized lymphocytes are able to response to recogniz-
ing signals as a positive or negative depending on different inner and outer conditions;
(iv) self-behavior of the immune system is determined by interaction of lymphocytes and
molecules of antibodies inside of the network recognizing each other.

Further we mostly follow (Hoffmann, 1975) where two sets of antigen-specific T

lymphocytes are presented for determination of the immune response to an antigenic
stimulus. There are the antigen-binding T lymphocytes (T+) and anti-idiotypic lympho-
cytes (T−), and also positively armed effector lymphocytes (K+) (Fig. 2). The T− have
receptors that are complementary to T+ and therefore they are not only stimulated by T+

but can stimulate T+ in backwards. It means that both T+ and T− have the same speci-
ficity of receptors. When the present achieves a high concentration, it inhibits mutual
stimulation blocking the receptors of the lymphocytes.

It is important to emphasize a role of invoking a large number of different factors
which allow to regulate of the immune response. As a rule, T cell-selected immune factor
is monovalent whereas T receptor is at least divalent.

Fig. 2. The main complex of inter-linking antigen (Ag), T lymphocytes, and effector cells (K+).
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The cross-linking armed receptors and T lymphocytes under an activation of antigen
are schematically shown in Fig. 2.

The stimulation is denoted by solid lines. Blocking (inhibition) of receptors is repre-
sented by single dashed lines, and the killing of cells is shown by jagged lines. The armed
effector cell is denoted by a double-dashed line.

Different types of the immune response are supposed to understand as collective phe-
nomena defined by network structure which is represented by immune system itself in
general.

3.2. Immune Network Description

According to Jerne (1974) and Richter (1975) the immune network is postulated by the
qualitative properties: (i) antigen stimulates some class antibodies each of which repre-
sents an antigen for the same other class and so on; (ii) between input and inner epitopes
and paratopes the relation stimulation (direct bind) and suppression (back bind) are ex-
isted; (iii) stimulation and suppression as well can be inhibited as a consequence of block-
ing paratopes and epitopes; (iv) it is necessary some saturation concentration of epitopes
to include the immune-competent cell for differentiation.

The immune network presentation can be described in the following. The antigen
V (l−1) represented as l− 1 species stimulates the species l, i.e., positive T l

i lymphocytes
(Fig. 3).

Latter activates the proliferation cells and producing of a clone of antibodies of l

species. The suppressive T
(l+1)
s cells on the level of species l+1 suppress T

(l)
i . In parallel

to T
(l+1)
s , the anti-idiotypical T

(l)
j appear and inhibit (block) T

(l)
i . It activates and some

times inhibit the effector cells T
(l)
eff , and latter kill V (l−1). The killing process is carried

out by antibodies F (l) jointly with macrophages. The antigen V (l−1) can indirect inhibit
the species T

(l+1)
s . Besides suppression T

(l+1)
s can become in the role of antigen and

sensitize next block of immune network continuing net structure.

4. Immune Network Chaos Model

It is known from general dynamic system theory that under some defined circumstances
the deterministic chaos is possible. This is confirmed that in the analogous to immune
network there are the neural network systems according to the following works (Van der

Fig. 3. The immune network system structure.
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Mass et al., 1990; Garliauskas, 1998). Below we will show that the immune networks are
also able to the chaotic behavior under some prepositions.

4.1. Immune Network Mathematical Model Description

The basic assumptions to the postulate theory are the following. The triggering lym-
phocytes have the cross-linking receptors. The T and B lymphocyte receptors are
immunoglobulin-like molecules. The cross-linking receptors lead to the activation of the
cell-mediated macrophages armed with specific T cell factors to eliminate cells of the
complementary specificity.

Another part of the theory is that the cross-linking of receptors can be inhibited by
blocking of the receptors by monovalent factors.

It is known from the theoretical morphogenesis that as the result of short range acti-
vation and long-range inhibition (by blocking) the stable dissipative structures, strange
attractors and chaotic phenomenon can be formed. Mathematical modeling was con-
structed working out the ideas presented in this paper and on clonal approach by Bell
(1970), network model by Richter (1975), Hoffmann (1975).

Discrete differential equations, limit conditions of concentration of immune values,
cross-linking receptor assumptions, and two-mode ranging structure are the main base of
the immune network modeling.

The basic regulation value of the immune response is the antigen. Its behavior is
controlled by many factors such as an amount of specific cells, antibodies, sensitized
macrophages, etc. For the description of the antigen concentration was used the following
discrete differential equation:

V (t + 1) = V (t) + αV − βV F, (1)

where α is the difference between the growth rate and death rate of antigen, F is the
concentration of antibodies (they may be T+ or T−), β is the rate of specific killing by
cytotoxic effector cells as a probability of antigen neutralization by the specific lympho-
cytes or antibodies at meeting with antigen, the growth of iteration parameter t is equal
to one.

Further, according to (Hoffmann, 1975) [12] and a little corrections, the antigen-
binding T lymphocyte concentration was described by discrete nonlinear differential
equations as follows:

Ti(t + 1) = Ti(t) + Ti(t)Ri
T (i,j) −

n∑

l=1

γ(Vl(t)Til + ITil, (2)

where T1 denotes T+, Ri
T (i,j) is the rate of replication T+, due to stimulation by type j,

γ(Vl(t) is the function of l antigen at t moment under influence by limited function
γ(Vl(t) = a1Vl(t)/(b1 +V m

l (t)), where it at Vl(t) → 0 limits to zero and at Vl(t) → ∞,
m = 1 reaches a saturation expressed by a1, b1 is a fixed value to prevent calculations
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from an uncertainty, and n is the number of antigens. Further, Til is T+ specified to l
antigen in the network, ITil is the rate of immigration of T lymphocytes of the same
specificity from stem cells, and the cells after mutation with other specificities. Eq. (1) is
used the same for different antigens.

The rate of replication Til will have a complex structure of interacted parameters and
can be expressed

Ri
T (i,j) =

1
τRT

c1

1 + V (t) + (TjeRT )m1
, (3)

where τRT is the replication rate constant, c1 is a saturation of concentration Til, m1 is
the grade characterizing the with of thresholds, and variable eRT is s the effectiveness of
collision between Til and Tjl in triggering of T cells. This effectiveness could be blocked
by T cell factors.

Thus, the effectiveness of collisions can be expressed by dependence

ERT =
CblTi

1 + Tmbl
i

CblTj

1 + Tmbl
j

, (4)

where Cbl denotes the threshold of concentrations of T factors for blocking T cells, and
mbl is the with of the threshold. The collision effectiveness (3) is the product of two terms
defined by Ti and Tj cells.

The suppressed lymphocyte concentration rate is described by equation

Ts(t + 1) = (1 − Ds)Ts(t) + σTs(t), (5)

where Ds is death rate of Ts cells, σ denotes the growth rate of the suppressed cells at t

moment.
The T−, B+ and B− concentration rates in dynamics can be described by the analo-

gous to Eqs. (2)–(5).
The recursion Eqs. (1), (3) and (5) including expressions (3) and (4) have been solved

until the saturation state would be achieved. The iterations are stopped when the conver-
gence error exceeds the given value. This decision procedure belongs to a short-range
activating iterations with the cross-linking of receptors.

The antibody recursion equation may be represented as follows:

F (k + 1) = (1 − DF )F (k) + C(k) − θa2V (t + 1)F (k)

− ηa3Ts(t + 1)Ti(t + 1), (6)

where DF is the death rate of the antibody concentration, C(k) = ρF (k)V (t + 1) is
the plasma cell concentration rate which is proportional to the antigen-antibody complex
value, θ is the coefficient belonging to probability of neutralization antigen by antibody
at their collision, a2 is the number of antibodies for neutralization of one antigen at time
unit. The coefficient θ was used as a control or bifurcation searching the chaotic pheno-
mena of the immune network. The recursion Eq. (6) reflects the slow process equation
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on each step of which the quick Eqs. (1), (2) and (5) are solved until stationary states
achieved.

4.2. General Prepositions to Chaotic Behavior

The dynamic systems especially dissipative dynamics systems are able to have solutions
that at t → ∞ attract to some subset measure zero in phase space. The chaotic oscillations
in the dynamic systems characterize by a strange attractor. The strange attractor structure
is more complex than the usual attractor. It is able to form a geometrical invariant struc-
ture or named a scaling structure. If the dynamic system dependents on a parameter, its
changing can challenge a qualitative variation of the attractor. Such value of the con-
trol parameter is the bifurcation value or the bifurcation. In this case it can happened
a period-doubling process continued until the endlessness. It is known that the Feigen-
baum universal constant achieves itself defined value (δ = 4.6692 . . .) independent of the
system type, choosing of representation, and a scale of system.

The systems in more general position can be characterized by two timescales (quickly
and slowly), dynamic, heterogeneous, unstructured, open networks:

– timescales: when one part system is carried out quickly and another one is worked
slowly;

– dynamics: when the states are far from equilibrium governed by attractors and tra-
jectories;

– heterogeneous: when the modes of the network and the connections among ele-
ments can be of many different types;

– unstructured: there is no regularity in the network connectivity;
– ppen: the components are not fixed, new kinds of nodes and connections may ap-

pear.

The vertebrate immunological systems detecting and preventing security attacks of
invaded antigens have such properties.

The immune system represented by nonlinear dynamic equations can give rise to the
chaotic behavior as we show by computational experiment in the next section.

4.3. Computational Experiments

The computational experiments based on two-dimensional immune antibody/B cell (AB)
models with task to analyze the dynamical features were carried out in (De Boir et al.,
1990; 1993). However, the AB model is nonrealistic because of in AB an antigen is
not included. It is known that without antigen the cell differentiation and proliferation
a production of antibodies is not possible. In spite of this model even in a simplified
form have allowed to observe the complex dynamical behavior including either stationary,
periodic or apparently chaotic regimes. The analogous chaos, persistence, and evolution
of strain structures were modeled in (Gupta et al., 1998; Andersen et al., 1993; Calenbuhr
et al., 1995) and others.

In our case simulation of the dynamic immune network processes has been carried out
in two iteration stages. In first stage, the discrete differential Eqs. (1), (2), and (5) regard-
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ing to expressions (3) and (4) were calculated by recursion procedure until the conver-
gence criterion exceeds the given value (ΔTi = 0.02). After that the second calculation
stage is switched on. The first step of recursion (6) is solved at zero initial conditions and
using last values of the positive lymphocyte Ti, suppression lymphocyte (Ts), and antigen
concentrations of quick cycle iterations. The slow and quick cycles continue until the sta-
tionary state of the antibody concentration rate will be achieved. After that the coefficient
μ = ηa2, as an average of number of antibodies for killing antigen will be changed with
a small growing of μ (Δμ = 0.01). This coefficient, if the dynamic solutions bifurcate,
is named a bifurcation parameter.

Investigation of chaotic behavior effects in the immune network system occurred by
registering the sum of absolute values of the antibody concentrations for different values
of μ.

For an illustration, there was used the three block-unit immune network where the im-
migration Ti lymphocyte concentration rates I l, I l+1, I l+2 were given. The coefficients
α = 0.1, β = 0.5, a1 = 0.5, b1 = 1.5, a2 = 2.5, c1 = 10, τRT = 100, m = 2, m1 = 2,
mbl = 2, Cbl = 100, Ds = 0.1, σ = 0.3, DF = 0, 1, ρ = 0.1, and θ = 0.4 were fixed
as conditional ones. The absolute sum of antibody concentrations was defined after the
value of recursion was stabilized from 149 to 210 cycles.

The first diagram in Fig. 4 characterize the multi-macrostate regimes in the immune
network system. These regimes with the immunological interpretation can be character-
ized in such a way. The concentration of antibodies in the beginning a little decays and

Fig. 4. The diagram of the immune network regime.
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further becomes stable until no invasion of antigen. Around μ = 5.2 the bifurcation
appear. The antigen attacks the organism and activates T and B lymphocytes. The pro-
liferation and differentiation mechanisms are switched on. Apwards values μ = 5.83 till
μ = 6.95 the system reaches chaotic reproduction of antibodies forming an appropriate
clone. There also are seen the periodic windows at μ = 5.52, μ = 7.35, and μ = 8.87
which may be interpreted as a memorization of high sensitive lymphocytes.

The other diagram in Fig. 5 is showing almost similar behavior but without clear ex-
pressed windows. Here the calculations were made with changing of immigration values
T l = T l+1 = I l+2 = 10 and steps of the iterations ΔTi = 0.2, and recursion Δμ = 0.7.
The complex processes are now observed in another range of bifurcation parameter. Here
it has been the regular range (μ = 50 ÷ 100), bifurcation of solutions (μ = 110 ÷ 130),
windows of periodical (μ = 130 ÷ 140) and chaotic behavior (after μ = 140). The
immunological interpretation is analogous to the first diagram.

Though the meager experimental reports suggesting that concentrations of idiotype
and anti-idiotype pairs distribute in an irregular and possibly chaotic, to confirm complete
conclusion of an existence of chaos in the immune response so far is not possible.

Suppose that for experimental immunology will be much hard problem to prove such
complicated behavior in the immune network dynamic system.

Fig. 5. The diagram of the immune network regime after changing of parameters.
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Conclusions

1. The immune network system was presented by the sequence of species with new
immunological components allowing more plausible to reflect the immune re-
sponse processes.

2. An hypothesis of the chaotic behavior in the immune network system is formulated
from theoretical and computational experiment positions.

3. The mathematical model oriented to the describing of the more realistic immune
processes in the dynamics allowed to organize the computational experiment in the
first to demonstrate a possible very complex behavior including chaotic regimes.
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Imuninio tinklo sistema su chaotiniu elgesiu

Algis GARLIAUSKAS

Imuninio tinklo sistema pavaizduota kaip element ↪u seka su naujomis imunologinėmis kom-
ponentėmis, leidžiančiomis kuo adekvačiau atspindėti imuninio atsako procesus. Tokios sistemos
chaotinis elgesys yra formuluojamas remiantis teorinėmis bei skaičiavimo eksperimento pozici-
jomis. Pateikti imuninės sistemos chaotinio elgesio modeliavimo rezultatai.


