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Abstract. This paper presents a method of minutiae based fingerprint matching that is robust to
deformations and does not do fingerprint alignment. It concentrates on comparing rotation and
translation invariant local structures defined by minutiae point and its neighboring minutiae points.
Then the collection of most probable correspondences of matched minutiae is found. Finally, the
local structures of higher order are validated. All three steps are completely rotation and translation
invariant, robust to nonlinear deformations and do not use any fingerprint alignment. Experimen-
tal results on publicly available as well as internal databases show an improved performance of
the proposed method in comparison with the traditional minutiae based algorithms that perform
fingerprint registration.
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1. Introduction

Most automatic fingerprint verification/identification systems use minutiae information
from fingerprints to align and compare images or their templates to speed up the matching
process. We refer to minutiae as ridge ending or ridge bifurcation with any additional
local features in this paper. Extraction of minutiae from fingerprint image is out of the
scope of this paper.

Much effort has been made to create matching algorithms capable of dealing with
distortion and deformations in fingerprint images. Overview of possible methods is made
in (Maltoni et al., 2003). Thin-plate spline model is used to deal with distortion (Bazen
et al., 2002): first, local matching is performed on structures that consist of minutiae
and its two closest neighboring minutiae points to determine witch minutiae possibly
match, then global matching is made to find registration parameters; after finding the
global registration parameters that coarsely align two fingerprints, elastic deformation is
eliminated using thin-plate spline model, and final match is made. The authors reported
major increase in performance. However, their approach uses registration estimation that
is not reliable with distorted fingerprints since accurate registration does not often exist.
Fig. 1 demonstrates two fingerprints taken from the same finger, after alignment. There
is a region in both fingerprints, that is not distorted, but major deformations exist in other
areas of fingerprints, because fingers are soft and elastic.
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Fig. 1. Two different impressions of the same fingerprint before and after registration.

Errors in registration lead to errors in further steps. Matching based on local and
global structures is described in (Ratha et al., 2000). Local matching uses local structures
that consist of minutiae point and its neighboring minutiae points and is rotation and
translation tolerant. Local structures from both fingerprints are matched to find the best
matching pair. This pair is used as a reference correspondence point, and other minutiae
points are aligned based on this correspondence. After alignment global structure match-
ing is done. To account for deformation, large bounding boxes are used, but to decrease
the probability of false match, the matching certainty level function that provides some
sort of match probability instead of just “matched” or “not matched” result is defined. Al-
though authors reported good matching performance, the disadvantages of their matching
algorithm are similar to (Bazen et al., 2002). If the fingerprints are distorted, the exact reg-
istration parameters do not exist, and even the reference local pair cannot be used to align
them. Errors in choosing the right reference point or incorrect alignment lead to incorrect
match. Other methods are described in literature (Maltoni et al., 2003), but most of them
are either variations of above described methods that use registration, or their computa-
tional cost is too high or they use some other, not minutiae methods to deal with distortion
and can not be used with existing fingerprint databases based on minutiae. For example,
interesting method is introduced in (Senior and Bolle, 2001), where authors normalize the
fingerprint image to a canonical form so that ridges are equally spaced and less affected
by distortion. In (Capelli et al., 2001) a distortion model that could describe elastic defor-
mation found in fingerprint images is presented. Authors validated it by manually setting
deformation parameters, but no automatic optimization technique that could be used to
automatically derive deformation parameters while matching minutiae is known. In gen-
eral, distortion elimination is a hard problem that could improve performance of most
matchers, if properly solved. After normalization or deformation removal a rigid matcher
could be used for direct comparison (Malickas and Vitkus, 1999). Another normalization
technique was introduced in (Lee et al., 2002) – the minutiae distance is normalized at
the matching stage according to the local ridge frequency. This method could improve
matcher performance for good quality fingerprints where reliable frequency estimation
is possible, and for minutiae pairs that are not far from one another, so that changes in
ridge frequency along the fingerprint that occurs even in not distorted images are less than
errors that are made while estimating the frequency.
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In this paper, a completely new approach of minutiae matching is proposed as a frame-
work with broad range of possible implementations. One of the most simple but effective
implementation is discussed here. The method consists of three main steps: matching
of local structures, correspondence set construction and validation of higher order local
structures. The first step has the following properties:

• low false rejection ratio (FRR);
• rotation and translation invariance;
• locality (for tolerance to deformations);
• low computational complexity.

Possible implementation will be discussed in Section 2. The second step receives a
similarity matrix filled with similarity score of every minutiae point from the first tem-
plate compared with every minutiae point from the second template. In spite of the fact,
that one minutiae point from the first template can be very similar to several different
minutiae points from the second template, every minutiae point can make only one cor-
respondence between the templates. Construction of minutiae correspondence set is dis-
cussed in Section 3. While constructing the minutiae correspondence set no information
about the global fingerprint structure is used. The last step of global fingerprint structure
validation is discussed in Section 4.

2. Local Matching

In most general case, template of fingerprint is the description of minutiae points set. Two
sets of minutiae must be compared while matching two fingerprints. For simplicity, we
will call T (test set) – the first set of N minutiae and S (sample set) – the second set of M

minutiae. The order of sets is not important because the proposed method is symmetric.
We define local matching as a comparison of N local structures from set T to M local
structures from set S where every local structure is associated with minutiae which serves
as a reference point to that local structure. The result of local matching step is an N ×M

similarity matrix filled with similarities between local structures.

2.1. Local Structure

Generally, local structure could be anything from a minutiae point identified by a vector
starting at (x, y) and local ridge direction φ to a set of minutiae with some portions of
original image. However, we are looking for a structure having the following character-
istics:

• rotation and translation invariance,
• locality (for tolerance to deformations),
• fast and easy comparable.

One of possible candidate could be the structure that we define using graph notation
similar to (Ratha et al., 2000), see Fig. 2. The local structure associated with the minutiae
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Fig. 2. Local structure associated with minutiae mi.

mi (defined by a vector starting at (xi, yi) and local ridge direction φi) for some dis-
tance dmax and maximum number of nearest neighbors nmax is the graph Si = (Vi, Ei)
consisting of:

• Vi = {mj |distance (mi, mj) < dmax}, |Vi| � nmax;
• Ei = {eij |eij connects mi and mj}, where eij is labeled with tuple

(i, j,distance (i, j), φij), φij is the angle between mi and mj directions. Addi-
tionally, other features can be used to improve the performance.

Such local structure is rotation and translation invariant and tolerant to non rigid non-
linear deformations.

2.2. Similarity Score

In spite of the fact, that minutiae extraction from fingerprint image is out of the scope
of this paper, possible errors of false detected and missed minutiae cannot be ignored.
The local structures cannot be compared directly if any of these errors is present. To deal
with these errors we construct a similarity function CS(ST

i , SS
j ) for comparison of two

local structures ST
i and SS

j from test and sample fingerprints. If there were no extraction
errors the edges of every local structure could be sorted in clockwise (or counterclock-
wise order) starting from the direction of associated minutiae and compared directly by a
function

CS(ST
i , SS

j ) =
|ET

i |∑
k=1

CE(eT
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Δdmax, Δϕmax, wd, wϕ– predefined parameters.
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However, we can deal with errors introduced by extraction in the following way:

• sort ET
i edges in a clockwise order (starting from the direction of associated minu-

tiae) into a sequence EvT
i ;

• sort ES
j edges in a clockwise order (starting from the direction of associated minu-

tiae) into a sequence EvS
j ;

• find the longest common subsequence (LCS) of EvT
i and EvS

j using the same
similarity function CE from (2) for comparison of sequences elements;

• sum up the similarities of edges that make the longest common subsequence:

CS′(ST
i , SS

j ) =
∑

eT
ik

,eS
jl
∈LCS(EvT

i
,EvS

j
)

CE(eT
ik, eS

jl). (3)

As a convenient abuse of terminology we will use CS instead of CS′ to represent
similarity between two local structures.

3. Correspondence Set Construction

After calculating similarity between every local structure from test and sample finger-
prints similarity matrix SMN×M is filled with these values. This matrix can be used
to construct a correspondence set of minutiae pairs where every local structure belongs
maximum to one correspondence:

C =
{
(ST

i , SS
j )|ST

i ∈ T, SS
j ∈ S

}
, |C| � min(N, M). (4)

Though many different approaches can be used to find minutiae correspondence set, a
maximum weighted matching on bipartite graphs will be used to find the correspondence
set maximizing the sum of similarities between local structures.

Bipartite graph is constructed from similarity matrix with vertices defined by local
structures from both fingerprints and weighted edges defined by greater than 0 similarities
between associated local structures. We use Hungarian algorithm to solve this problem in
O(max(N, M)3) time in worst case.

4. Validation

Until a correspondence set is constructed no global fingerprint registration is used and
for robustness to deformations it will not be used anywhere in the proposed method.
Although local structures from test and sample fingerprints can have high similarity they
can be situated differently in respect to each other in fingerprints (see Fig. 3). Local
structures 1t and 1s, 2t and 2s, 3t and 3s seem alike. Each of them has two neighbors,
and distances to them are similar, but when edges bt and bs are examined, it is obvious
that they are different (if we align structures 1t and 1s, 3t and 3s, we will notice, that



36 A. Kisel, A. Kochetkov, J. Kranauskas

Fig. 3. Corresponding local structures (numbered 1t and 1s, 2t and 2s, 3t and 3s).

although lengths of edges bt and bs are similar, the corresponding angles αt and αs are
quite different, and pointing the opposite direction, so are the angles βt and βs.

Similar cases should be taken under consideration. The easiest solution would be
global alignment of fingerprints. Since we do not use any global registration (many fin-
gerprints are distorted), local structures of higher order can be used to control how local
structures are located in the fingerprint. We define the local structures of higher order
as any pair of local structures from correspondence set C = {(ci

T , ci
S), |1 � i � |C|}

constructed in previous section for test and sample fingerprints:

HST
ij = (cT

i , cT
j ), 1 � i < j � |C|,

HSS
ij = (cS

i , cS
j ), 1 � i < j � |C|. (5)

Local structures of higher order HST
ij and HSS

ij are rotation and translation invariant.
Additionally, they hold information on how local structures are situated in the fingerprint
in respect of each other without a need of global fingerprint registration. Some of the local
structures of higher order are illustrated in Fig. 3 marked by Latin letters at and as, bt and
bs, ct and cs. For example, structure bt (identified by local structures 1t and 3t, angles
αt and βt, and distance between minutiae associated with local structures) from Fig. 3
in test fingerprint is compared to corresponding structure bs in sample fingerprint. If the
structures are not consistent they are not used in calculating similarity score between
fingerprints.
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4.1. Similarity Score

We define similarity score SS between two local structures of higher order HST
ij and

HSS
ij as

SS(HST
ij , HSS

ij) =

{
0, if Δl � Δlmax or Δα � Δαmax or Δβ � Δαmax;

wl
Δlmax−Δl

Δlmax
+ wα

Δαmax−Δα
Δαmax

+ wα
Δαmax−Δβ

Δαmax
, otherwise.

(6)

mT
i , mT

j , mS
i , mS

j – minutiae associated with local structures from HST
ij and HSS

ij ,
Δl = |distance (mT

i , mT
j ) − distance (mS

i , mS
j )|,

Δα = min(|αT − αS |, 2π − |αT − αS |),
αT , αS , βT , βS – angles between the segments connecting the local structures of

higher order and directions of their associated minutiae,
Δβ = min(|βT − βS |, 2π − |βT − βS |),
Δdmax, Δαmax, wl, wα – predefined parameters.
If similarity is 0, the pair of matched local structures of higher order is rejected and

does not participate in final similarity calculation (does not pass the validation step).

4.2. Global Similarity Score

We define similarity score between two fingerprints as a sum of similarity scores between
all local structures of higher order (that passed a validation step) combined with similarity
scores of local structures that make them:

SCORE =

∑
i,j f(SS(HST

ij , HSS
ij), CS(ST

i , SS
i ), CS(ST

j , SS
j ))

g(N, M)
, (7)

where ST
i , SS

i , ST
j , SS

j are local structures that make HST
ij and HSS

ij ,
f(SS(HST

ij , HSS
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2
; (8)

SS(HST
ij , HSS

ij) · CS(ST
i , SS

i ) · CS(ST
j , SS

j ); (9)

SS(HST
ij , HSS

ij)
√

CS(ST
i , SS

i ) · CS(ST
j , SS

j ). (10)

g(N, M) function is used to normalize similarity score for differently sized fingerprints.
Selection of the most suitable f and g functions is left for the future work. f function

from Eq. (9) and g function equal to N and M product were used during evaluation.
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5. Evaluation

5.1. Description of the Proposed Implementation

We will refer to our implementation of the proposed fingerprint minutiae matching frame-
work as Local Structure Matcher (LSM). The following brief sequence of steps summa-
rizes current implementation:

• construction of local structures (Subsection 2.1),
• matching of local structures (Subsection 2.2),
• correspondence set construction (Section 3),
• validation of correspondences by using local structures of higher order (Section 4),
• calculation of final similarity score (Subsection 4.2).

5.2. Threshold Parameters in Local Structures

Two threshold parameters are used in constructing local structures – dmax and nmax.
Experimental results show that changing value of parameter dmax hardly changes match-
ing performance. However, to make structures more local the value of 150 pixels was
chosen. Additional testing was performed on several databases for choosing the value of
nmax parameter. It showed that nmax is a tradeoff between speed and quality. The quality
is measured as FRR at FAR 0.01%. FAR (the probability that a biometric system will in-
correctly identify an individual) and FRR (the probability that a biometric system will fail
to identify an enrolled individual) are calculated according to FVC2002 protocol (Maio
et al., 2002). The results are shown in Fig. 4. The value of 10 was chosen.

Fig. 4. Change of FRR at FAR 0.01% (in percents) for different values of nmax on different databases.
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5.3. Threshold Parameters in Similarity Functions

The proposed method uses several predefined thresholds (Δdmax, Δϕmax, Δlmax,

Δαmax), however we show that similarity functions are constructed to be robust. None of
them uses a hard decision (see (2), (6), and (7)) because the information on level of simi-
larities is lost in that way. Our similarity functions include this information and are stable
in respect to varying values of threshold parameters. Actually, these parameters control
what amount of deformation is allowed by the proposed method. For example, allowing
stronger deformations (higher thresholds values) results in higher false acceptance rates
but lower false rejection rate. The parameters we used (Δdmax = 12, Δϕmax = 17◦,
Δlmax = 12, Δαmax = 17◦) was a compromise between FAR and FRR.

Actual values of parameters were obtained by modifying similarity functions so that
a hard decision in similarity calculation (6) is made (the similarity of matched structures
is considered zero if difference in distances, or angles, or other properties are above the
thresholds, and equals 1 if differences in all properties are below the thresholds). Op-
timal values were obtained by manual adjustment of parameters to minimize FAR and
FRR errors on different databases. When optimal hard decision threshold values where
calculated, similarity functions were modified to make soft decision (6) (contrary to hard
decision similarity function, similarity of matched structures equals to differences in mea-
sured properties scaled to interval [0..1]).

Additional testing showed that the chosen values can be changed within ±50% with-
out noticeable impact to the performance of the proposed method.

5.4. Performance Evaluation

To show the performance of the proposed method it was tested on publicly available NIST
Special Database 29 (Watson, 2001) fingerprint database (hereafter referred as SD29).
The database consists of 216 ten-print fingerprint card pairs with both the rolled and
plains scanned at 19.7 pixels per mm. For direct comparison we chose publicly available
NIST fingerprint image software NFIS2 (Watson et al., 2002) minutiae based fingerprint
matching algorithm (hereafter referred as BOZORTH3). Fingerprint minutiae extractor
from NFIS2 (MINDTCT) was not used in the evaluation because of big number of false
minutiae it produces (BOZORTH3 matcher uses only 150 minutiae of best quality from
the fingerprint template to deal with this problem). We tested the proposed matching
method with commercially available fingerprint minutiae extraction algorithm of better
quality (Neurotechnologija, 2006) (hereafter referred as COMM).

SD29 database consists only of fingerprint images that were scanned from fingerprint
cards. Additional tests were done to prove that the proposed method works well with live
scanned fingerprints. The following databases were chosen:

• DB1 from FVC2002 fingerprint verification competition (Maio et al., 2002) col-
lected with optical sensor “TouchView II” from Identix. The database consists of
800 different fingerprints with 8 impressions per finger.



40 A. Kisel, A. Kochetkov, J. Kranauskas

• DB2 from FVC2002 fingerprint verification competition collected with optical sen-
sor optical sensor “FX2000” from Biometrika. The database consists of 800 differ-
ent fingerprints with 8 impressions per finger.

• Neurotechnologija’s internal database collected with optical single-finger scanner
“DFR 2090” from Identix (hereafter referred as INTERNAL1). The database con-
sists of 1400 different fingerprints with 10 impressions per finger.

• Neurotechnologija’s internal database collected with high-quality optical single-
finger scanner “Cross Match Verifier 300” (hereafter referred as INTERNAL2)
recommended for large scale automatic fingerprint identification systems. The
database consists of 1 400 different fingerprints with 10 impressions per finger.

6. Results

NIST VTB fingerprint system with Bozorth98 matcher (previous version of BOZORTH3)
participated in Fingerprint Vendor Technology Evaluation (FpVTE) 2003 (Wilson et al.,
2004) and proved to be comparable to other commercial algorithms and even better
than almost half of the contestants. The following experiment shows an improvement
of the proposed method over BOZORTH3 matcher with COMM minutiae extractor. 18
ROC curves were calculated on different parts of SD29 (Watson et al., 2005) for ev-
ery method. SD29 consists of rolled and plain fingerprints taken from different fingers.
Parts of database are named: RT (right thumb), LT(left thumb), RI(right index), LI(left
index), RM(right middle), LM(left middle). Since both rolled ant plain versions of fin-
gerprints are present in database, algorithm tolerance to fingerprint deformation (observ-
able on rolled fingerprints) can be evaluated. The results are shown in Table 1 and Ta-
ble 2. Columns correspond to different parts of database, and rows correspond to dif-
ferent matching scenario: P2P (plain fingerprints are matched with plain fingerprints),
P2R (plain fingerprints are matched with rolled fingerprints), R2R (rolled fingerprints are
matched with rolled fingerprints)

The proposed method improves FRR at FAR = 0.01% from 12.01% to 9.20% on
average. As expected, the largest improvement was gained on rolled-to-rolled fingerprint
matching were stronger deformations of fingerprints are possible.

Fig. 5 and Fig. 6 show the performance of the proposed method on live scan finger-
prints from FVC2002 databases that were collected with optical scanners.

Table 1

COMM+BOZORTH3 FRR at FAR 0.01% on different parts of SD29

Part RT LT RI LI RM LM Average

P2P 7.1 6.2 18.9 15.0 14.8 14.1 12.68

P2R 12.7 12.8 14.7 18.6 14.6 12.2 14.27

R2R 16.3 11.3 6.6 5.9 8.3 6.0 9.08
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Table 2

COMM+ LSM FRR at FAR 0.01% on different parts of SD29

Part RT LT RI LI RM LM Average

P2P 7.14 9.89 14.8 11.5 15.9 13.2 12.07

P2R 5.36 9.34 9.07 12.5 9.62 9.34 9.205

R2R 4.95 7.69 4.4 6.59 5.49 8.79 6.318

Fig. 5. COMM+BOZORTH3 compared to COMM+LSM on FVC2002 DB1 database.

Fig. 6. COMM+BOZORTH3 compared to COMM+LSM on FVC2002 DB2 database.
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Table 3

FRR at FAR 0.01% on tested databases with commercial minutiae extractor

Database BOZORTH3 LSM

SD29 (average) 12.01% 9.20%

FVC2002 DB1 8.73% 3.29%

FVC2002 DB2 5.82% 3.00%

INTERNAL1 5.65% 2.3%

INTERNAL2 1.78% 0.44%

Summary of improvements to FRR at FAR = 0.01% over all databases is presented in
Table 3. The largest improvement was achieved for the live scanned fingerprints.

7. Conclusion

In this paper we have presented a framework to match deformed fingerprints. It consists
of simple and intuitive steps. The proposed implementation of the steps is straightforward
and flexible, does not use registration, and is capable of matching deformed fingerprints.
It leaves much freedom in combining the suggested methods with other approaches. Eval-
uation of algorithm was made on large data sets with different matching parameters. It
has been shown that proposed method is flexible and tolerant to rotation, translation and
deformation of fingerprint images. Performance of the method was compared with BO-
ZORTH3 matcher and improvements up to 4 times (one-tailed paired t-test; p < 0.0005;
Table 3) in false rejection rates at 0.01% FAR were demonstrated.

During developing and testing of the framework, minutiae features were limited to
position and direction information. Addition of other features to improve matcher perfor-
mance will be evaluated in the future.
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Piršt ↪u atspaud ↪u palyginimas pagal taškinius požymius naudojant
lokalias struktūras be globalios transformacijos atstatymo

Andrej KISEL, Alexej KOCHETKOV, Justas KRANAUSKAS

Straipsnyje pristatomas naujas piršt ↪u atspaud ↪u lyginimo pagal taškinius požymius metodas,
kuris yra atsparus deformacijoms, nes neatlieka globalaus piršt ↪u atspaud ↪u išlygiavimo. Aprašomas
metodas naudoja lokalias posūkiui ir poslinkiui invariantiškas struktūras, kurios yra sudarytos iš
taškini ↪u požymi ↪u ir j ↪u artimiausi ↪u kaimyn ↪u. Pristatomas labiausiai tikėtin ↪u lokali ↪u struktūr ↪u por ↪u
išrinkimas ir iš j ↪u sudarom ↪u aukštesnės eilės struktūr ↪u pakartotinis patikrinimas. Visi naujo metodo
žingsniai yra invariantiški posūkiui ir poslinkiui, o taip pat yra atsparūs piršt ↪u atspaud ↪u deformaci-
joms. Atliktais eksperimentais su viešai prieinamomis duomen ↪u bazėmis parodoma, kaip pagerėja
piršt ↪u atspaud ↪u atpažinimo kokybė, jeigu pasiūlytas metodas naudojamas vietoje tradicini ↪u global ↪u
piršt ↪u atspaud ↪u išlygiavim ↪a atliekanči ↪u metod ↪u.


