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Abstract. The study of databases began with the design of efficient storage and data sharing tech-
niques for large amount of data. This paper concerns the processing of imprecision and indis-
cernibility in relational databases using vague rough technique leading to vague rough relational
database model. We utilize the notion of indiscernibility and possibility from rough set theory cou-
pled with the idea of membership and non-membership values from vague set theory to represent
uncertain information in a manner that maintains the degree of uncertainty of information for each
tuple of the original database and also those resulting from queries. Comparisons of theoretical
properties of operators within this model with those in the standard relational database model are
discussed. A simple entity-relationship type diagram for database design, a database definition lan-
guage and an SQL-like query language for vague rough relational database model are described.
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1. Introduction

Many real world systems and applications require information management components
that provide support for managing imprecise and uncertain data. A trend in databases
Beaubouef and Petry (2000), Cornelis et al. (2003), Date (1989), Prade and Testemale
(1984), Ullman (1982) has been the usage by non-computer scientists, individuals with
little or no knowledge of the technical aspects of database systems. Consequently, the
external view of such systems is becoming more removed from the hardware technology
and simple data models, and closer to human cognition. Although the relational database
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provides the necessary foundation for rigid database modeling, it does not directly sup-
port the modeling of ‘human-related’ concepts such as ambiguity, imprecision and un-
certainty. Therefore, extensions to the relational model of data may be considered to
provide the necessary mechanisms for a higher-level, more human-like model of data. In
constructing a database model we always attempt to maximize usefulness. The same is
closely connected with the representation and processing the information that is impre-
cise and uncertain in nature. In the past years the fuzzy set techniques have been used for
the modeling of uncertainties in databases. In 1982, Buckles and Petry (1982) proposed
fuzzy relational database for representing incorrect information in real world problems.
In 1984, Prade and Testemale (1984) defined fuzzy databases using possible distribution
over the attribute domains. Since 1982, significant work has been done in incorporat-
ing uncertainty management in relational databases using fuzzy set theory (Kerre et al.
(1986), Kerre (1992)).

There are many potential areas of application of the newly proposed technique such
as awareness creation, decision support systems, data warehousing and data mining and
bio-informatics.

1.1. Approaches for Processing of Uncertainty

A single model cannot process all type of uncertaintities. Wong (1982) model can pro-
cess incomplete information, Bagai and Suderraman (1995) clearly pointed out that their
model can process incomplete and inconsistent information. Beaubouef and Petry (1994)
model can process only indiscernibility. Our proposed model can process indiscernibil-
ity and imprecision. We found various approaches for representing and processing un-
certainty in the context of different domains of applicability in the literature. The main
approaches related to this study are briefly summarized in the following:

1.1.1. Classical Set Theory
A classical set or crisp set is a collection of well-defined objects. A crisp set A of universal
set U can be defined by its characteristic function: fA: U → {0, 1}, such that fA(a) = 1
if a ∈ A, fA(a) = 0 if a �∈ A.

The relational model of data proposed by Codd, is based on this theory and has been
described in detail in Codd (1970). This model is very popular and is able to handle the
precise information only.

1.1.2. Fuzzy Set Theory
Fuzzy sets (Kerre, 1992; Takahasi, 1991), similar to classical sets, are capable of express-
ing nonspecificity. In fuzzy sets, the membership is not a matter of affirmation or denial,
but rather a matter of degree. Lotfi Zadeh (1965), first defined fuzzy sets in their present
form, to provide a method for constructing numerical controllers for complex electronic
equipment. He summarized his motivation “as the complexity of a system increases, our
ability to make precise and yet significant statements about its behavior diminishes until
a threshold is reached beyond which precision and significance become almost mutually
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exclusive characteristics.” He extended the work to include the concept of a linguistic
variable, which has the values that are words or sentences in natural language, and the
concept of fuzzy logic. The concept of fuzzy set can be defined by a membership func-
tion: μA: U → [0, 1], where μA(a) expresses a degree of membership of a in A, or the
strength of a belief that ‘a belongs to A′. Such a set A is called fuzzy set. This theory is
capable to define the linguistic variables and gradual changes; hence it is more suited for
control systems but can also be utilized for uncertainty management in databases. Buck-
les and Petry (1982), Dubois and Prade (1994), Kerre et al. (1986), Klir (1987), Medina
et al. (1995), Petry (1992), Prade and Testemale (1984), and Wang and Klir (1992) used
this theory for modeling and extensions of relational data model.

1.1.3. Rough Set Theory
Pawlak (1991) initiated the first stream in 1982, who launched rough set theory as a
framework for the construction of approximations of concepts when only incomplete in-
formation is available. A rough set is an imprecise representation of a crisp set in terms
of two subsets, a lower approximation and upper approximation. The available informa-
tion consists of a set A of examples of a concept C, and a relation R in X . R models
indiscernibility or indistinguishability and therefore generally is a tolerance relation and
in most cases even an equivalence relation.

In the literature we found that “rough sets work well for classification. Rough sets
appear to be well suited for data mining, which is the detection of significant relationships
in data, particularly in data warehouses”. Beaubouef used this theory for modeling the
imprecision in databases and developed the rough relational database model which is
explained in references Beaubouef and Petry (1994a, 1994b).

1.1.4. Vague Set Theory
Vague sets, similar to fuzzy sets, are capable of expressing nonspecificity. In addition,
they are also capable of expressing vagueness since these sets consider both membership
and non-membership function values as against only membership value, in the case of
fuzzy sets. Chen (2003) and Chen and Jong (1997) pointed out that the single value tells
nothing about the accuracy of belongingness of an element in the set. A vague concept
has a boundary line cases, i.e., elements of the universe, which cannot be with certainty
classified as elements of the concept.

In the present paper we developed an approach using both vague set and rough set
theories for imprecise and uncertain data handling in a relational database model. As
pointed out by Prade and Testemale (1984), rough sets capture the idea of indiscernibility
among members of a set and utilize a discrete formalism of set partitions. Correspond-
ingly, vague sets as pointed out by Gau and Buehrer (1993) can be viewed as capturing
imprecision by the nature of a vaguely defined set boundary and represented as a gen-
eralization of a discrete set membership and non-membership function by a continuous
function. The detail about various data models is explained in the reference Singh et al.
(2005).
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1.2. Exact Benefits of the Proposed Model

i. It may be used to express positive as well as negative preferences, in a logical
context, with a proposition a degree of truth and one of falsity may be associated
within databases, it can serve to evaluate the satisfaction as well as the violation of
relational constraints.

ii. It may be used to express positive as well as negative preferences, in a voting
context, where degree of truth, falsity and abstentions are to be evaluated with
exactness since none of the known model is able to handle such situations so far.

1.3. Potential Application Areas of New Data Model

There are many potential areas of applications of new data model. Some of the prominent
areas are:

1) Awareness creation
The awareness can be created about the issues related to a potentially hazardous
nuclear or chemical plants by organizing the rallies and conducting the public
meetings. The study requires the gathering and analysis of data, which incorpo-
rate uncertainty in databases.

2) Web mining
Essentially the data and documents on the Web are heterogeneous, uncertainty is
unavoidable. Using the presentation and reasoning method of our data model, it
is easier to capture uncertain information on the Web, which will provide more
potentially value-added information.

3) Bio-informatics
There is a proliferation of data sources. Each research group and each new experi-
mental technique seems to generate yet another source of valuable data. But these
data can be uncertain and imprecise and even incomplete. So how to represent
and extract useful information from these data will be a challenging problem, this
model can help up to a great extent.

4) Decision support system
In decision support systems, we need to combine the database with the knowledge
base. There will be a lot of uncertain and even inconsistent information, so we
need an efficient data model to capture these information and reasoning with these
information. This model can address such type of problems.

The paper is organized as follows. Section 2 of the paper deals with some of the basic
definitions and concepts of various sets and relational model of data. Section 3 introduces
vague rough relational data model and algebraic operators. Section 4 illustrates SQL-like
query language for the proposed model. Finally, Section 5 contains some concluding
remarks on the proposed model.
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2. Background

2.1. Relational Databases

The relational database model introduced by Codd (1970) uses the mathematical concept
of a relation as its data structure. In relational view, the data are stored in two-dimensional
tables, which have a specific number of columns and some number of unordered rows.
The tables are presented by mean of n-ary relations and are defined as ordinary subsets of
a Cartesian product D1×D2×· · ·×Dn, where each Di is a domain for some attribute. The
rows of a relational table are usually called tuples and columns are called attributes, a row
has a value in each column in a table. The set of values an attribute can take on is called
domain. A domain is a set of atomic values from which attributes draw their values, often
specified in terms of data type and format. In his original paper on the relational model,
Codd (1970) introduced eight basic operators, which could be used to manipulate data
within the body parts of tables of a relational database. Four of these, union, intersection,
difference and Cartesian product are traditional set operations, albeit modified to take
note of the fact that their operands are relations, which, as has been seen, are special
kinds of sets. The other four are the special relational operators restriction, projection,
join and division. He provided the basis for a very minimal data manipulation language
(DML) for information management. The basic operators are all incorporated into the
standard, international, relational database language structured query language (SQL), as
explained by Beaubouef and Petry (1994b), Bosc et al. (1988), Madina et al. (1995) and
Takahasi (1991).

The relational algebra has the algebraic property of closure. Any operation applied to
one or more relations produces a new relation. It also has the property that the operations
DIFFERENCE, UNION, PROJECT, PRODUCT, and SELECT form a complete set. All
other relational operations can be defined in terms of these. Therefore, these five operators
are sufficient to specify data associated with any relationship in the database design, and
query languages having these operations are called relationally complete.

2.2. Vague Sets

The theory of vague sets (Gau and Buehrer, 1993) is a generalization of theory of fuzzy
sets because when the sum of positive and negative evidences equals to one, for all ele-
ments of the universe, the traditional fuzzy set concept is recovered.

Definition 2.2.1. Let U be the universe of discourse U = {u1, u2, . . . un}, with a
generic element of U denoted by ui. A vague set A in U is characterized by true mem-
bership function μA: U → [0, 1] and a false membership function νA: U → [0, 1]. Where
μA(ui) is a lower bound on the grade of membership of ui derived from the evidence for
ui, νA(ui) is a lower bound on the negation of ui derived from the evidence against ui,
and μA(ui) + νA(ui) � 1.

The grade of membership of ui in the vague set A is bounded to a sub inter-
val [μA(ui), 1 − νA(ui)] of [0,1]. The vague value [μA(ui), 1 − νA(ui)] indicates
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that the exact grade of membership ηA(ui) of ui may be unknown, but is bounded
by μ(ui) � ηA(ui) � 1 − νA(ui), where μA(ui) + νA(ui) � 1. The amount
1−μA(ui)−νA(ui) is called hesitation part, which may cater to either true-membership
value or false-membership value or both (Fig. 1).

For more clarity, the Fig. 1 may be explained as follows. The precision of our knowl-
edge about ui is immediately clear, with our uncertainty characterized by the difference
1−μA(ui)− νA(ui). If this is small, our knowledge about ui is relatively precise; if it is
large, we know correspondingly little. If 1 − νA(ui) is equal to μA(ui), our knowledge
about ui is exact, and the theory reverts back to that of fuzzy sets. If 1 − νA(ui) and
μA(ui) both are equal to 1 or 0 depending on whether ui does or does not belong to A,
our knowledge about ui is very exact and the theory reverts back to that of ordinary sets.
In the literature we found that the terms membership and non-membership are also being
used in place of true-membership and false-membership.

When the universe of discourse U is continuous, a vague set A can be written as

A =
∫

U

[μA(ui), 1 − νA(ui)]/ui.

When the universe of discourse U is discrete, a vague set A can be written as

A =
n∑

i=1

[μA(ui), 1 − νA(ui)]/ui.

Example 1. For a vague set [μA(ui), 1 − νA(ui)]/ui, we say that the interval
[μA(ui), 1−νA(ui)] is the vague value to the object ui. Consider [μA(ui), 1−νA(ui)] =
[0.6, 0.8], we can see that μA(ui) = 0.6, 1 − νA(ui)] = 0.8 and νA(ui) = 0.2. It is
interpreted as “the degree that object ui belongs to the vague set V is 0.6, the degree
that object ui does not belong to the vague set V is 0.2.” In a voting process, the vague
value [0.6, 0.8] can be interpreted as “the vote for resolution is 6 in favor, 2 against, and
2 neutral.”

Fig. 1. Illustration of vague set.
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2.2.1. Properties of Vague Sets
The properties of vague sets such as empty vague set, complement of a vague set, con-
tainment of vague sets, equality of vague sets, union of vague sets and intersection of
vague sets are explained in detail by Gau et al. (1993).

Definition 2.2.1.1. A vague relation from a non-empty set X to Y is a vague subset
of X×Y , i.e., a vague relation R is characterized by true-membership function μR: X×
Y → [0, 1] and a false-membership function νR: X × Y → [0, 1], where μR(x, y) +
νR(x, y) � 1, ∀(x, y) ∈ X × Y .

The true and false membership values of vague sets X and Y also holds true for all
the subsets of X×Y . The other properties of vague relations such as reflexive, symmetric
etc. are defined by Gau et al. (1993).

2.3. Rough Sets

Rough set theory, introduced by Pawlak (1991) is a technique for dealing with uncertainty
and for identifying cause-effect relationships in databases as a form of database learning.

Definition 2.3.1. Given the approximation space A defined on some universe U with
equivalence relation R imposed upon A, U is partitioned into equivalence classes called
elementary sets. The unions of combinations of these elementary sets define other sets
in A. Given that X ⊆ U , X can be defined in terms of the definable sets in A by the
following:

The lower approximation of X in A is the set RX = {x ∈ U | [x]R ⊆ X}.
The upper approximation of X in A is the set RX = {x ∈ U | [x]R ∩ X �= Φ}.

The set approximation RX and RX may also be described as R-positive (RX) re-
gion, R-negative (U − RX) region and the R-borderline region (RX − RX). [x]RR

denotes the equivalence class of R containing x, for an element x of U . The theory has
been illustrated with example by Beaubouef and Petry (1994a).

2.4. Vague Rough Sets

In this section, we introduce the concept of vague rough sets by coupling both vague
sets and rough sets. Along with the lower and upper approximations, rough set theory
provides two kinds of membership: if an element belongs to the lower approximation of
A, we are dealing with strong membership of A. It is very natural to extend this idea to
fuzzy rough set theory: the strong membership function of the lower approximation of
A, while the weak membership function of A is the membership function of the upper
approximation of A. In vague rough set theory we also deal with two kinds of functions,
namely a membership function μ and a non-membership function ν.

Note that the strong membership function of the fuzzy rough set Radzikowska and
Kerre (2002) can be considered as the membership function μ of a vague rough set,
while the complement of the weak membership function of the fuzzy rough set can be
used as the non-membership function ν. Vague sets and rough sets model different type of
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uncertainty. Since both types are relevant for database applications, it is useful to combine
the two concepts.

The applications of this idea are manifold. It may be used to express positive as well
as negative preferences, in a logical context, with a proposition a degree of truth and one
of falsity may be associated within databases, it can serve to evaluate the satisfaction as
well as the violation of relational constraints.

Definition 2.4.1. Let U be a universe and X a rough set in U . A vague rough set A

in U is characterized by a membership function μA: U → [0, 1] and a non-membership
function νA: U → [0, 1] such that

μA(RX) = 1, 1 − νA(RX) = 1 OR [μA(x), 1 − νA(x)] = [1, 1] if x ∈ RX

μA(U − RX) = 0, 1 − νA(U − RX) = 0

OR [μA(x), 1 − νA(x)] = [0, 0] if x ∈ U − RX

and 0 � μA(RX − RX) + νA(RX − RX) � 1.

Example 2. Let U = {Child, Pre-Teen, Teen, Youth, Teenager, Young-Adult, Adult,
Senior, Senior-Citizen, Elderly} be a universe.

Let the equivalence relation R be defined as follows:
R∗ = {[Child, Pre-Teen], [Teen, Youth, Teenager], [Young-Adult], [Adult], [Senior,

Senior-Citizen, Elderly]}.
Let X ={Child, Pre-Teen, Youth, Young-Adult}.
We can define X in terms of its lower and upper approximations:
RX = {Child, Pre-Teen, Young-Adult}, and
RX ={Child, Pre-Teen, Teen, Youth, Teenager, Young-Adult}.
The membership and non-membership functions μA: U → [0, 1] and νA: U → [0, 1]

can be defined at as follows:
μA(Child) = 1, μA(Pre-Teen) = 1, μA(Young-Adult) = 1,
νA(Child) = 0, νA(Pre-Teen) = 0, νA(Young-Adult) = 0,
μA(Adult) = 0, μA(Senior) = 0, μA(Senior-Citizen) = 0, μA(Elderly) = 0,
νA(Adult) = 1, νA(Senior) = 1, νA(Senior-Citizen) = 1, νA(Elderly) = 1,
μA(Teen) = 0.3, μA(Teenager) = 0.4, μA(Young) = 0.5,
νA(Teen) = 0.5, νA(Teenager) = 0.4, νA(Young) = 0.3.
Such a set A defined in U on rough set X is called vague rough set in which

vague values are represented as [μA(Child), 1 − νA(Child)] = [1,1], [μA(Teenager),
1 − νA(Teenager)] = [0.4,0.6] etc.

3. Vague Rough Relational Database Model

3.1. Introduction and Definition

A data model is an abstract model of the data stored in a Database Management System
(DBMS). This abstraction allows the user of a DBMS to focus on the context of the infor-
mation, rather than the details of its physical storage. To provide, such an abstraction, a
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data model has two components: (1) a notation for describing data, and (2) a set of oper-
ations for manipulating the data. Vague rough relational data model is the generalization
of fuzzy rough relational data model. In fact, it can be easily shown that the fuzzy rough
relational data model is a special case of vague rough relational data model. We can use
Fig. 2 to express the relationship among RDM, FRDM, RRDM, FRRDM and VRRDM.

The vague rough relational database is an extension of fuzzy rough relational database
model proposed by Beaubouef and Petry (2000). In the proposed model a tuple ti takes
the form (di1, di2, . . . , dim, di[μ,ν∗] ) where dij is a domain value of a particular domain
set Dj and di[μ,ν∗] belongs to closed interval I = [0, 1], the domain for true-membership
and false-membership values, represented as di[μ,ν∗] = [diμ, diν∗ ], diμ, diν ∈ I such that
diμ +diν � 1. In the vague rough relational database except for the true-membership and
false-membership values dij ⊆ Dj and dij is not restricted to be a singleton, dij �= φ.

Let P (Di) denote any non-null member of the power set of Di.

Definition 3.1.1. A vague rough relation R is a subset of the set cross product
P (D1) × P (D2) × . . . P (Dm) × D[μ,ν∗]. Where D[μ,ν] denoted the family of closed
sub-interval of the closed interval [0,1] such that μ � ν∗ or μ + ν � 1.

Example 3. For a specific relation, R, membership and non-membership are deter-
mined semantically. Given that D1 is the set of names of people, D2 is the set of city
names then

(J.Singh, Sarojni Naidu,[1,1])
(Kalpna,{S.C.Bose,Gitanjali},[0.6,0.6])
(Josef, Rajiv Gandhi,[1,1])

are elements of P (D1) × P (D2) × D[μ,ν∗].

Fig. 2. Relationship among RDM, FRDM, RRDM, FRRDM and VRRDM.
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A vague rough tuple t is any member of R. If ti is some arbitrary tuple then ti =
(di1, . . . , dim, di[μ,ν∗]) where dij ⊆ Dj and di[μ,ν∗]) = [diμ, diν∗ ], diμ, diν ∈ I such
that diμ + diν � 1.

Definition 3.1.2. An interpretation α = (a1, a2, . . . , am, a[μ,ν∗]) of a vague rough
tuple ti = (di1, di2, . . . , dim, di[μ,ν∗]) is any value assignment such that aj ∈ dij for
all j.

The interpretation space is the cross product D1×D2×. . . Dm×D[μ,ν∗], but is limited
for a given relation R to the set of those tuples which are valid according to the underlying
semantics of R. In an ordinary relational database, because domain values are atomic,
there is only one possible interpretation for each tuple ti. Moreover, the interpretation of
ti is equivalent to the tuple ti. In the vague rough relational database, this is not always
the case.

Let [dxy] denote the equivalence class to which dxy belongs. When dxy is a set of
values, the equivalence class is formed by taking the union of equivalence classes of
members of the set, if dxy = {c1, c2, . . . , cn}, then [dxy] = [c1] ∪ [c2] ∪ . . . ∪ [cn].

Definition 3.1.3. Tuples ti = (di1, di2, . . . , din, di[μ,ν∗]) and tk = (dk1, dk2, . . . ,

dkn, dk[μ,ν∗]) are redundant if [dij ] = [dkj ] for all j = 1 . . . n.

If relation contains only those tuples of a lower approximation, i.e., those tuples hav-
ing true-membership value 1 and false-membership value 0, the interpretation α of a tuple
is unique. This follows immediately from the definition of redundancy. In vague rough
relations, there are no redundant tuples. The merging process used in relational database
operations removes duplicate since duplicates are not allowed in sets, the structure upon
which the relational model is based. Tuples may be redundant in all values except μ and ν,
as in the union of vague rough sets where the maximum membership value and minimum
non-membership values are retained. It is the convention of the vague rough relational
database to retain the tuple having the higher μ and lower ν (or higher ν∗) value when
removing redundant tuple during merging. If we are supplied with identical data from
two sources, one certain and the other uncertain, we would want to retain the data that is
certain, avoiding loss of information. So, there is need for another definition, which will
be used for upper approximation tuples, is necessary for some of the alternate definitions
of operators to be presented. This definition captures redundancy between elements of
attribute values that are sets.

Definition 3.1.4. Two sub-tuples X = (dx1, dx2, . . . , dxm, dx[μ,ν∗]) and Y =
(dy1, dy2, . . . , dym, d[μ,ν∗]) are roughly redundant, R, if for some [p] ⊆ [dxj ] and
[q] ⊆ [dyj ]; [p] = [q] for all j = 1, 2, . . . ,m.

3.2. Application of the Model in “Awareness Creation”

We have so far considered theoretical properties. We now present a very simple example
where the necessity of incorporating the uncertainty in database is a must. An agency
is studying the concerns of citizens who reside near or employed by one of potentially
hazardous nuclear or chemical plants. A study is being conducted which documents these



Vague Rough Set Techniques for Uncertainty Processing in Relational Database Model 123

concerns and stores all the data in a database. Several public meetings and rallies were
conducted to promote public involvement in the project and to gather information from
the participants about their concerns. The study requires the gathering and analysis of
data to determine issues related to citizens and families. Here, the indiscernibility lies in
the age and height attributes since they have the values in linguistic terms such as adult,
senior, medium, tall etc. Also the indiscernibility lies in the name of city since there are
some people who are not able to tell the exact place or some city values are missing,
which are being shown here as a CLASS. We considered 3 tables and wherever there is
indiscernibility in the values of attributes, to handle it, we used rough set theory in the
form of CLASS, e.g., City in People table and Age and Height in Rally and Meeting
table, the values are shown as {Adult, Teen}, {Short, Medium} etc. In all the tables to
handle vagueness we are using vague set theory, the evidence in favor and against in the
form of true and false membership in each tuple represented as vague values, e.g., [1,1],
[0.8,0.9] etc.

3.3. Vague Rough E-R Diagram

We first design our database using some type of semantic model and the design method-
ology for uncertain data as described in Cavallo and Pottareli (1987), Chaudhary et al.,
(1994) and Medina et al. (1995). We use a variation of the entity-relationship diagram
that we call a vague rough E-R diagram. This diagram is similar to the standard E-R
diagram in that entity types depicted with rectangles, relationships with diamonds, and
attributes with ovals. However, in the vague rough model, it is understood that member-
ship and non-membership values exist for all instances of entity types and relationships.
Attributes that allow values where we want to be able to define equivalences are denoted
with an asterisk (*) above the oval. The vague rough E-R model is similar to fuzzy rough
E-R model of second and third levels of fuzziness defined by Zvieli and Chen (1986).
However, in our model, all entity and relationship occurrences are of the vague type so
we do not mark a ‘v’ beside each one. We do not introduce vagueness at the attribute
level of our model in this paper, only roughness, or indiscernibility, and denote those at-
tributes with the “*”. From the fuzzy-rough E-R diagram, Beaubouef and Petry (1988)
designed the structure of the fuzzy rough relational database. We have extended this dia-
gram for vague rough relational database. If we have a priori information about the types
of queries that will be involved, we can make intelligent choices that will maximize com-
puter resources. A part of vague rough E-R diagram for the considered example appears
in Fig. 3.

We introduce a vague rough data definition language (DDL) to define the vague rough
relations and the indiscernibility relation. The vague rough DDL is similar to that of SQL,
having such commands as CREATE, DROP, etc., but for vague rough relations.

The VRCREATE DDL command creates a base table that is vague rough in the fol-
lowing ways. First of all, it contains an additional attribute called TF, which draws values
from the range [0,1], tuple membership and non-membership values. This attribute does
not have to be specified. It is automatically included as part of all vague rough relations.
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Fig. 3. Illustration of a vague rough E-R diagram.

Additionally, we can specify for each attribute whether or not we allow indiscernibility
of values. This is defined by including “IND” along with the attribute line of the table
definition. The VRCREATE command is used to define the vague rough relations of the
example stated above. The representative tables defined and explained in this section can
be found in the Appendix.

VRCREATE TABLE PEOPLE
( ID DECIMAL(4),
NAME CHAR(25),
CITY CHAR(25) IND,
TF CHAR(10),
PRIMARY KEY (ID));

Similarly, the structure for other tables can be created. One point is to be noted here,
the attribute TF is containing the values of true and false memberships. At the time of
actual implementation these values should be stored separately either in numeric form
or they should get converted in numeric form using some function because we need to
compare the values of μs and νs while defining the operators and making the queries
from the database.

Once the database schema has been defined, we may begin to store actual data in
the vague rough relations. Often database packages have utility programs to expedite the
process. Alternatively, we can directly enter data into a relation with the SQL INSERT
command. In the vague rough relational database, the command is similar. Data values
for all attributes including the membership value and non-membership value are inserted
into the specified relation. The vague rough counterpart to SQL’s INSERT is VRINSERT.

VRINSERT
INTO PEOPLE
VALUES (5002, ‘Kalpna’, ‘{Bombay, Gorakhpur }’, ‘[0.5,0.5]’);

The designer may use the VRINSERT command to enter tuples in the INDISCERNI-
BILITY relation since it is, after all, a vague rough relation. In order to create new equiv-
alence class, the VRCLASS command is used:
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VRCLASS (TEEN, YOUTH, TEENAGER);

The vague rough relational database commands VRCLASS, VRREMOVE, and
VRDELETE are special commands created to facilitate operations involving indiscerni-
bility and for updating this special relation of equivalence classes. VRREMOVE and
VRDELETE are analogous to their SQL counterparts in standard relational database. The
vague rough relational database also has the usual SQL DDL and update commands for
deleting or updating tuples and dropping tables. These operate on vague rough relations
as DELETE, UPDATE, and DROP TABLE commands operate on ordinary relations.

Uncertainty, ambiguity, and indiscernibility are all prevalent in the considered exam-
ple. In the next section we formally define the vague rough relational database operators
and discuss issues relating to the data representation and modeling. Informally, however,
we view indiscernibility as being modeled through the use of the indiscernibility relation,
imprecision through the use of non-first normal constructs, and degree of uncertainty and
vagueness through the use of tuple membership and non-membership values, which are
given as the value for the TF attribute in every vague rough relation.

3.4. Vague Rough Relational Operators

We now define the operators for the vague rough relational database and demonstrate the
expressive power of the model through its vague relational algebra.

3.4.1. Difference Operator
In vague rough relational database, the difference operator is applied to two vague rough
relations and, as in the rough relational database, indiscernibility, rather than equality
of attribute values, is used in the elimination of redundant tuples. Hence, the difference
operator is somewhat more complex.

Let X and Y be two union compatible vague rough relations, the vague rough differ-
ence, X − Y , between X and Y is a vague rough relation T where

T = {t(d1, d2, . . . , dn, [μi, ν
∗
i ]) ∈ X: t(d1, d2, . . . , dn, [μi, ν

∗
i ]) �∈ Y }

∪{t(d1, d2, . . . , dn, [μi, ν
∗
i ]) ∈ X: t(d1, d2, . . . , dn, [μj , ν

∗
j ]) ∈ Y

and μi > μj and ν∗
i > ν∗

j }

The resulting vague rough relation contains all those tuples which are in the lower
approximation of X , but not redundant with a tuple in the lower approximation of Y . It
also contains those tuples belonging to upper approximation of both X and Y , but which
have a higher μ value in X than in Y and higher ν∗ value in X than in Y .

Consider the vague rough relations Rally and Meeting from the Appendix. The query
“Retrieve the information on individuals who attended the rally but not the meeting” can
be expressed as vague rough difference of the two relations: Rally – Meeting, which
yields (Table 1).

Here, it is important to note that ID 5019 exists in both the tables Rally and Meeting
but not retrieved in the resulting table because μi > μj but ν∗

i is not > ν∗
j , it does not
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Table 1

Vague rough difference of tables Rally and Meeting

ID Sex Age Height TF

5014 M Adult Short [0.7,0.8]

5015 M {Adult, Teen} {Medium, Tall} [0.6,0.7]

5020 M Adult {Short, Medium} [0.6,0.8]

satisfy the condition μi > μj and ν∗
i > ν∗

j . On the other hand ID 5020 also exists in both
the tables and retrieved in the resulting table because it satisfies the condition μi > μj

and ν∗
i > ν∗

j . This example clearly shows, the proposed technique is more powerful than
the fuzzy rough set technique where only positive evidences or membership values (μis)
are considered at the time of comparison. If we had used fuzzy rough set technique the
tuple with ID 5019 would have retrieved.

3.4.2. Union Operator
The union operator can be applied to any two union compatible relations to result in a
third relation which has its tuples, all the tuples contained in either or both of the two
original relations. The union operator can be extended to vague rough relations.

The vague rough union of two vague rough relations X and Y , X ∪ Y , is a vague
rough relation T where

T = {t: t ∈ X OR t ∈ Y } and μT (t) = Max [μX(t), μY (t)]

and νT (t) = Max [ν∗
X(t), ν∗

Y (t)].

The resulting relation T contains all tuples in either X or Y or both, merged together
and having redundant tuples removed. If X contains a tuple that is redundant with a tuple
in Y except for the μ and ν∗ values, the merging process will retain only that tuple with
the higher μ value and higher ν∗ value.

The query “List all information for individuals who participated in either the rally or
the meeting or both”, the vague rough union of the relations Rally and Meeting results in
the Table 2.

Again, ID 5019 is not retrieved because positive and negative evidences do not satisfy
the required condition.

3.4.3. Intersection Operator
The vague rough intersection of X and Y, X ∩ Y , is a vague rough relation T where

T = {t: t ∈ X and t ∈ Y } and μT (t) = Min [μX(t), μY (t)]

and νT (t) = Min [ν∗
X(t), ν∗

Y (t)].

In intersection, the Min operator is used in merging the equivalent tuples having dif-
ferent μ value and ν∗ value respectively, the result contains all the tuples that are members
of both of the original vague rough relations.
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Table 2

Vague rough union of tables Rally and Meeting

ID Sex Age Height TF

5002 F Adult Medium [0.8,0.9]

5010 M Senior Tall [0.7,0.8]

5014 M Adult Short [0.7,0.8]

5015 M {Adult, Teen} {Medium, Tall} [0.6,0.7]

5018 M {Adult, Teen} {Medium, Tall} [0.5,0.6]

5020 M Adult {Short, Medium} [0.6,0.8]

The query “Retrieve all information for those individuals who have attended both the
rally and meeting” can be formulated as a vague rough intersection of Rally and Meeting
(Table 3).

Once again, ID 5019 is not retrieved because positive and negative evidences do not
satisfy the required condition. This makes our technique different from fuzzy rough tech-
nique.

3.4.4. Select Operator
The select operator for the vague rough relational database model, σ, is a unary operator
which takes a vague rough relation X as its argument and returns a vague rough relation
containing a subset of the tuples of X , selected on the basis of values for a specified at-
tribute. The vague rough selection, σA = a(x) of tuples from X is a vague rough relation
Y having the same schema as X and where Y = {t ∈ X: Ui[ai] ⊆ Uj [bj ]}. Where
ai ∈ a, bj ∈ t(A), and where membership and non-membership values for tuples are
calculated by multiplying the original values by card(a)/card(b). Where: Card(x) returns
the cardinality or number of elements in x.

The result of “Select all students who are adult and attending the meeting from Meet-
ing relation”(Table 4).

3.4.5. Project Operator
Project is a unary vague rough relational operator. It returns a relation that contains a
subset of columns of the original relation. Let X be a vague rough relation with schema
with A, and let B be a subset of A. The vague rough projection of X onto B is a vague

Table 3

Vague rough intersection of tables Rally and Meeting

ID Sex Age Height TF

5002 F Adult Medium [0.8,0.9]

5010 M Senior Tall [0.7,0.8]

5020 M Adult {Short, Medium} [0.5,0.6]
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Table 4

All students who are adult and attended the Meeting

ID Sex Age Height TF

5002 F Adult Medium [0.8,0.9]

5018 F {Adult, Teen} {Medium, Tall} [0.25,0.3]

5019 F {Adult, Senior} Tall [0.25,0.35]

5020 M Adult {Short, Medium} [0.6,0.8]

rough relation Y obtained by omitting the columns of X which correspond to attributes
in A − B, and removing redundant tuples and higher μ values has priority over lower
ones and higher ν∗ values have priority over lower ones.

The vague rough projection of X onto B, π(X), is a vague rough relation Y with
schema Y (B), where Y (B) = {t(B) | t ∈ X} and μR(t) = Max [μX(t), μY (t)] and
νR(t) = Max [ν∗

X(t), ν∗
Y (t)]. Each t(B) is a tuple retaining only those attributes in the

requested set B.
The query “List all ages represented at Meeting” can be expressed as a vague rough

projection on the attribute AGE of the Meeting relation. This operation projects out all
other attributes and eliminates redundant tuples. Note in the result that those tuples having
higher μ values and higher ν∗ values retained during the merging process (Table 5).

3.4.6. Join Operator
Join is a binary operator that takes related tuples from two relations and combine them
into a single tuple of the resulting relation. It uses common attributes to combine the two
relations into one, usually larger, relation.

The vague rough join, Xθ<JOIN CONDITION>Y , of two relations X and Y , is a
relation T (C1, C2, . . . , Cm + n) where

T = {t | ∃tx ∈ X, ty ∈ Y for tx = t(A), ty = t(B)},

Table 5

All ages represented at Meeting

Age TF

Adult [0.8,0.9]

Senior [0.7,0.8]

{Adult, Teen} [0.6,0.6]

{Adult, Senior} [0.5,0.7]
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and where

tx(A ∩ B) = ty(A ∩ B), μ = 1, ν∗ = 1,

tx(A ∩ B) ⊆ ty(A ∩ B) or ty(A ∩ B) ⊆ tx(A ∩ B), μ = Min (μx, μy)

and ν∗ = Min (ν∗
x, ν∗

y )

<JOIN CONDITION> is a conjunction of one or more conditions of the form A = B.
The query “List all individuals who resides in the ‘Rampur’ city and attended the

meeting”, can be expressed as a vague rough join on the attributes of STUDENT and
MEETING relations. The resulting relation contains the attributes from both the original
relations by joining them on the common attribute ID and gives result in Table 6.

4. SQL-Like Queries for Vague Rough Relational Database

SQL, is one of the most popular languages for relational databases. Bosc et al. (1988)
and Kerre et al. (1986) membership from the fuzzy relational databases and Beaubouef
and Petry (1994b) explained rough querying of crisp data. Though, we found many levels
of SQL such as SQL1, SQL2, SQL3 but most of these are semantic extensions. We now
describe the extension of SQL to VRSQL, which is powerful enough to retrieve any set
of items of any degree of vagueness. As in other database query languages, there are
often several ways of expressing a given query. Based on our data definition language for
the vague rough relational database on SQL, we present some SQL like queries to our
database.

Example 4. “List all ages represented at the Rally”
SELECT AGE
FROM RALLY
There are no conditions, and hence, no WHERE clause for this query since it is a sim-

ple projection of the attribute AGE from RALLY. All attribute values of the vague rough
relation RALLY except AGE and TF are deleted and then redundant tuples eliminated to
result in the Table 7.

Example 5. “List all individuals who attended either rally or meeting or both”
(SELECT ID, SEX, AGE
FROM MEETING)

Table 6

All individuals who resides in Rampur city and attended the Meeting

ID Name City Sex Age Height TF

5010 Josef Rampur M Adult Tall [0.7,0.8]

5018 Rajiv Rampur M {Adult, Teen} {Medium, Tall} [0.5,0.6]



130 K. Singh, S.S. Thakur, M. Lal

Table 7

All ages represented at Rally

Age TF

Adult [0.8,0.9]

Senior [0.7,0.8]

{Adult, Teen} [0.6,0.7]

{Adult, Senior} [0.6,0.6]

UNION
(SELECT ID, SEX, AGE
FROM RALLY)
The query illustrates a simple union of two union compatible vague rough relations

(Table 8).

Example 6. “List all the students who attended rally and are adult but short in
height”.

(SELECT ID, SEX, AGE, HEIGHT FROM RALLY)
WHERE
(AGE = ‘ADULT’ AND HEIGHT = ‘SHORT’)
Since the query is having indiscernible values, the TF will have the values got through

calculation by multiplying the original values by card(x)/card(y).

Table 8

Individuals who attended Rally or Meeting or Both

ID Sex Age Height TF

5002 F Adult Medium [0.8,0.9]

5010 M Senior Tall [0.7,0.8]

5014 M Adult Short [0.7,0.8]

5015 F { Adult, Teen} {Medium, Tall} [0.6,0.7]

5018 M { Adult, Teen} {Medium, Tall} [0.5,0.6]

5020 M Adult {Short, Medium} [0.6,0.8]

Table 9

Students who attended Rally and are adult but short in height

ID Sex Age Height TF

5014 M Adult Short [0.7,0.8]

5020 M Adult {Short, Medium} [0.3,0.4]
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5. Conclusions

This paper concerns the modeling of imprecision and vagueness type of uncertainty in
databases through an extension of the relational model of data: the vague rough relational
database. The new model is formally defined and theoretical properties of operators and
relational algebra for querying are discussed. The new vague rough E-R diagram and
SQL like query languages have been described.

The various models explained in the introduction and the references are able to pro-
cess specific type of uncertainty. The usefulness of new model is illustrated by a sim-
ple example. The vague rough relational database is a sound model, which incorporates
the combination of techniques for uncertainty processing into the underlying data model
and its algebra. The design of the databases for this model is similar to that of ordinary
databases except for the user-defined indiscernibility values. The data definition and ma-
nipulation languages (DDL and DML) for the vague rough relational database are closely
related to standard SQL for conventional databases. The user simply has to remember
that the underlying model is based on vague rough sets, which will be used in determin-
ing results of queries, and true and false membership values must be considered when
populating or updating the database.

In conclusion, the vague rough relational database model is easy to understand and to
use. In addition, it more accurately models the uncertainty of real-world enterprises than
do conventional databases through the use of indiscernibility and vague membership and
non-membership values. Some of the potential application areas of the new data model
have also been mentioned over the existing data models.

Appendix

Consider the following three tables/relations namely People, Rally and Meeting having
different attributes for getting the results of various operators and queries described under
the proposed model.

Table A1: PEOPLE

ID Name City TF
5001 J.Singh Saharanpur [1,1]
5002 Kalpna {Bombay, Gorakhpur} [0.5,0.5]
5010 Josef Rampur [1,1]
5011 Priya Nainital [1,1]
5014 Rajat {Nainital, Gorakhpur} [0.5,0.5]
5015 Ashraf Rampur [1,1]
5017 John Rampur [1,1]
5018 Rajiv Rampur [1,1]
5019 Sarika Saharanpur [1,1]
5020 Shubham Gorakhpur [1,1]
5021 Chandan Madras [1,1]
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Table A2: RALLY

ID Sex Age Height TF
5002 F Adult Medium [0.8,0.9]
5010 M Senior Tall [0.7,0.8]
5014 M Adult Short [0.7,0.8]
5015 M {Adult, Teen} {Medium, Tall} [0.6,0.7]
5019 F {Adult, Senior} Tall [0.6,0.6]
5020 M Adult {Short, Medium} [0.6,0.8]

Table A3: MEETING

ID Sex Age Height TF
5002 F Adult Medium [0.8,0.9]
5010 M Senior Tall [0.7,0.8]
5018 M {Adult, Teen} {Medium, Tall} [0.5,0.6]
5019 F {Adult, Senior} Tall [0.5,0.7]
5020 M Adult {Short, Medium} [0.5,0.6]
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Neapibrėžt ↪u šiurkšči ↪u aibi ↪u metodika neapibrėžtumo apdorojimui
reliacinės duomen ↪u bazės modelyje

Karan SINGH, Samajh Singh THAKUR, Mangi LAL

Viena pamatini ↪u problem ↪u, lemianči ↪u aktyvias duomen ↪u bazi ↪u studijas, yra dideli ↪u duomen ↪u
kieki ↪u skirstymo būdai. Šiame straipsnyje nagrinėjamas netikslumo ir neatskiriamumo apdorojimas
reliacinėse duomen ↪u bazėse, pagal siūlom ↪a neapibrėžt ↪a šiurkšči ↪a metodik ↪a sukuriant neapibrėžt ↪a
šiurkšt ↪u duomen ↪u bazės model↪i. Autoriai iš šiurkšči ↪u aibi ↪u teorijos perima neatskiriamumo
ir tikimybės s ↪avokas, kurios apjungiamos su priklausomybės/nepriklausomybės reikšmėmis iš
neapibrėžt ↪u aibi ↪u teorijos. Tokiu būdu neapibrėžta informacija gali būti atvaizduojama išsaugant
informacijos neapibrėžtumo laipsn↪i kiekviename duomen ↪u bazės korteže. Teorinės siūlomame mo-
delyje naudojam ↪u operatori ↪u savybės straipsnyje palygintos su analogiškomis reliacinio duomen ↪u
modelio savybėmis. Taip pat straipsnyje aprašomos neapibrėžtam šiurkščiam reliaciniam duomen ↪u
bazės modeliui skirtos duomen ↪u bazės aprašymo ir SQL tipo užklaus ↪u kalbos.


