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Abstract. This paper presents a bimodal biometric verification system based on the fusion of palm-
print and face features at the matching-score level. The system combines a new approach to palm-
print principal lines recognition based on hypotheses generation and evaluation and the well-known
eigenfaces approach for face recognition. The experiments with different matching-score normal-
ization techniques have been performed in order to improve the performance of the fusion at the
matching-score level. A “chimerical” database consisting of 1488 palmprint and face image pairs
of 241 persons was used in the system design (440 image pairs of 110 persons) and testing (1048
image pairs of 131 persons). The experimental results show that system performance is significantly
improved over unimodal subsystems.
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1. Introduction

Biometrics is an emerging technology that utilizes distinct behavioural or physiological
characteristics in order to determine or verify the identity of an individual (Jain et al.,
1999a; Zhang, 2000). The physical characteristics used in biometric identification or ve-
rification systems are fingerprint (Jain et al., 1999b), hand geometry (Kumar et al., 2003a;
Ribaric et al., 2003), palmprint (Shu and Zhang, 1998; Zhang and Shu, 1999; Duta et al.,
2001; You et al., 2002; Han et al., 2003; Lu et al., 2003; Wu et al., 2003; Wu et al., 2004;
Zhang et al., 2003), face (Turk and Pentland, 1991; Belhumeur et al., 1997; Jain et al.,
1999b; Jonsson et al., 1999; Kotropulous et al., 2000; Zhao et al., 2000), iris (Zhang,
2000), retina and ear (Jain et al., 1999a). The behavioural characteristics are signature,
lip movement, speech, keystroke dynamics, gesture and gait (Jain et al., 1999a; Zhang,
2000). Biometric systems that use a single trait are called unimodal systems, whereas
those that integrate two or more traits are referred to as multimodal biometric systems.
Although unimodal systems are usually more cost-efficient than multimodal systems,
a single biometric trait might not be enough to authenticate a user, and so multimodal
systems are being developed in order to provide acceptable performance, to increase the
scalability and the reliability of decisions and to increase the system’s robustness to fraud-
ulent technologies (Bolle et al., 2004; Jain and Ross, 2004; Ross and Jain, 2003).
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In this paper we describe a bimodal biometric verification system for physical or
logical access control based on palmprint and facial features. Related work in the fields of
palmprint and face-based authentication, as well as fusion at the different levels, is given
in the following paragraphs.

The palm is the inner surface of the hand between the wrist and the fingers (Zhang
and Shu, 1999). The palm area contains a large number of features that can be used as
biometric features, such as principal lines, geometry, wrinkle, delta point, minutiae and
datum point features. Shu and Zhang (1998) used both geometrical features of the palm-
print and points along the principal lines of the palmprint to distinguish one person from
among others. Zhang and Shu (1999) located datum points using a directional projection
algorithm, and afterwards line-feature extraction and matching were applied in order to
detect whether two palmprints belong to the same palm. Duta et al. (2001) extracted a
number of feature points from the prominent palm lines; the decision as to whether two
hands belong to the same person was based on the matching score between the corre-
sponding sets of feature points for the two palmprints. You et al. (2002) first used global
texture energy to select a small set of similar candidates from the database, and then used
point-based matching to make the final decision. Han et al. (2003) used Sobel and mor-
phological operations to extract features from the palm area. Wu et al. (2003) used a set
of directional line detectors to detect the principal lines of the palm, which are then used
to classify palms into one of six categories according to the number of principal lines and
the number of their intersections. Ribaric et al. (2003) and Kumar et al. (2003) combined
line-like features of the palm and hand geometry into a multimodal biometric system for
user authentication. In addition to the approaches based on these palmprint features, other
approaches have been developed for palmprint-based biometric systems as well, such as
eigenpalms (Lu et al., 2003;), fisherpalms (Wu et al., 2003), Fourier transform (Li et al.,
2002) and 2D Gabor phase encoding (Zhang et al., 2003).

From the numerous methods developed for the purpose of face recognition (Zhao et
al., 2000), the use of eigenfaces (Turk and Pentland, 1991) is one of the most popular.
Turk and Pentland (1991) first used eigenfaces by applying the method known as the
Karhunen–Loeve (K–L) transform or PCA (Principal Component Analysis) to a set of
facial images. The method functions by projecting the facial images onto a feature space
that spans the significant variations among the known facial images. The feature-space
basis vectors are called eigenfaces because they are eigenvectors of the covariance matrix
of the known facial images. The facial features are obtained by projecting the facial image
into the obtained feature space, and these features do not necessarily correspond to our
intuitive notion of the facial features. Some other recent face recognition approaches
include fisherfaces (Belhumeur et al., 1997), support vector machines (Jonsson et al.,
1999) and elastic graph matching (Kotropulous et al., 2000).

A multimodal biometric system requires an integration scheme to fuse the information
obtained from the individual modalities. Various levels of fusion are possible (Kittler and
Alkoot, 2003; Ross and Jain, 2003):

i) fusion at the feature-extraction level, where the feature vector is obtained using
data from multiple sensors;
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ii) fusion at the matching-score level, where the matching scores obtained from mul-
tiple matchers are combined;

iii) fusion at the decision level, where the accept/reject decisions of multiple systems
are consolidated.

Multimodal biometric systems based on palmprint and hand-geometry features (Ku-
mar et al., 2003; Ribaric et al., 2003), face, fingerprint and hand-geometry features (Ross
and Jain, 2003; Jain and Ross, 2004) and fingerprint, face and speech (Jain et al., 1999c)
have been described.

Kumar and Zhang (2003) describe an integration of already described approaches
for palmprint (Kumar et al., 2003) and face (Turk and Pentland, 1991) recognition. The
proposed method of fusion uses neural network to integrate individual matching scores
and generate a combined decision score. The system was tested on the database consisting
of only 40 subjects (10 images per subject). The performance scores expressed as the
minimum total error rate (mTER) are: 13.04% for face, 6.90% for palmprint and 1.53%
for fusion at decision level.

Early version of our system based on fusion of palmprint and face features and results
of preliminary experiments has been described in (Ribaric et al., 2005).

The rest of this paper is organized as follows: In Section 2 the bimodal biometric sys-
tem is described in detail. The experimental results obtained by our system are reported
in Section 3. The conclusion and future work are presented in Section 4.

2. A Bimodal Biometric System

2.1. System Overview

Fig. 1. shows the block-diagram of the proposed bimodal biometric verification system.
The system’s input is provided as a pair of images: a palmar image, at the resolu-

tion of 180 dpi and a frontal facial image (720×576 pixels). The processing of these
images, up until fusion, is carried out separately in the palmprint recognition and the face
recognition subsystems. In the first phase of the palmprint recognition process the area

Fig. 1. Block-diagram of the proposed bimodal biometric verification system.
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of the palm is located on the basis of the hand contour and the stable points. In the sec-
ond phase the principal lines of the palm are extracted using line-detection masks (Zhang
and Shu, 1999) and a line-following algorithm (Maio and Maltoni, 1999). The matching
of palmprint templates is based on hypotheses generation and their evaluation similar to
the HYPER (Ayache and Faugeras, 1986) method, originally used for recognition and
positioning of 2-D objects.

The process of face recognition consists of four phases: face localization based on the
Hough method (Hough, 1962) normalization, including geometry and lighting normal-
ization; feature extraction using eigenfaces; and finally, matching of the live-template to
the templates stored in the face database.

Matching scores from both recognition modules are combined into a unique matching
score using fusion at the matching-score level. Based on this unique matching score, a
decision about whether to accept or reject a user is made.

2.2. Palmprint Recognition

In order to localize the palm area, the first step is to preprocess the palmar images; this
involves Gaussian smoothing and contrast enhancement. Due to the regular and control-
lable illumination conditions simple global thresholding provides satisfactory segmenta-
tion. After that, a contour-following algorithm is used to extract the hand contour. The
two stable points on the hand contour are found (Ribaric et al., 2003): (i) The gap be-
tween the little finger and the ring finger, and (ii) The gap between the index finger and

Fig. 2. An example of palm-area localization: a) original image, b) image after preprocessing, c) extracted hand
contour projected on the grey-scale image, d) localized area of the palm.
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the middle finger. Based on the stable points on the contour, the palm area on the prepro-
cessed grey-scale image, which is represented by a hexagonal area, is determined. Fig. 2
shows the phases of palm-area localization.

Process of principle lines and other prominent palm lines extraction begins with con-
volving the grey-scale palmprint area by four line detection masks (Zhang and Shu,
1999). Fig. 3 presents the results of applying the line detection masks to the palm area.

After applying the modified line-following algorithm, based on the work of Maio and
Maltoni (Maio and Maltoni, 1999), a set of lines is obtained. Examples of the palm-line
extraction are presented in Fig. 4.

Fig. 3. The results of applying the line-detection masks to the palm area.

Fig. 4. Examples of palm-line extraction: a) palm area, b) extracted lines, c) overlapped image a) and b).
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The extracted lines are described in a hand-coordinate system that is based on the
above two stable points. This makes them invariant to hand translation and rotation. The
palm lines are represented by means of the line-segment sequence, where each segment
is described by a four-tuple (x, y, l, α), where x and y are the coordinates of the segment
midpoint, l is the length of the segment and α is the segment orientation.

The obtained line set contains the most prominent palm lines. The number of lines
can vary depending on the palmprint texture and wrinkles. Typically, the number of lines
extracted from a palm region is between 15 and 20, with 1 to 5 line segments per line.

The matching of the live-template and the template from the database is based on
hypotheses generation and their evaluation, using the adapted HYPER method (Ayache
and Faugeras, 1986).

The hypotheses-generation stage consists of finding the corresponding line pairs (one
from each template). These pairs are then evaluated, all the line segments belonging to
the two corresponding lines are compared and each segment’s matching coefficient is up-
dated. After all the hypotheses have been evaluated, the final palmprint-similarity mea-
sure is computed.

Generating Hypotheses

Since the obtained palm lines are invariant to hand translation and rotation, the two lines
(one from the live-template and one from the palmprint database-template) can corre-
spond to each other only if they have a similar position and orientation. Every palm line
from the live-template is compared to every palm line from the database-template and a
decision is made about whether to add this pair to the hypothesis collection.

Let p be the virtual line that connects the midpoints of the first and the last segment of
the ith palm line Li,LT from the live-template, and let p′ be the virtual line that connects
the midpoints of the first and the last segments of the jth palm line Lj,DB from the
database-template. The palm lines are compared in the following way:

1. If the absolute angular difference between the lines p and p′ is greater than
αgen max, then the palm lines are dissimilar and no further comparison is nec-
essary. Otherwise, Step 2 is performed. In this application the value of αgen max is
set to π/5, based on the training set of the palmprint database.

2. The average Euclidian distance dgen 12 between the line p′ and the segment mid-
points of the palm line from the live-template is calculated:

dgen 12 =
1

ni,LT

ni,LT∑

k=1

d(s1k, p′), (1)

where ni,LT is the number of line segments in Li,LT and s1k = (xk, yk) is the
midpoint of the kth segment belonging to the line Li,LT .
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The average distance between the line p and the segment midpoints of the palm line
from the database-template is calculated in a similar manner:

dgen 21 =
1

nj,DB

nj,DB∑

k=1

d(s2k, p), (2)

where nj,DB is the number of line segments in Lj,DB and s2k = (xk, yk) is the mid-
point of the kth segment belonging to the line Lj,DB . In general, ni,LT �= nj,DB . The
smaller of these distances is taken as a measure of the distance between the two palm
lines: dgen = min(dgen 12, dgen 21). If dgen is smaller than the threshold dgen max, then
the pair of palm lines is added to the hypothesis collection HC; otherwise the lines are
considered to be dissimilar. The experimentally selected value for dgen max is 50 pixels
(for the spatial resolution of 180 dots per inch).

Evaluating Hypotheses

The hypothesis collection consists of all the line pairs (one line from the live-template and
one from the database-template) that satisfy the hypotheses generation conditions. The
hypothesis collection is defined as HC = {(Li,LT , Lj,DB)}, i � NLT and j � NDB ,
where NLT is the number of lines in the live-template and NDB is the number of lines in
the database-template. In general NLT �= NDB .

Evaluating a hypothesis H = (Li,LT , Lj,DB), H ∈ HC consists of comparing eve-
ry line segment of Li,LT with every line segment of Lj,DB and updating the matching
measure for each line segment. For every line-segment pair (Sk, Sl); Sk ∈ Li,LT , Sl ∈
Lj,DB where Sk = (xk, yk, lk, αk) and Sl = (xl, yl, ll, αl), k = 1, 2, . . . , ni,LT , l =
1, 2, . . . , nj,DB , the following parameters are calculated:

1. The absolute angular difference a = |αk − αl|, where αk and αl are orientations
of corresponding line segments;

2. The Euclidean distance d between the midpoints of the segments;
3. The Euclidean distance Dkq between the midpoint (xk, yk) and the virtual line

q that segment Sl lies on is computed. Analogously, the distance Dlr between
the midpoint (xl, yl) and the virtual line r that segment Sk lies on is computed.
Parameter D is defined as the minimum of the two distances: D = min(Dkq, Dlr).

Each parameter is upper-bounded by the values amax, dmax and Dmax, respectively.
The dissimilarity measure, dmkl, for the segment pair (Sk, Sl) is computed in the follow-
ing way:

1. If a > amax or d > dmax or D > Dmax, then dmkl = 1; the segments are entirely
dissimilar.

2. Otherwise, set dmkl = w1· a/amax + w2·D/Dmax + w3· d/dmax.

The parameters w1, w2 and w3 represent the weights given to parameters a, D and d,
respectively (w1 +w2 +w3 = 1, w1 � 0, w2 � 0, w3 � 0). The dissimilarity measure,
dmkl, is a number in the range [0, 1], and has a lower value for more similar segments.
The experimentally determined parameter values are w1 = 0.5, w2 = 0.4, w3 = 0.1,
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amax = π/18, Dmax = 10 pixels and dmax = max(lk, ll), where lk and ll represent the
lengths of the segments Sk and Sl, respectively.

After computing the dissimilarity measure, the measures of matching mk and ml for
segments Sk and Sl need to be updated. The measures of matching are updated using the
following formulas:

mk = mk + (1 − dmkl)·min(lk, ll), (3)

ml = ml + (1 − dmkl)·min(lk, ll). (4)

More than one line segment from Li,LT or Lj,DB can contribute to the matching measure
of segments from Lj,DB or Li,LT , respectively. If a line L appears in more than one
hypothesis, the matching measures of its line segments are accumulated.

The similarity measure, QA,B , of the palmprint template A and the palmprint tem-
plate B is expressed in the range [0, 1] and gives an indication of how fully template A

is represented within template B. Two similarity measures, QLT,DB and QDB,LT , are
computed. The QLT,DB is computed as the sum of matching measures of all segments
in all lines in the live-template, normalized by the sum of their lengths. Analogously, the
similarity measure QDB,LT is computed (in general, QLT,DB �= QDB,LT ).

The final similarity measure Q, which determines how well the two samples match, is
obtained in the following way: compute | TH −QLT,DB | and | TH −QDB,LT | and select
Q for which the above absolute value is greater, where TH is a threshold selected exper-
imentally during the training phase (TH = 0.25). Fig. 5 shows the similarity measure Q

for several palmprint template pairs.

2.3. Face Recognition

Faces in images are localized using an approach that combines the Hough method
(Hough, 1962) and skin-colour information (Jones and Rehg, 1999) for face localiza-
tion (Pavesic et al., 2004). The Hough method for ellipses is applied on multiple image
scales to locate a number of candidates for a face in the image. In order to reduce the
computational complexity, the sought ellipses have a fixed height/width ratio. After the
candidates have been proposed, they are verified using skin-colour information and a
heuristic approach based on a horizontal projection. When a face candidate is selected,
the system proceeds by locating the eyes using a simple neural network. In Fig. 6 two
examples of face localization are presented.

Since the K–L transform is used for matching, a normalization procedure is required.
Face normalization consists of geometry normalization, background removal and lighting
normalization. Geometry normalization involves image rotation, translation and the scal-
ing of the images. The locations of the eyes obtained in the localization phase are used
as the reference points in this step. The images of the faces are normalized to a fixed size
of 64×64 pixels. The background is removed by leaving only the image elements inside
the elliptical region in the normalized images and setting the rest to 0 (black). In the final
normalization step, lighting normalization using histogram fitting is applied (Gonzales
and Woods, 1993). In Fig. 7, several images after the normalization phase are shown.
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Fig. 5. Comparison of palmprint templates and similarity measure Q: A, B – comparison of palmprint templates
of the same person; C, D – comparison of palmprint templates of different people. The first and the second
columns represent the individual palmprint templates. The third column represents both templates in the same
coordinate system.

The eigenfaces technique (Turk and Pentland, 1991), used in our system for feature
extraction, is a widely used method for face recognition (Navarrete and Ruiz-Del-Solar,
2002). It is based on the K–L transform applied to a set of facial images. The K–L trans-
form finds a subspace of the image space that the set of training images occupy. It has
the property of being able to represent the images using the minimum number of samples
(i.e., no other transform exists that can represent these images with the same number of
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Fig. 6. Examples of face localization.

Fig. 7. Several faces after the normalization phase.

samples and has a smaller reconstruction error). Therefore, the K–L transform finds the
optimal features for image representation, but not necessarily for optimal discrimination.

The basis vectors of the K–L transform are calculated by finding the largest m eigen-
vectors of the covariance matrix of the set of images. In the case of facial images, when
representing these eigenvectors as images, they will resemble faces, and are called eigen-
faces. The subspace these eigenvectors’ span is called the face-space. Some of the eigen-
faces obtained using the training database are presented in Fig. 8.

It is clear that the largest eigenvectors (those with the smallest ordinal numbers) look
more like faces, while those with the largest ordinal numbers look more like noise. The
largest eigenvectors carry the useful information (in the sense of image representation)
and only they are used as the basis for the face-space, while the information carried by
the smaller eigenvectors is lost in the process of encoding. Based on the preliminary
recognition experiments on the training database, we chose m = 111 for the face-space
dimensionality.

The feature vector from an unknown facial image can be obtained by projecting the
image onto a face-space. In this process the image is represented as a linear combination
of eigenfaces and the feature vector is made of weightings associated with each eigenface.
The face template consists of this 111-component feature vector. The matching score be-
tween two face-feature vectors is calculated using the Euclidean distance in the matching
phase.
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Fig. 8. Eigenfaces obtained on the training database with appropriate ordinal numbers.

2.4. Fusion and Decision

Fusion at the matching score level is the most common approach due to its simplicity and
good performance (Jain et al., 2005). Kittler and Alkoot (2003) have analytically shown
that, for Gaussian error distributions, fusion based on sum always outperforms fusion
based on vote. Ross and Jain (2003) have also experimentally shown that matching score
sum fusion performs better than some other fusion methods such as decision trees and
linear discriminant analysis.

In our bimodal biometric system the fusion is performed at the matching-score level.
When trying to verify the identity of an unknown sample we receive two sets of scores

from the two independent matching modules:

• Palmprint similarity measures, denoted as Q in subsection 2.2, for notational
convenience, in the remainder of the text will be denoted as similarity scores
sP (Px,Pj), where Px is the unknown palmprint-template, and Pj , j =
1, 2, . . . , n are palmprint-templates stored (enrolled) in the database under the iden-
tity the system is trying to verify.

• Euclidean distance scores will be denoted as sF (Fx,Fj), where Fx is the unknown
face-template, and Fj , j = 1, 2, . . . , n are the face-templates stored (enrolled) in
the database under the identity the system is trying to verify.

In order to generate the unique matching score we need a way to combine individ-
ual matching scores from face- and palmprint-matching modules. Since the palmprint-
matching scores and the face-matching scores are of the different type (i.e., distances and
similarities) and come in different numerical ranges, normalization has to be performed
before they are combined (Jain et al., 2005).
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We experimented with the heuristic normalization techniques (Ribaric and Fratric,
2006) (piecewise-linear, min-max, median-MAD, double-sigmoid, tanh, z-score) and
Bayes-based normalization. The Bayes-based normalization provided the best system
performance.

Bayes-based Normalization

The Bayes-based normalization was carried out by estimating the probability density of
genuine scores by means of the Bayes formula:

P (genuine|s)=
p(s|genuine)·P (genuine)

p(s|genuine)·P (genuine)+p(s|impostor)·P (impostor)
, (5)

where s represents the raw score obtained directly from the matching module. However,
prior probabilities of genuine users and impostors, p(s|genuine) and p(s|impostor),
are generally not known, and they have to be estimated based on the scores obtained
from the training data. We used Parzen window approach to estimate prior distributions
(Duda et al., 2001). Distributions for the palm scores obtained on our training data can be
seen on Figs. 9 (a) and 9 (b) for the palmprint and face scores, respectively. Based on the

Fig. 9. (a) Estimated genuine and impostor palmprint score distributions, (b) Estimated genuine and impostor
face score distributions, (c) Palmprint score normalization function, (d) Face score normalization function.
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Bayes formula (5) we obtain the normalization functions for palmprint and face matching
scores, nP (sP ) and nF (sF ), as

nP (sP ) = P (genuine|sP ), (6a)

nF (sF ) = P (genuine|sF ). (6b)

The obtained normalization functions for face and palmprint scores can be seen on
Figs. 9 (c) and 9 (d), respectively.

The maximum similarity measure of sP (Px,Pj); j = 1, 2, . . . , n is selected
and transformed, by means of the corresponding normalization function nP (sP ), into
palm-similarity measure NP . Analogously, the minimum distance of sF (Fx,Fj); j =
1, 2, . . . , n is selected and transformed into the face-similarity measure NF . The final
matching score, expressed as the total-similarity measure (TSM ), is calculated using a
simple sum fusion rule:

TSM = NP + NF . (7)

The final decision about whether to accept or reject a user is made by comparing the
TSM with the verification threshold T . If TSM > T , the user is accepted; otherwise,
he/she is rejected.

3. Performance Evaluation

To evaluate the performance of the system a database containing palm and face samples
was required. The XM2VTS frontal-face-image database was used as the face database
(Messer et al., 1999). We collected the hand database ourselves using a scanner. The
spatial resolution of the palmar images is 180 dots per inch (dpi) / 256 grey levels. As the
hand and the face databases contain samples belonging to different people, a “chimerical”
multimodal database was created using pairs of artificially paired palm and face samples.
Some examples of so paired palm and face samples from the database are presented in
the Fig. 10.

The database was divided into two mutually exclusive sets: the training set and the
testing set. The training set consisted of 440 image pairs of 110 people (4 image pairs
per person) and was used as a training database for individual modalities and to get the
distributions of the unimodal matching scores used in the decision fusion module.

The testing dataset consisted of 1048 image pairs of 131 people (8 image pairs per
person) and was used exclusively for the evaluation of the system performance. Out of
8 image pairs for each person, 5 were used in the enrolment stage and 3 were used for
testing. The tests involved trying to verify every test pair for every one of the 131 people
enrolled in the database. This setup makes for 393 (131×3) valid-client experiments and
51090 (131×3×130) impostor experiments.

The results of the experiments, expressed in the terms of FRR (false rejection rate)
and FAR (false acceptance rate), vary depending on the selected verification threshold T .
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Fig. 10. Examples of the paired palmprint and face samples from our database.
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Fig. 11. Unimodal verification results, expressed as FRR and FAR depending on threshold T , obtained using
a) palmprint modality, b) facial modality.

We first evaluated the unimodal performance of the system. When testing the uni-
modal system performance, the decision threshold T was related to the normalized sim-
ilarity measures NP or NF , for the palmprint and face modality, respectively. The ob-
tained results are presented in Fig. 11 a) for the palmprint modality and Fig. 11 b) for
the face modality. From the results it is clear that the verification based on the palmprint
easily outperforms the verification based on the face. The palmprint modality produces
an EER (equal error rate) of 3.82% for T = 0.755, while the face modality produces an
EER of 10.87% for T = 0.81. The minimum TER (total error rate) obtained using the
palmprint features is 7.66% with T = 0.8, while the minimum TER obtained using the
facial features is 18.97% with T = 0.85. The results are not surprising because it is al-
ready well known that systems based on palmprint features (Zhang et al., 2003) produce
better results than those based on facial features (Jonsson et al., 1999).

Combining both modalities with fusion at the matching-score level as described in
Subsection 2.4 and using different normalization techniques gives the error rates shown
in Table 1. As can be seen from the Table 1, the best performance in terms of both EER
and minimum TER is achieved using Bayes-based normalization.

Fig. 12 shows FAR and FRR for the bimodal system using Bayes-based normalization
depending on the threshold T .

There, it can be seen that the fusion of palmprint and facial features improves the
verification score, both by reducing the EER from 3.82% to 2.26% (for T = 0.34) and

Table 1

Error rates obtained on bimodal system by using different normalization techniques

Piecewise-linear min-max median-MAD double-sigmoid tanh z-score Bayes

EER 2.79% 3.12% 2.79% 3.81% 3.05% 3.15% 2.29%

minTER 5.15% 6.39% 5.42% 5.72% 5.74% 5.56% 4.33%
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Fig. 12. The verification results using the bimodal system depending on threshold.

Fig. 13. Comparison of verification results for two unimodal systems and the bimodal system.

by reducing the minimum TER from 7.66% to 4.33% (for T = 0.34). The comparison of
all three systems (two unimodal systems and a bimodal system) is given in Fig. 13.

In cases when two unimodal systems’ performances are almost similar, it is expected
that the fusion will give great improvements in performance. It has been experimen-
tally demonstrated for various modalities (Kittler and Alkoot, 2003; Pavesic et al., 2006).
Some theoretical discussions on this can be found in (Kittler and Alkoot, 2003), although
to prove such a claim we would need to assume the distribution of individual modalities
matching scores as well as their independence.

For the proposed multimodal biometric system, a single-shot acquisition of image
containing both face and palmprint could be applied and this leaves, in future, a plenty
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of space to explore the fusion at the different levels. Such type of acquisition performed
by one sensor, together with more sophisticated methods of image preprocessing and
segmentation, feature extraction and followed by a fusion, would enable the development
of unsupervised, touchless and robust on-line biometric verification system. Of course,
the performance of such a system depends on quality of the input images, but we believe
that owing to sophisticated methods of image processing and fusion at different levels the
performance of such system can overtake the system described in the paper.

4. Conclusion

We have developed a bimodal biometric verification system based on the fusion of palm-
print and facial features. A new approach for principal and other prominent palm lines
recognition based on hypotheses generation and evaluation was proposed. The hypothe-
sis collection consists of all palm line pairs (one line from live-template, one line from
database template), which could correspond one to another based on two criteria: ab-
solute angular difference between line orientations and their Euclidean distances. In the
hypotheses evaluation phase a similarity measure is computed using all line segments of
the palm lines in hypothesis. The palm line features were selected because they can be
derived from images with low quality (Zhang and Shu, 1999), which can be important for
touchless and single-shot acquisition of image containing both face and palmprint. This
type of acquisition (performed by a camera), together with more sophisticated methods
of preprocessing and segmentation, enables the development of robust on-line biometric
system.

The experiments with different matching-score normalization techniques have been
performed and the Bayes-based normalization was selected as the best-performing one.

The experimental results show that although palmprint-based unimodal systems sig-
nificantly outperform face-based unimodal systems, fusion at the matching-score level
can still be used to significantly improve the performance of the system.

The other reasons for including the face modality in biometric systems could be in
the system usage for physical or logical access where the additional subsystem can log
the facial images of the people accessing the secure object. The psychological effects of
such multimodal system should also not be disregarded; it is likely that a system using
multiple modalities would seem harder to cheat to any potential impostors.

In the future, we plan to concentrate on developing methods for robust palm and face
feature extraction, including the features such as skin colour, from single-shot camera
images. We also plan to include aliveness detection module to increase the robustness to
fraudulent technologies.
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Nauja biometrinė kombinuota delno antspaud ↪u ir veido atpažinimu
pagr ↪ista verifikavimo sistema

Slobodan RIBARIĆ, Ivan FRATRIĆ, Kristina KIŠ

Straipsnyje siūloma dvimodalė biometrinė verifikavimo sistema, apjungianti delno antspaudo
ir veido savybi ↪u atitikimo ↪ivertinim ↪a. Sistema apjungia nauj ↪a hipotezi ↪u generavimu ir ↪ivertinimu
pagr↪ist ↪a delno esmini ↪u linij ↪u atpažinimo ir gerai žinom ↪a tikrini ↪u veid ↪u būdus. Skirting ↪u normaliza-
vimo būd ↪u tyrimai buvo atlikti siekiant pagerinti apjungim ↪a atitikimo ↪ivertinimo metu. “Chimerinė”
duomen ↪u bazė iš 241 asmens 1488 delno antspaud ↪u ir veid ↪u por ↪u buvo naudojama sistemos pro-
jektavimui (110 asmen ↪u 440 por ↪u) ir testavimui (131 asmens 1048 poros). Tyrimo rezultatai rodo,
kad sistemos pajėgumas yra ženkliai pagerintas lyginant su vienmodaliomis sistemomis.


