
INFORMATICA, 2008, Vol. 19, No. 1, 17–30 17
© 2008 Institute of Mathematics and Informatics, Vilnius

Formal and Practical Aspects of Implementing
Abstract Data Types in the Prolog Instruction

Bruria HABERMAN
Department of Computer Science, Holon Institute of Technology and
Department of Science Teaching, The Weizmann Institute of Science
Rehovot 76100, Israel
e-mail: bruria.haberman@weizmann.ac.il

Received: October 2006

Abstract. Abstract data types constitute a central tool in computer science and play an impor-
tant role in problem solving, knowledge representation, and programming. In this paper, formal
and practical aspects of utilizing abstract data types (ADTs) are discussed in the context of logic
programming when using the Prolog programming language. The approach is presented in the fol-
lowing stages: (a) First, alternative ways of implementing ADTs in terms of Prolog constructs are
presented and partial encapsulation of ADTs in terms of grey boxes is demonstrated. (b) Next,
complete encapsulation of ADTs in terms of black boxes is suggested in a way that strictly reflects
the concept’s formal computer science definition while taking into consideration the characteristics
and constraints of the logic programming paradigm. (c) Finally, implications for instruction are
discussed.
Key words: abstract data types, information hiding, black boxes, grey boxes, logic programming.

Introduction

Abstract data types (ADT) constitute a central tool in computer science (CS) and play
an important role in problem solving, knowledge representation, and programming (Aho
and Ullman, 1992; Dale and Walker, 1996). Abstract data types are mathematical models
with associated methods which should be implemented in terms of black boxes. ADTs
are used according to the information hiding principle (Parnas, 1972) by determining
which predefined ADT-operations should be invoked disregarding how they are imple-
mented within the black box and how they are actually performed. Logic programming
(LP) emphasizes the declarative what instead of how aspects of programming (Sterling
and Shapiro, 1994). The Prolog programming language which is an implementation of LP
abstracts the manipulation of compound data structures by hiding procedural aspects and
details of their implementation (Ben-Ari, 1996), and thus may be considered as suitable
for implementing and utilizing abstract data types (Scherz and Haberman, 1995; Haber-
man et al., 2002). Surprisingly however, it is the declarative nature of LP that causes
difficulties to implement a mechanism that strictly supports a complete encapsulation of
ADTs.

18 B. Haberman

In this paper formal and practical aspects of utilizing ADTs in the context of LP, when
using the Prolog programming language, are discussed. The approach is presented in the
following stages: (a) First, alternative ways of implementing ADTs in terms of Prolog
constructs are presented; specifically, partial encapsulation of ADTs is demonstrated in
terms of grey boxes that reveal the implementation of the ADT’s model and hide the im-
plementation of its associated methods; (b) Next, difficulties are discussed concerning
conforming full encapsulation of ADTs in such a way that the concept’s formal computer
science definition is strictly reflected while considering the characteristics and the con-
straints of the logic programming paradigm and suggesting a solution to deal with this
difficulty; actually, a method for complete encapsulation of ADTs in terms of black boxes
is suggested. (c) Finally, implications for instruction are discussed.

Background

The Notions of Abstract Data Types

Formally, ADT is a mathematical (formal) model with a set of methods – operations and
relations that are defined on that model. The ADT concept follows three perspectives:
specification, implementation, and use. Specification of an ADT is achieved by using a
formal verbal definition of its model and its methods, and may be illustrated by a graph-
ical description. Implementation of an ADT is achieved in terms of the programming
language data structures and programming constructs by: (a) organizing the data accord-
ing to the ADT’s mathematical model and (b) formulating a suitable code for each of the
specified ADT’s methods. The use of ADT is done by invoking its already implemented
methods to formulate new code (Aho and Ullman, 1992; Dale and Walker, 1996). The
implementation of an ADT should be actually achieved by creating a black box which is
a fully implemented component with predictable functionality and pre-defined interface.
Every black box has two components: (a) an interface visible to the user, which describes
the implemented methods and their meaning and includes assumptions that relate to the
way they should be invoked during a programming process; (b) an implementation com-
ponent that encapsulates the details of how the methods were implemented. The under-
lying idea of using black boxes, according to the information hiding principle, is that the
end-user is only permitted to know what the black box does, and is not allowed to know
how the operation is done. Accordingly, the end-user does not need to know how prede-
fined operations are implemented within the black box; therefore the interface does not
include any clues about the implementation details, the access to source code is denied,
and the use of black boxes is done by transparently invoking the encapsulated predefined
operations to define new operations.

Consequently, ADTs have the following formally defined characteristics: The specifi-
cation of an ADT is independent of the implementation environment. The implementation
of an ADT is encapsulated in terms of a black box and is performed according to its spec-
ification; there may be several alternative implementations of a black box that represent
an ADT; the use of a black box is independent of its implementation and is binding to its
interface.

Formal and Practical Aspects of Prolog Instruction 19

The Logic Programming Paradigm

Logic programming (LP) is a declarative programming paradigm; it is derived from an
abstract model that is independent of a machine model. “It is based on the belief that
instead of the human learning to think in terms of the operations of a computer . . . , the
computer should perform instructions that are easy for humans to provide” (Sterling and
Shapiro, 1994, p. 3). It is based on the observation that formulas in mathematical logic
can be interpreted as specification of computations (Ben-Ari, 1996).

A logic program contains a set of assumptions (logical axioms) defining the rela-
tions between objects. The program describes the knowledge about the problem that is
to be solved – what is to be solved. No explicit instructions for the operations are given
regarding how to solve the problem. Logic programs behave much like executable spec-
ifications. Consequently, logic programming enables programmers to concentrate on the
declarative and abstract aspects of problem solving, and liberates them from dealing with
the procedural details of the computational process. The computation of a logic program
represents a deduction of consequences of the program. Actually, a logic program is exe-
cuted by providing it with a goal statement, which is a logical statement to be proved as a
consequence of the set of assumptions in the program. The proof of a goal statement from
the program is performed by a constructive computation mechanism, which is based on
the applying the rule of universal modus ponens.

The Prolog programming language is an implementation of logic programming (“Pro-
log was envisaged as a first approximation to logic programming” (Sterling and Shapiro,
1994, p. 147)). In contrast to logic programs that their construction and understanding is
independent of any concrete execution mechanism, Prolog programs have precise opera-
tional meaning as instructions for execution on a computer. Nevertheless, effective Prolog
programming requires an understanding of the theory of logic programming (Sterling and
Shapiro, 1994). The classical dialects of Prolog (Edinburgh notation) are not typed, so the
programmer is not required to declare the types of predicates’ arguments. The fact that
the Prolog language is not statically type-checked might cause difficulties in debugging,
especially when type errors are encountered (Ben-Ari, 1996); however, it may contribute
to the flexibility of knowledge presentation. For example, a list in Prolog can include
elements of different types (in contrast to typed languages, e.g., Pascal or C).

A major abstraction of logic programming is that assignment statements and explicit
pointers are no longer used; instead, a generalized pattern matching mechanism called
unification is used to construct and decompose data structures. Implementations of uni-
fication create implicit pointers between components of data structures, but all the pro-
grammer sees is abstract data structures such as lists, records and trees (Ben-Ari, 1996).
Consequently, as a declarative language, Prolog enables the programmer to program at a
high level of abstraction, and thus is very suitable and convenient for knowledge repre-
sentation and problem solving.

20 B. Haberman

Implementing Abstract Data Types in Prolog

In this section we discuss formal and practical aspects of utilizing abstract data types
(ADTs) in the context of logic programming when using the Prolog programming lan-
guage. According to the “principle of information hiding” an implementation of an ADT
in terms of a programming language must support a strict encapsulation of its formal-
ization – both of the ADT’s formal model and of the operations and relations defined in
that model (Parnas, 1972). Apparently a complete encapsulation of an ADT appears to
be a complex assignment in various programming languages and specifically cannot be
trivially achieved in logic programming (implemented in Prolog).

Abstract data types can be implemented in alternative ways using variety of Prolog
constructs (Scherz and Haberman, 1995). In this paper we discuss alternative ways of
implementing ADTs in terms of Prolog constructs using grey boxes and black boxes. In
contrast to black boxes that are fully implemented components with predictable function-
ality and pre-defined interfaces (complete encapsulation), grey boxes reveal parts of their
internal workings, not just the relations between the input and output (partial encapsula-
tion). The information can become as detailed as necessary where needed (Buechi and
Weck, 1997; Kiczales, 1994; Haberman et al., 2002; Resnick et al., 2000).

The novelty of this paper is that the suggested black-box based method reflects the
concept’s formal CS definition while taking to consideration the characteristics and the
constraints of the logic programming paradigm. Without loss of generality we demon-
strate and discuss alternative implementations of the list ADT using variety of Prolog
constructs; similar approach can be applied to implement any abstract data type as well.

Approach A – Partial Encapsulation of ADTs

The list abstract data type is an ordered set of elements, with the following methods:
membership of an element in a list, place of an element in a list, length of list, first
element of list, last element of list, concatenation of two list to get a third list, reverse of
a list, etc.

Implementing the list ADT using Lists in Prolog

The list in Prolog is a recursive data structure: either it is empty (notated as []), or it has a
Head – the first element of the list, and a Tail – a list of the rest of the list’s items (notated
as [Head | Tail]).

Fig. 1 illustrates the list ADT grey box implemented in terms of the list Prolog data
structure. It consists of: (a) an interface that describes how the list model is implemented,
and describes the meaning of each general predicate which represent the methods that are
defined on the list model, including assumptions about their transparent use, and (b) an
implementation module that includes the implementation of general predicates.

The implementation is based on the recursive nature of the list data structure,
and mostly is done in terms of recursive definitions. For example, the definition of
member(Item, List) is based on the following idea: an item is a member in a list if

Formal and Practical Aspects of Prolog Instruction 21

The Interface:
% The list is implemented using the list in Prolog data structure

% General predicates:
% member(Item, List) – Item is a member of the List
% place(Place, Item, List) – Item is put in a Place on the List
% length(Number, List) – Number describes the length of the List
% concatenate(List1, List2, List3) – List3 is the concatenation of List1 with List2

The Implementation module:
% member(Item, List)
member(X, [X|_]).
member(X, [_|Tail]):- member(X, Tail).

...

...

Fig. 1. Part of the List ADT grey box implemented in terms of the List Prolog data structure.

it is a Head of the list, or if he is a member in the list’s Tail. The box in Fig. 1 is con-
sidered as a grey box because it reveals some implementation details; thus only partial
encapsulation is obtained.

The list grey box (presented in Fig. 1) can be used to solve a given problem. The list
Prolog data structure is used to store concrete data about a specific list and the general list
predicates are used to manipulate the list. In the following example, the list Prolog data
structure is used to present a list of students’ names:

students
(
[‘Ben’, ‘Dana’, ‘Roy’, ‘Mary’, ‘David ’]

)
.

A name of one specific student is retrieved from the students’ list by transparent in-
voking of the member/2 general predicate:

student(Student) : − students(List of names),

member(Student, List of names).

This method of using lists as ADTs enables the programmer to store data easily in
terms of Prolog lists data structures and to retrieve the stored data in a friendly simple
manner. The use of predefined predicates enables to perform list processing in a simple
way, without actually dealing with technical details related to list-predicates’ recursive
definitions. However, this method does not fully support the encapsulation of the list
ADT because it does not hide the way that the data is stored, and the programmer must
explicitly use the list Prolog structure to store the data.

Implementing the List ADT using Basic Relationships

One method of implementing the list ADT is based on the use of the successor(Item,

Suc Item, List identifier) basic relationship. For example, a list of students is pre-
sented as follows (l id presents the identifier of the given list, nil presents a dummy first

22 B. Haberman

The Interface:
% The concrete data is presented in terms of the successor/3 basic relationship
% General predicates:
% member(Item, List_id) – Item is a member of the List
% place(Place, Item, List_id) – Item is put in a Place on the List
% successor(Item, Suc_Item, List_id) – Suc_Item is the successor of Item in the List
% length(Number, List_id) – Number describes the length of the List
% concatenate(List1_id, List2_id, List3_id) – List3 is the concatenation of List1 with List2

The Implementation module:
% member(Item, List_id)

member(X, L_id):- successor(Y, X, L_id).

% place(Place, Item, List_id)
place(1, X, L_id):- successor(nil, X, L_id).
place(N, X, L_id):- successor(Y, X, L_id),

place(M,Y,L_id), N is M + 1.
...
...

Fig. 2. Part of the List grey box implemented in terms of the successor/3 basic relationship.

item):

successor(nil, ‘Ben’, l id).

successor(‘Ben’, ‘Dana’, l id).

successor(‘Dana’, ‘Roy’, l id).

successor(‘Roy’, ‘Mary’, l id).

successor(‘Mary’, ‘David’, l id).

A name of a specific student can be presented as follows:

student(Student, List id) : −member(Student, List id).

Alternative implementation of the list ADT is by using the place(Place, Item,

List identifier) basic relationship that presents the place of an item in a list. In this
case, a list of students is presented as follows:

place(1, ‘Ben’, l id).

place(2, ‘Dana’, l id).

place(3, ‘Roy’, l id).

place(4, ‘Mary’, l id).

place(5, ‘David’, l id).

Formal and Practical Aspects of Prolog Instruction 23

The Interface:
% The concrete data is presented in terms of the place/3 basic relationship
% General predicates:
% member(Item, List_id) – Item is a member of the List
% place(Place, Item, List_id) – Item is put in a Place on the List
% successor(Item, Suc_Item, List_id) – Suc_Item is the successor of Item in the List
% length(Number, List_id) – Number describes the length of the List
% concatenate(List1_id, List2_id, List3_id) – List3 is the concatenation of List1 with List2

The Implementation module:
% member(Item, List_id)

member(X, L_id):- place(_, X, L_id).
...
...

Fig. 3. Part of the List grey box implemented in terms of the place/3 basic relationship.

Following this presentation, a name of a specific student can be presented as follows:

student(Student, List id) : −member(Student, List id).

The suggested above grey boxes have the following common shortcomings: (1) they
don’t have identical interfaces, and (2) they differ in the way the data (a given list) is
organized. Although these boxes support transparent invoking of general list predicates,
the programmer still must know how the ADT’s formal model is implemented to present
concrete data. This method of explicitly using language constructs to store data is often
called by students “casting into a pattern” (Haberman and Scherz, 2005).

To summarize, the approach presented in this section essentially supports partial en-
capsulation of ADTs which is not consistent with the strict essence of the ADT formal
concept.

Why a Complete Encapsulation of ADT in Prolog is Problematic?

When the main goal of teaching Prolog is to introduce to students a declarative environ-
ment for (partial) implementation of propositional logic and first order logic, only logical
predicates should be used while extra-logic predicates for I/O processing and data base
updating should not be introduced to the students at all (Haberman et al., 2002; Gal-Ezer
and Harel, 1999). According to this approach, students write Prolog programs using an
editor, while formulating a set of assumptions in terms of rules and facts. The specific
concrete data about the problem is determined before the execution of the program us-
ing data-predicates and not interactively during execution of the program (e.g., in C).
Actually, there is a resemblance between the student’s performance as a “logic program
programmer” who develops a Prolog program and ask queries with respect to it, and his
performance as a “logician” who formulates a set of axioms with “pen and paper” and

24 B. Haberman

checks whether a specific consequence can be proved with respect to a set of axioms,
through a logical deductive process.

The restriction of not using extra-logic predicates in the process of programming
causes difficulties in the implementation of ADTs in Prolog environment. First, there
is a difficulty in implementing the “create” operation that serves for creating a specific
data structure according to the specification of the ADT’s formal model. Second, there is
a difficulty in encapsulating and hiding the implementation of the ADT’s formal model.
Therefore it is hard to accomplish a “full” encapsulation of an ADT in Prolog environ-
ment while using only logic predicates. This was the reason for our compromise (for
a long period) to present to the students a partially-hidden implementation of ADTs
(Haberman and Scherz, 2005).

Suggestted Solution for Complete Encapsulation (Approach B)

In order to enable complete encapsulation of ADTs, without violating the declarative
nature of the Prolog language, I suggest representing each ADT using an abstract de-
scription. The abstract description consists of a string that resembles the conventional
mathematical notation used to represent the referred ADT. Accordingly, the list ADT
should be represented by a collection of items surrounded by “()” brackets, and the set
ADT should be represented by a collection of items surrounded by “{ }” brackets (as
illustrated in Table 1).

This convention enables the programmer to represent data in Prolog programs in terms
of simple facts, without referring to concrete Prolog data structure. In the case that the
programmer decides to represent the data differently, it is his responsibility to formulate
rules that convert his presentation to the agreed upon one.

In order to support complete encapsulation an additional module for each “ADT black
box” was developed – The coordinator module. The coordinator communicates with the
program and with the “ADT black box” and actually performs two functions – create and
describe (as illustrated in Fig. 4).

The first function of the coordinator is to convert the abstract presentation of a given
data to a compatible one presented in terms of the concrete data structure that implements
the ADT’s formal model in the ADT black box. This conversion actually serves as a
create operation that creates a specific instance of the ADT’s formal model. Another

Table 1

Abstract description of ADTs

ADT Abstract description

List (item1, item2, item3, . . .)

Set { item1, item2, item3, . . . }

Tree { edge(node1,node2), edge(node1,node3), edge(node3,node4) }

{ node1, node2, node3, node4 }

Formal and Practical Aspects of Prolog Instruction 25

Fig. 4. The Coordinator’s function.

function of the coordinator is to perform the opposite conversion – to describe a Prolog
data structure in terms of an abstract presentation.

The following generic template describes the definition of a general predicate using a
coordinator:

General predicate :-
Create,
Predicate defined in terms of concrete data structures,
Describe.

Fig. 5 illustrates two alternative coordinators of list black boxes that are implemented
according to the approach described above. One black box is implemented in terms of
the list Prolog data structure (Fig. 5.a) and the successor basic relation implements the
other one (Fig. 5.b). The coordinators have two components: (a) an interface, and (b)
an implementation component. Note that the implementation of member/2 predicate re-
quires only the use of the create operation to convert the abstract description to a concrete
data structure, since no inverse conversion is necessary. Contrarily, the implementation of
concatenate/3 predicate requires the use of both create and describe operations since it is
necessary to convert the abstract description to a concrete data structure and visa versa to
enable an abstract description of the result.

This approach supports complete encapsulation; it enables to replace an ADT black
box by an alternative one, implemented in a different way, without bothering about the
internal implementation.

26 B. Haberman

(a) The formal model is implemented in terms of lists in Prolog

Interface:
% create(Abstract_Description, Data_Structure)
% convert from (_,_,_,. . .) to [_,_,_,.]

% describe(Data_Structure , Abstract_Description)
% convert from [_,_,_,. . .] to (_,_,_,.)

% member(Item, Abstract_description_of_List)

% concatenate (A_L1,A_L2,A_L3)
% A_L1 and A_L2 are given lists presented using abstract description,
% A_L3 is the result of the concatenation of A_L1 and A_L2, and should be
% presented in terms of abstract description

The Implementation Module:

% create(Abstract_Description, Data_Structure)
create((X), [X]) :- X /= (_ , _).
create((X,Y), [X | T]) :- create(Y,T).

% describe(Data_Structure , Abstract_Description)
describe([X], (X)) :- X /= [_ | _].
describe([X | Y], (X ,T)) :- describe(Y,T).

% member(Item, Abstract_description_of_List)
member(Item, Abstract_description_of_List):-

create(Abstract_description_of_List, List_Prolog_Data_Structure),
member1(Item, List_Prolog_Data_Structure).

% concatenate (A_L1,A_L2,A_L3)
concatenate (A_L1,A_L2,A_L3):-
create(A_L1, C_L1),
create(A_L2, C_L2),
concatenate1 (C_L1,C_L2,C_L3),
describe(C_L3,A_L3).

...

...

(b) The formal model is implemented in terms of successor/3 (Fig. 5)
Interface:

% create(Abstract_Description, Data_Structure)
% convert from (_,_,_,. . .) to succsessor(Item,Suc_Item,List_Index)

% describe(Data_Structure , Abstract_Description)
% convert from succsessor(Item, Suc_Item, List_index) to (_,_,_,.)

% member(Item, Abstract_description_of_List)

% concatenate (A_L1,A_L2,A_L3)
% A_L1 and A_L2 are given lists presented using abstract description,
% A_L3 is the result of the concatenation of A_L1 and A_L2, and should be
% presented in terms of abstract description

To be continued

Fig. 5. The coordinators of two alternative “list ADT black boxes”.

Formal and Practical Aspects of Prolog Instruction 27

Continuation of Fig. 5

The Implementation Module:

% create(Abstract_Description, Data_Structure)
create(X, N):- define_list_index(N), create1(X,N).
define_list_index(1):- not succsessor(_,_,_).
define_list_index(N):- succsessor(_,_,M),

not (succsessor(_,_,T), T > M), N is M + 1.
create1((X,Y), N) :- Y /=(_ ,_),assert(succsessor(X,Y,N)).
create1((X,Y), [X | T]) :- Y = (A,B),

assert(succsessor(X,A,N)), create1(Y,N).

% describe(Data_Structure, Abstract_Description)
describe(List_index, (Item, Suc_Item)) :-

succsessor(Item, Suc_Item, List_index),
not succsessor(_, Item, List_index),
not succsessor(Suc_Item, _, List_index).

describe(List_index, (Item,T)) :-
succsessor(Item, _, List_index),
describe(List_index,T).

% member(Item, Abstract_description_of_List)
member(Item, Abstract_description_of_List):-

create(Abstract_description_of_List, List_index),
member1(Item, List_index).

% concatenate (A_L1,A_L2,A_L3)
concatenate (A_L1,A_L2,A_L3):-

create(A_L1, L1_index), create(A_L2, L2_index),
concatenate1(L1_index,L2_index,L3_index),
describe(L3_index,A_L3).

...

...

Fig. 5. The coordinators of two alternative “list ADT black boxes”.

Conclusions and Implication for Instruction

The alternative approaches for implementing ADTs presented in this paper can be utilized
for goal-oriented instruction of abstract data types to students who study logic program-
ming in the Prolog environment.

ADTs may be introduced to students in various levels of abstraction to achieve various
instructional goals: (a) as a formal computer science concept, (b) as a problem-solving
tool, and (c) as means to teach compound programming language data structures. For ex-
ample, when the main goal is to emphasize the formal CS definition of ADT, the instruc-
tional approach should offer a method that supports the concept’s strict formal definition,
meaning full encapsulation of implementation details (both of the ADT’s formal model
and its methods.) Approach B is suitable for that purpose since it uses abstract descrip-
tions of ADTs and “upgraded black boxes” (with coordinator modules). On the other
hand, when the main goal is teaching compound programming constructs and data struc-
tures, approach A is recommended since it supports partial encapsulation- reveals the

28 B. Haberman

implementation of the ADT’s formal model, but hides the implementation of its meth-
ods. Actually, approach A enables the students practicing the use of predefined meth-
ods to process concrete data structures, before learning how to implement these methods
(Haberman and Scherz, 2005). Both approaches could be utilized to organize instruction
around practicing problem-solving techniques.

To summarize, the paper illustrates that an instructional approach should be developed
according to pedagogical assumptions and to subject matter considerations as well. The
educators should carefully define the instructional goals and decide which characteristics
and properties of the concepts should be emphasized and used in order to achieve the
goals. If the main goal is to present a formal definition of a concept, the instructional
approach should offer a method that supports the concept’s strict formal definition. If
the main goal is to use the formal concept as a tool to achieve pedagogical goals like
enhancing problem solving skills, the instructional approach could be based on relevant
properties of the concept.

References

Aho, A.V., and J.D. Ullman (1992). Foundations of Computer Science. W.H. Freeman and Company.
Ben-Ari, M. (1996). Understanding Programming Languages. John Wiley.
Buechi, M., and W. Weck (1997). A plea for Grey-Box components. In Workshop on Foundations of Object-

Oriented Programming. Zürich, September 1997.
Available: http://www.cs.iastate.edu/˜leavens/FoCBS/buechi.html

Dale, N., and H.M. Walker (1996). Abstract Data Types – Specifications, Implementations, and Applications.
D.C. Heath and Company.

Gal-Ezer, J., and D. Harel (1999). Curriculum and course syllabi for high school CS program. Computer Science
Education, 9(2), 114–147.

Haberman, B., E. Shapiro and Z. Scherz (2002). Are black boxes transparent? – High school students’ strategies
of using abstract data types. Journal of Educational Computing Research, 27(4), 411–236.

Haberman, B., and Z. Scherz (2005). Evolving boxes as flexible tools for teaching high-school students declar-
ative and procedural aspects of logic programming. Lecture Notes in Computer Science. Springer-Verlag
GmbH. pp. 156–165.

Kiczales, G. (1994). Why are black boxes so hard to reuse? Invited talk, OOPSLA’94. Available:
http://www.parc.xerox.com/spl/projects/oi/towards-talk/transcript.html

Parnas, D.L. (1972). On the criteria to be used in decomposing systems into modules. Communication of the
ACM, 15(12), 1053–1058.

Resnick, M., R. Berg and M. Eisenberg (2000). Beyond black boxes: bringing transparency and aesthetics back
to scientific investigation. Journal of the Learning Sciences, 9(1), 7–30.

Scherz, Z., and B. Haberman (1995). Logic programming based curriculum for high school students: The use
of abstract data types. SIGCSE Bulletin, 27(1), 331–335.

Sterling, L., and E. Shapiro (1994). The Art of Prolog (2nd ed.). MIT Press, Cambridge, MA.

Formal and Practical Aspects of Prolog Instruction 29

B. Haberman received her PhD degree in science teaching from the Weizmann Institute
of Science in 1999. She is currently an instructor in the Department of Computer Sci-
ence in the Holon Institute of Technology. She is also a member of the computer science
team in the Department of Science Teaching in the Weizmann Institute of Science, and
a leading member of Machshava – the Israeli National Center for high school computer
science teachers. She has developed learning materials for high school level in the ar-
eas of logic programming and artificial intelligence, and algorithmic patterns. She has
developed academic programs for undergraduate level in computer science. Her primary
research interests are computer science educational research, students’ conceptualization
of computer science, as well as in-service teacher education and distance learning.

30 B. Haberman

Formalūs ir praktiniai abstrakči ↪u duomen ↪u tip ↪u naudojimo
PROLOG komandose aspektai

Bruria HABERMAN

Abstraktūs duomen ↪u tipai yra viena pagrindini ↪u program ↪u inžinerijos priemoni ↪u, svarbi
sprendim ↪u priėmimo, žini ↪u atvaizdavimo ir taikomojo programavimo uždaviniuose. Šiame straips-
nyje nagrinėjami formalūs ir praktiniai abstrakči ↪u duomen ↪u tip ↪u (ADT) vartojimo aspektai logi-
niame programavime PROLOG programavimo kalba. Pateikiama metodologija susideda iš toki ↪u
žingsni ↪u: a) pateikiami alternatyvūs ADT naudojimo būdai PROLOG konstrukt ↪u atveju, dalinis
ADT ↪ikapsuliavimas taikant ”pilkosios dėžės” terminij ↪a; b) pasiūlytas pilnas ADT ↪ikapsuliavimas
taikant ”juodosios dėžės” terminij ↪a, ↪ivertinant loginio programavimo paradigmos charakteristikas
ir apribojimus; c) pateikiamos ir aptariamos išvados.

